Добірка наукової літератури з теми "Chaînes de Markov branchantes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Chaînes de Markov branchantes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Chaînes de Markov branchantes"
Delmotte, Thierry. "Estimations pour les chaînes de Markov réversibles." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no. 9 (May 1997): 1053–58. http://dx.doi.org/10.1016/s0764-4442(97)87885-8.
Повний текст джерелаBrossard, Jean, and Christophe Leuridan. "Chaînes de Markov Constructives Indexées par Z." Annals of Probability 35, no. 2 (March 2007): 715–31. http://dx.doi.org/10.1214/009117906000000430.
Повний текст джерелаLadet, Sylvie, Marc Deconchat, Claude Monteil, Jean-Paul Lacombe, and Gérard Ballent. "Les chaînes de Markov spatialisées comme outil de simulation." Revue internationale de géomatique 15, no. 2 (June 30, 2005): 159–73. http://dx.doi.org/10.3166/rig.15.159-173.
Повний текст джерелаPieczynski, Wojciech. "Copules gaussiennes dans les chaînes triplet partiellement de Markov." Comptes Rendus Mathematique 341, no. 3 (August 2005): 189–94. http://dx.doi.org/10.1016/j.crma.2005.06.012.
Повний текст джерелаPieczynski, Wojciech. "Fusion de Dempster–Shafer dans les chaînes triplet partiellement de Markov." Comptes Rendus Mathematique 339, no. 11 (December 2004): 797–802. http://dx.doi.org/10.1016/j.crma.2004.10.013.
Повний текст джерелаMiclo, Laurent. "Une variante de l'inégalité de Cheeger pour les chaînes de Markov finies." ESAIM: Probability and Statistics 2 (1998): 1–21. http://dx.doi.org/10.1051/ps:1998101.
Повний текст джерелаDiaconis, P. "Une nouvelle construction de champs Gaussiens à partir de chaînes de Markov." Annales de l'Institut Henri Poincare (B) Probability and Statistics 38, no. 6 (December 2002): 863–78. http://dx.doi.org/10.1016/s0246-0203(02)01123-8.
Повний текст джерелаMiclo, Laurent. "Relations entre isopérimétrie et trou spectral pour les chaînes de Markov finies." Probability Theory and Related Fields 114, no. 4 (July 1999): 431–85. http://dx.doi.org/10.1007/s004400050231.
Повний текст джерелаHERVE, L. "Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes V-géométriquement ergodiques et aux modèles itératifs." Annales de l'Institut Henri Poincare (B) Probability and Statistics 41, no. 2 (March 2005): 179–96. http://dx.doi.org/10.1016/j.anihpb.2004.04.001.
Повний текст джерелаDridi, Noura, Yves Delignon, and Wadih Sawaya. "Critères BIC et AIC pour les chaînes de Markov cachées. Application aux communications numériques." Traitement du signal 31, no. 3-4 (October 28, 2014): 383–400. http://dx.doi.org/10.3166/ts.31.383-400.
Повний текст джерелаДисертації з теми "Chaînes de Markov branchantes"
Weibel, Julien. "Graphons de probabilités, limites de graphes pondérés aléatoires et chaînes de Markov branchantes cachées." Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1031.
Повний текст джерелаGraphs are mathematical objects used to model all kinds of networks, such as electrical networks, communication networks, and social networks. Formally, a graph consists of a set of vertices and a set of edges connecting pairs of vertices. The vertices represent, for example, individuals, while the edges represent the interactions between these individuals. In the case of a weighted graph, each edge has a weight or a decoration that can model a distance, an interaction intensity, or a resistance. Modeling real-world networks often involves large graphs with a large number of vertices and edges.The first part of this thesis is dedicated to introducing and studying the properties of the limit objects of large weighted graphs : probability-graphons. These objects are a generalization of graphons introduced and studied by Lovász and his co-authors in the case of unweighted graphs. Starting from a distance that induces the weak topology on measures, we define a cut distance on probability-graphons. We exhibit a tightness criterion for probability-graphons related to relative compactness in the cut distance. Finally, we prove that this topology coincides with the topology induced by the convergence in distribution of the sampled subgraphs. In the second part of this thesis, we focus on hidden Markov models indexed by trees. We show the strong consistency and asymptotic normality of the maximum likelihood estimator for these models under standard assumptions. We prove an ergodic theorem for branching Markov chains indexed by trees with general shapes. Finally, we show that for a stationary and reversible chain, the line graph is the tree shape that induces the minimal variance for the empirical mean estimator among trees with a given number of vertices
Lacour, Claire. "Estimation non paramétrique adaptative pour les chaînes de Markov et les chaînes de Markov cachées." Phd thesis, Université René Descartes - Paris V, 2007. http://tel.archives-ouvertes.fr/tel-00180107.
Повний текст джерелаDe, Almeida Rui Manuel. "Décantation dans les chaînes de Markov." Lille 1, 1986. http://www.theses.fr/1986LIL10144.
Повний текст джерелаFaure, Mathieu. "Grandes déviations autonormalisées pour des chaînes de Markov." Phd thesis, Université de Marne la Vallée, 2002. http://tel.archives-ouvertes.fr/tel-00572835.
Повний текст джерелаNoquet, Caroline. "Principe d'invariance local pour les chaînes de Markov." Lille 1, 1997. http://www.theses.fr/1997LIL10167.
Повний текст джерелаThivierge, Sylvain. "Simulation de Monte-Carlo par les chaînes de Markov." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0004/MQ42024.pdf.
Повний текст джерелаFernandes, Clément. "Chaînes de Markov triplets et segmentation non supervisée d'images." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAS019.
Повний текст джерелаHidden Markov chains (HMC) are widely used in unsupervised Bayesian hidden discrete data restoration. They are very robust and, in spite of their simplicity, they are sufficiently efficient in many situations. In particular for image segmentation, despite their mono-dimensional nature, they are able, through a transformation of the bi-dimensional images into mono-dimensional sequences with Peano scan (PS), to give satisfying results. However, sometimes, more complex models such as hidden Markov fields (HMF) may be preferred in spite of their increased time complexity, for their better results. Moreover, hidden Markov models (the chains as well as the fields) have been extended to pairwise and triplet Markov models, which can be of interest in more complex situations. For example, when sojourn time in hidden states is not geometrical, hidden semi-Markov (HSMC) chains tend to perform better than HMC, and such is also the case for hidden evidential Markov chains (HEMC) when data are non-stationary. In this thesis, we first propose a new triplet Markov chain (TMC), which simultaneously extends HSMC and HEMC. Based on hidden triplet Markov chains (HTMC), the new hidden evidential semi-Markov chain (HESMC) model can be used in unsupervised framework, parameters being estimated with Expectation-Maximization (EM) algorithm. We validate its interest through some experiments on synthetic data. Then we address the problem of mono-dimensionality of the HMC with PS model in image segmentation by introducing the “contextual” Peano scan (CPS). It consists in associating to each index in the HMC obtained from PS, two observations on pixels which are neighbors of the pixel considered in the image, but are not its neighbors in the HMC. This gives three observations on each point of the Peano scan, which leads to a new conditional Markov chain (CMC) with a more complex structure, but whose posterior law is still Markovian. Therefore, we can apply the usual parameter estimation method: Stochastic Expectation-Maximization (SEM), as well as study unsupervised segmentation Marginal Posterior Mode (MPM) so obtained. The CMC with CPS based supervised and unsupervised MPM are compared to the classic scan based HMC-PS and the HMF through experiments on artificial images. They improve notably the former, and can even compete with the latter. Finally, we extend the CMC-CPS to Pairwise Conditional Markov (CPMC) chains and two particular triplet conditional Markov chain: evidential conditional Markov chains (CEMC) and conditional semi-Markov chains (CSMC). For each of these extensions, we show through experiments on artificial images that these models can improve notably their non conditional counterpart, as well as the CMC with CPS, and can even compete with the HMF. Beside they allow the generality of markovian triplets to better play its part in image segmentation, while avoiding the substantial time complexity of triplet Markov fields
Romaskevich, Olga. "Dynamique des systèmes physiques, formes normales et chaînes de Markov." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN043/document.
Повний текст джерелаThis thesis deals with the questions of asymptotic behavior of dynamical systems and consists of six independent chapters. In the first part of this thesis we consider three particular dynamical systems. The first two chapters deal with the models of two physical systems: in the first chapter, we study the geometric structure and limit behavior of Arnold tongues of the equation modeling a Josephson contact; in the second chapter, we are interested in the Lagrange problem of establishing the asymptotic angular velocity of the swiveling arm on the surface. The third chapter deals with planar geometry of an elliptic billiard.The forth and fifth chapters are devoted to general methods of studying the asymptotic behavior of dynamical systems. In the forth chapter we prove the convergence of markovian spherical averages for free group actions on a probablility space. In the fifth chapter we provide a normal form for skew-product diffeomorphisms that can be useful in the study of strange attractors of dynamical systems
RAFI, Selwa. "Chaînes de Markov cachées et séparation non supervisée de sources." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00995414.
Повний текст джерелаCOT, CECILE. "Méthodes d'accélération pour les chaînes de Markov à transitions exponentielles." Paris 11, 1998. http://www.theses.fr/1998PA112325.
Повний текст джерелаКниги з теми "Chaînes de Markov branchantes"
Foata, Dominique. Processus stochastiques: Processus de Poisson, chaînes de Markov et martingales : cours et exercices corrigeś. Paris: Dunod, 2004.
Знайти повний текст джерелаRobert, Christian. Méthodes de Monte Carlo par chaînes de Markov. Economica, 1996.
Знайти повний текст джерелаЧастини книг з теми "Chaînes de Markov branchantes"
Jedrzejewski, Franck. "Chaînes de Markov." In Modèles aléatoires et physique probabiliste, 67–88. Paris: Springer Paris, 2009. http://dx.doi.org/10.1007/978-2-287-99308-4_4.
Повний текст джерелаCaumel, Yves. "Chaînes de Markov discrètes." In Probabilités et processus stochastiques, 149–78. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_7.
Повний текст джерелаChafaï, Djalil, and Florent Malrieu. "Chaînes de Markov cachées." In Recueil de Modèles Aléatoires, 93–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49768-5_7.
Повний текст джерелаDel Moral, Pierre, and Christelle Vergé. "Chaînes de Markov Discrètes." In Mathématiques et Applications, 3–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_1.
Повний текст джерелаDel Moral, Pierre, and Christelle Vergé. "Chaînes de Markov Abstraites." In Mathématiques et Applications, 23–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_2.
Повний текст джерелаDel Moral, Pierre, and Christelle Vergé. "Chaînes de Markov Non Linéaires." In Mathématiques et Applications, 51–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_3.
Повний текст джерелаDel Moral, Pierre, and Christelle Vergé. "Chaînes de Markov en Auto-Interaction." In Mathématiques et Applications, 67–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_4.
Повний текст джерелаChafaï, Djalil, and Florent Malrieu. "Des chaînes de Markov aux processus de diffusion." In Recueil de Modèles Aléatoires, 357–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49768-5_27.
Повний текст джерелаCaumel, Yves. "Chaînes de Markov à temps continu et files d’attente." In Probabilités et processus stochastiques, 203–33. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_9.
Повний текст джерелаDel Moral, Pierre, and Christelle Vergé. "Méthodes de Monte Carlo par Chaînes de Markov (MCMC)." In Mathématiques et Applications, 147–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54616-7_6.
Повний текст джерела