Дисертації з теми "CFD - Dynamique des fluides computationnelle"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "CFD - Dynamique des fluides computationnelle".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Xie, Xiaomin. "Investigation of Local and Global Hydrodynamics of a Dynamic Filtration Module (RVF Technology) for Intensification of Industrial Bioprocess." Thesis, Toulouse, INSA, 2017. http://www.theses.fr/2017ISAT0020/document.
Повний текст джерелаThis thesis focuses on the understanding and the control of dynamic interactions between physical and biological mechanisms considering an alternative membrane separation into industrial bioprocess. It aims to carry scientific knowledge related to the control of bioreaction considering complex hydrodynamics and retention-permeation locks specific to membrane separation. A dynamic filtration technology, called Rotating and Vibrating Filtration (RVF), was investigated. It consists of filtration cells in series including two flat disc membranes fixed onto porous substrates in the vicinity of a three-blade impeller attached to a central shaft. This simple mechanical device runs continuously and generates a high shear stress as well as a hydrodynamic perturbation in the narrow membrane-blade gap. Several scientific and technical locks motivating this work are to characterize and to quantify (i) the velocity fields locally and instantaneously, (2) the shear stresses at membrane surface and (3) the mechanical impact on microbial cells.To this end, experiments and numerical simulations have been performed to investigate the hydrodynamics at global and local scales under laminar and turbulent regimes with Newtonian fluids under biotic and abiotic environment. For global approach, investigation of Residence Time Distribution (RTD) and thermal balance was carried out and compared to the previous global study (power consumption and friction curves). Analytical study of distribution functions was conducted and statistical moments were calculated and discussed. A systemic analysis was used to describe the hydrodynamic behaviors of the RVF module. Combining Computational Fluid Dynamics (CFD) and RTD observations, it leads to demonstrate dysfunctioning conditions and area. For the local approach, Particle Image Velocimetry (PIV) was be carried out in both horizontal and vertical planes and compared to CFD simulation. PIV preliminary study was conducted with a trigger strategy to access through angle-resolved measurements to an averaged velocity field. PIV further study were performed with a non-trigger strategy and applied to Proper Orthogonal Decomposition (POD) analysis in order to identify the coherent structure of the flow by decomposing the organized and turbulent fluctuations. For the bioprocess application, an exploratory work characterized the effect of Dynamic Filtration on prokaryote cell population (Escherichia coli) by quantifying cell integrity or damage as a function of time and rotation speed during filtration process in turbulent regime
Elqotbi, Mohammed. "Application de la dynamique des fluides (CFD) à la modélisation d'un bioréacteur gaz-liquide." Electronic Thesis or Diss., Lille 1, 2009. http://www.theses.fr/2009LIL10023.
Повний текст джерелаThis work, in its methodological progression, aims at validating and implementing the fluid dynamics contribution, both theoretical and numerical, to the fermentation processes in agitated vessels. Indeed, its contribution in other engineering fields, where material flows and transformations coexist, could arouse additional deep interest. The detailed description of the evolution of the reactor contents in the final analysis proposes the pattern that is realized during the industrial exploitation of the studied operation. The thesis thus presents an approach to a reactor performance during fermentation. Combining multiphase flow with its, inter-phase mass transfer kinetics and particularly with the reactive aspect of the latter is the subject of progressive integration leading to a model of "numerical fermentation". A statistical analysis over the bulk data collected in the course of such an operation allow to evaluate more than one characteristic, and to draw much useful information not only for the study in the stage of development of the process but also for the support of its productive exploitation. The flexibility of the data-processing tool thus developed initiates competition between this evaluation method for process simulation and the reality itself as far as such processes practised so far through laboratory models or pilot models are largely more expensive at more than one plane. The numerical methods adapted to such type of problems developed well in the last decade and the material that supports the calculation itself do not exclude employment of some modest means of acquisition. Not unlike chemical reaction engineering, biological reaction engineering would thus have the possibility to benefit of this nonintrusive technique of study excluding any economic or even ecological damage. -----------------------
Elqotbi, Mohammed. "Application de la dynamique des fluides (CFD) à la modélisation d'un bioréacteur gaz-liquide." Thesis, Lille 1, 2009. http://www.theses.fr/2009LIL10023/document.
Повний текст джерелаThis work, in its methodological progression, aims at validating and implementing the fluid dynamics contribution, both theoretical and numerical, to the fermentation processes in agitated vessels. Indeed, its contribution in other engineering fields, where material flows and transformations coexist, could arouse additional deep interest. The detailed description of the evolution of the reactor contents in the final analysis proposes the pattern that is realized during the industrial exploitation of the studied operation. The thesis thus presents an approach to a reactor performance during fermentation. Combining multiphase flow with its, inter-phase mass transfer kinetics and particularly with the reactive aspect of the latter is the subject of progressive integration leading to a model of "numerical fermentation". A statistical analysis over the bulk data collected in the course of such an operation allow to evaluate more than one characteristic, and to draw much useful information not only for the study in the stage of development of the process but also for the support of its productive exploitation. The flexibility of the data-processing tool thus developed initiates competition between this evaluation method for process simulation and the reality itself as far as such processes practised so far through laboratory models or pilot models are largely more expensive at more than one plane. The numerical methods adapted to such type of problems developed well in the last decade and the material that supports the calculation itself do not exclude employment of some modest means of acquisition. Not unlike chemical reaction engineering, biological reaction engineering would thus have the possibility to benefit of this nonintrusive technique of study excluding any economic or even ecological damage. -----------------------
Ahmed, Ahmed Sabry Eltaher. "High-performance cooling of power semiconductor devices embedded in a printed circuit board." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0100.
Повний текст джерелаThe integration of power semiconductor devices within a printed circuit board (PCB) stack is a promising solution to reduce circuit parasitics, simplifying device packaging, and lowering costs. However, the continuous reduction in the chip size of the semiconductors, combined with the low thermal conductivity of the dielectric layers of PCBs, present more thermal challenges, and require more efficient thermal management solutions. The thermal management and cooling solutions must offer low thermal resistance between the chip junction and its environment and be capable of handling a high-power loss density at the chip level without exceeding the upper limit of the chip junction temperature. Most silicon devices are limited to 175°C to account for the temperature limits of packaging materials. The ultimate goal of this thesis is to achieve a power-loss density of 1000 W/cm² without exceeding the junction temperature limit of 175°C. This goal is constrained by other considerations such as low power consumption, compact size and weight, high reliability, low cost, and minimal maintenance. Finally, the cooling solutions studied here must be compatible with PCB manufacturing processes and embedding technology, as we aim to apply them to chips integrated into PCBs. In this research project, two thermal management solutions are studied. First, a graphite heat spreader with high thermal conductivity (1300 W/(m.K) in-plane, and 15 W/(m.K) cross-plane) is integrated into the PCB stack. Second, a heat extraction solution based on water jet impingement cooling technique is implemented to collect heat at the PCB surface. For the heat spreading solution, the junction-to-ambient and junction-to-case thermal resistances values (RthJA and RthJC, respectively) of the PCB variants with embedded diodes and MOSFET chips, are reduced by up to 38 % in RthJA and 30 % in RthJC. For the heat extraction solution, the presented water jet cooler (JIC) experimentally reduces RthJA by 33% compared to a conventional cold plate. The effective heat transfer coefficient (HTC) of the JIC is calculated through simulations and found to be about 43 kW/(m².K) with a pressure drop of 9.7 kPa. This performance allows achieving a power loss density of 865 W/cm² without exceeding the junction temperature limit of 175°C. Increasing the thermal conductivity of the isolation layer by 10 times will allow to reach 993 W/cm² (very close to the target of 1000 W/cm²)
Perron, Christian, and Christian Perron. "Étude CFD des effets du désalignement et du cisaillement sur les performances et le chargement des hydroliennes." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26178.
Повний текст джерелаLe développement des hydroliennes se base souvent sur des conditions d'écoulement idéalisées qui ne reflètent pas entièrement le courant présent sur un site réel. Dans cette optique, ce mémoire investigue l'effet d'un écoulement non aligné ou cisaillé sur les performances et le chargement de deux types d'hydrolienne : les hydroliennes à rotor axial (HRA) et à aile oscillante (HAO). Cette étude est réalisée à l'aide de simulations numériques et les résultats démontrent que pour les deux types d'hydrolienne, le désalignement produit une réduction de la puissance et de la traînée, tandis que le cisaillement n'a qu'un effet de second ordre sur ces derniers. Le chargement additionnel sur la structure de support causé par des conditions d'écoulement non idéal est aussi similaire pour les deux technologies. Le désalignement et le cisaillement affectent cependant plus significativement le chargement en fatigue des pales de l'HRA que celui de l'aile de l'HAO.
The development of hydrokinetic turbines is often based on idealized flow conditions which do not fully refect river or tidal currents. In this regard, this thesis investigates the effect of non-aligned or sheared flows on the performances and loading of two turbine types: the axial rotor (ART) and oscillating foil (OFT) turbines. This study was conducted with unsteady numerical simulations and the obtained results show that for both turbine types, misalignment produces a reduction in power and thrust, while the shear has a limited effect on those quantities. The additional loading on the support structure caused by the non-idealized flow is also similar for both devices. However, misalignment and shear affect more severely the fatigue loading on ART blades than they do for OFT.
The development of hydrokinetic turbines is often based on idealized flow conditions which do not fully refect river or tidal currents. In this regard, this thesis investigates the effect of non-aligned or sheared flows on the performances and loading of two turbine types: the axial rotor (ART) and oscillating foil (OFT) turbines. This study was conducted with unsteady numerical simulations and the obtained results show that for both turbine types, misalignment produces a reduction in power and thrust, while the shear has a limited effect on those quantities. The additional loading on the support structure caused by the non-idealized flow is also similar for both devices. However, misalignment and shear affect more severely the fatigue loading on ART blades than they do for OFT.
Wacheul, Jean-Baptiste. "Étude de la fragmentation de métal liquide en chute libre dans un environnement visqueux : application à la formation des planètes." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0184.
Повний текст джерелаThe accretion of terrestrial planets like Earth proceeds partly by impacts of proto-planets already differentiated in a silicate mantle and an iron core. Those impacts result in a two phase flow where the two main components of the planets partially mix for the last time. In order to study the conditions of diffusive transfer of heat and elements during this flow, we have performed experiments using an analog system of fluids. A gallium alloy is used to represent the molten iron core and a viscous fluid is used to represent the molten silicatemantle. Video recordings of the fall of liquid metal spheroids through the viscous fluid areanalyzed as a way to study the dynamics of the post impact flow. Measurements of the temperature of the liquid metal before and after its fall are performed in order to probe the conditions of the diffusive transfer between the two phases integrated along the fall.The diapir is found to dilute by entraining ambient fluid during its fall in a manner thatis well described by the entrainment hypothesis. The fragmentation of the liquid metal is quantified in terms of the break up distance, the mean radius of the droplets as a function of the spheroid’s initial radius andthe distribution of sizes of the droplets. The mean radius of the droplets is marked by the large scale falling speed which we interpret as a sign of a continuous break up process. The distribution of sizes is given by a Bessel function. The data on the dynamics, on the fragmentation and on the temperature are then used to test the existing thermal equilibration models between the two phases
Boutet-Blais, Guillaume. "Numerical Study of the Ingestion Phenomenon in a Turbine Rim Seal : CFD Validation and Real Engine Assessment." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28935/28935.pdf.
Повний текст джерелаCharbonnier, Dominique. "Développement d'un modèle de tensions déterministes instationnaires adapté à la simulation de turbomachines multi-étagées." Ecully, Ecole centrale de Lyon, 2004. http://bibli.ec-lyon.fr/exl-doc/dcharbonnier.pdf.
Повний текст джерелаThe pysical phenomena observed in turbomachines are generally three-dimensional and unsteady. A recent stuyd revealed that a three-dimensional steady simulation can reproduce the time-averaged unsteady phenomena, since the steady flow field equations integrate deterministic stresses. The objective of this work is thus to develop an unsteady deterministic stresses model. The analogy with turbulence makes it possible to write transport equations for these stresses. The equations are implemented in steady flow solver and e model for the energy determinsitic fluxes is also developed and implemented. Finally, this work shows that a three-dimensional steady simulation, by taking into account unsteady effects with transport equations of deterministic stresses, increases the computing time by only approximately 30 %, which remains very interesting compared to an unsteady simulation
Djeddou, Mokhtar. "Étude de la dynamique des polluants particulaires dans un habitacle automobile." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0231.
Повний текст джерелаAir pollution, especially that caused by fine and ultrafine particles, has significant deleterious effects on human health. Several studies have established a direct link between exposure to particulate pollution and various respiratory and cardiovascular diseases. Within vehicles, the threat is even more concerning due to the significant concentrations of particulate pollutants recorded. Therefore, improving air quality inside vehicle cabins is now a major priority for automotive manufacturers. In this context, this study aims to understand the interior environment of vehicles by characterizing the spatial distribution of pollutants, particularly fine and ultrafine particles, as a function of their size and parameters such as flow topology and turbulence level. This knowledge will be crucial for targeting localized air purification solutions, optimizing the placement of the micro-sensors that will equip future vehicles, and providing solutions for the more effective management of filtration systems as a function of the distribution and concentrations of these particles in the car cabin. First, special attention was devoted to modeling the single-phase flow. Two numerical modeling approaches have been adopted: the RANS (Reynolds Averaged Navier-Stokes) approach, based on solving the mean flow fields of the Navier-Stokes equations, and the LES (Large Eddy Simulation) approach, which involves solving the large structures containing the major part of the kinetic energy and modeling the contributions of the smaller scales. In the case of the RANS approach, various closure models, of first- and second-order, have been tested and compared. Furthermore, the turbulence structure of the flow inside the car cabin has been analyzed using Lumley's Anisotropy Invariant Mapping method (AIM). Finally, to validate the results of the numerical models, a velocity field measurement campaign, based on hot-wire anemometry technique, was conducted inside the cabin of an SUV-type car. Next, the dynamics of particulate pollutants in the car cabin was studied using the Diffusion-Inertia Model (DIM). This Eulerian model of inertial particle diffusion takes into account various transport mechanisms, including transport by the mean field, the effect of volume forces (i.e., gravity), particle deviation from fluid streamline (centrifugal effects), Brownian and turbulent diffusion, and turbophoresis or transport by turbulent kinetic energy gradients. The model was first validated on standard configurations such as dispersion in small-scale ventilated enclosures, deposition in 90° circular bends, and particle transport in a round jet flow. The model was then applied to simulate particle transport inside a large-scale vehicle. The influence of particle size on internal concentration fields was first analyzed. Then, the influence of passenger presence was studied. Finally, a particle concentration measurement campaign was conducted in the cabin to assess the relevance of the two-phase model. This study has led to the development of a complete model for simulating the dispersion of particulate pollutants inside a car cabin based on ventilation conditions and particle characteristics
Steinmann, Thomas. "Métrologie optique en dynamique des fluides appliquées à l'écologie physique des insectes." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4050/document.
Повний текст джерелаFlow sensing is used by a vast number of animals in various ecological contexts, from preypredator interactions to mate selection, and orientation to flow itself. Among these animals, crickets use hundreds of filiform hairs on two cerci as an early warning system to detect remote potential predators. Over the years, the cricket hairs have been described as the most sensitive sensor in the animal kingdom. The energy necessary for the emission of an action potential by its sensory neuron was estimated to be a tenth of the energy of a photon. This PhD thesis aims to describe recent technological advances in the measurement and model of flows around biological and artificial flow sensors in the context of organismal sensory ecology. The study and understanding of the performance of sensory systems requires a high spatial precision of non-intrusive measurement methods. Thus, non-contacting measurement methods such as and Particle Image Velocimetry (PIV), originally developed by aerodynamics and fluid mechanics engineers, have been used to measure flows of biological relevance. The viscous oscillatory boundary layer surrounding filiform hairs has been visualized and used as input to model the mechanical response of these hairs, described as second order mechanical systems. The viscous hydrodynamic coupling occurring within hair canopy was also characterized using PIV measurements on biomimetic micro-electro-mechanical systems (MEMS) hairs, mimicking biological ones. Using PIV, we have also measured the air flow upstream of hunting spiders. We prove that this flow is highly conspicuous aerodynamically, due to substantial air displacement detectable up to several centimeters in front of the running predator. This disturbance of upstream air flows were also assessed by computational fluid dynamics (CFD) with the finite elements method (FEM). The development of non-intrusive measurement and CFD methods and their application to the analysis of the biological flow involved in cricket sensory ecology allowed us to revisit the extreme sensitivity of cricket filiform hairs. We predicted strong hydrodynamic coupling within natural hair canopies and we addressed why hairs are packed together at such high densities, particularly given the exquisite sensitivity of a single hair. We also proposed a new model of hair deflection during the arrival of a predator, by taking into account both the initial and long-term aspects of the flow pattern produced by a lunging predator. We conclude that the length heterogeneity of the hair canopy mirrors the flow complexity of an entire attack, from launch to grasp
Khallaki, Kaoutar. "Analyse numérique des mécaniques d'intensification du transfert thermique par promoteurs de tourbillons dans les échangeurs à tubes ailetés." Valenciennes, 2006. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/a058154b-2a0c-4692-a6e8-df40778d3325.
Повний текст джерелаThis work is related to the heat transfer enhancement in compact finned tube heat exchangers. We study numerically the flow topology and its influence on heat transfer. The effects of fin spacing and velocity inlet variation are examined. Results are compared and validate with dynamic and thermal experimental measurements. This study shows that the flow in finned tube heat exchangers is characterised by the presence of horseshoe vortices in front of the tubes. These vortices increase the heat exchange and interact with a the dead zone located at the downstream of the tubes which is a region of a low heat transfer. Then, we propose an innovative technique of heat transfer intensification in continuous fin and tube heat exchangers by inserting vortex generators on fins
Koueni, Toko Anicet Christian. "Etude des champs dynamique et thermique dans une enceinte semi-ventilée en convection naturelle." Rouen, 2016. http://www.theses.fr/2016ROUES054.
Повний текст джерелаWe examine in this work from an experimental and numerical point of view, both the transient and stationary behaviour of the thermal and dynamical fields in a naturally ventilated space in presence of a heated line source located at the basis of the volume. Two rectangular boxes M1 and M2 with aspect ratios H/L= 2. 46 and 0. 82 are successively considered. These volumes are connected to the exterior either via two openings at the bottom (case 11 and 21) or via two openings at the bottom and two openings at the top (case 12). The heated line source is operated either in the constant power per unit length or in the constant temperature modes for which it can be considered as a first order or a second order system respectively. Experimental studies were performed by measuring temperature by means of thermocouples and static pressure differences using pressure sensors located on the lateral walls. The numerical studies were performed by DNS for cases 11 and 12, considering that the heat source is at a constant temperature. The analytical approach was limited to the stationary case of a zone model in which, in each zone, temperature is constant or varies linearly with height. In the constant power per unit length case, experimental results show that the time evolution of the filling box is controlled by the time constant of the line source. In cases 11 and 21, depending on the value of the aspect ratio, the plume is centred or displaced towards one of the lateral walls. Similarly, the upper region is found to be homogeneous in temperature or stratified and flows at the openings are observed symmetrical or dissymmetrical. In the constant temperature mode, in case 11 the plume stays centred due to the stabilizing effect of this heating mode. In case 12, the neutral height is located at z/H=0. 6 resulting in inflow through the lower openings and outflow through the upper openings. The lower region is at low temperature and the upper zone is homogeneous in temperature. Results obtained in case 21 are very similar to those of the filling box, Baines and Turner (1969) only during the initial phase. As soon as the inner volume is heated, changes of the static pressure induce inflows in the volume and inner recirculation resulting in heating of the region outside the plume. Comparisons between fields of mean temperature and static pressure differences obtained in stationary situations experimentally, numerically and analytically show a better agreement in case 11 that in case 21
Wang, Lianfa. "Improving the confidence of CFD results by deep learning." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLM008.
Повний текст джерелаComputational Fluid Dynamics (CFD) has become an indispensable tool for studying complex flow phenomena in both research and industry over the years. The accuracy of CFD simulations depends on various parameters – geometry, mesh, schemes, solvers, etc. – as well as phenomenological knowledge that only an expert CFD engineer can configure and optimize. The objective of this thesis is to propose an AI assistant to help users, whether they are experts or not, to better choose simulation options and ensure the reliability of results for a target flow phenomenon. In this context, deep learning algorithms are explored to identify the characteristics of flows computed on structured and unstructured meshes of complex geometries. Initially, convolutional neural networks (CNNs), known for their ability to extract patterns from im-ages, are used to identify flow phenomena such as vortices and thermal stratification on structured 2D meshes. Although the results obtained on structured meshes are satisfactory, CNNs can only be applied to structured meshes. To overcome this limitation, a graph-based neural network (GNN) framework is proposed. This framework uses the U-Net architecture and a hierarchy of successively refined graphs through the implementation of a multigrid method (AMG) inspired by the one used in the Code_Saturne CFD code. Subsequently, an in-depth study of kernel functions was conducted according to identification accuracy and training efficiency criteria to better filter the different phenomena on unstructured meshes. After comparing available kernel functions in the literature, a new kernel function based on the Gaussian mixture model was proposed. This function is better suited to identifying flow phenomena on unstructured meshes. The superiority of the proposed architecture and kernel function is demonstrated by several numerical experiments identifying 2D vortices and its adaptability to identifying the characteristics of a 3D flow
Fillola, Guillaume. "Étude expérimentale et simulations numériques d'écoulements autour des surfaces mobiles de voilure." Toulouse, ENSAE, 2006. http://www.theses.fr/2006ESAE0006.
Повний текст джерелаOuttier, Pierre-Yves. "Architecture novatrice de code dynamique : application au développement d'un solveur compact d'ordre élevé pour l'aérodynamique compressible dans des maillages recouvrants." Thesis, Paris, ENSAM, 2014. http://www.theses.fr/2014ENAM0029.
Повний текст джерелаHigh-order numerical schemes are usually restricted to research applications, involving highly complex physical phenomena but simple geometries, and regular Cartesian or lowly deformed meshes. A demand exists for a new generation of industrial codes of increased accuracy. In this work, we were led to address the general question of how to design a CFD code architecture that: can take into account a variety of possibly geometrically complex configurations; remains simple and modular enough to facilitate the introduction and testing of new ideas (numerical methods, models) with a minimal development effort; use high-order numerical discretizations and advanced physical models. This required some innovative choices in terms of programming languages, data structure and storage, and code architecture, which go beyond the mere development of a specific family of numerical schemes. A solution mixing Python and Fortran languages is proposed with details on the concepts at the basis of the code architecture. The numerical methods are validated on test-cases of increasing complexity, demonstrating at the same time the variety of physics and geometry currently achievable with DynHoLab. Then, based on the computational framework designed, this work presents a way to handle complex geometries while increasing the order of accuracy of the numerical methods. In order to apply high-order RBC schemes to complex geometries, the present strategy consists in a multi-domain implementation on overlapping structured meshes
Sarkar, Prasanta. "Simulation de l'érosion de cavitation par une approche CFD-FEM couplée." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI016/document.
Повний текст джерелаThis research is devoted to understanding the physical mechanism of cavitation erosion in compressible liquid flows on the fundamental scale of cavitation bubble collapse. As a consequence of collapsing bubbles near solid wall, high pressure impact loads are generated. These pressure loads are believed to be responsible for the erosive damages on solid surface observed in most applications. Our numerical approach begins with the development of a compressible solver capable of resolving the cavitation bubbles in the finite-volume solver YALES2 employing a simplified homogenous mixture model. The solver is extended to Arbitrary Lagrangian-Eulerian formulation to perform fluid structure interaction simulation with moving mesh capabilities. The material response is resolved with the finite element solver Cast3M, which allowed us to perform one-way and two-way coupled simulations between the fluid and solid domains. In the end, we draw comparisons between 2D and 3D vapor bubble collapse dynamics and compare them with experimental observations. The estimated pressure loads on the solid wall and different responses of materials for attached and detached bubble collapses are discussed. Finally, the damping of pressure loads by different materials is identified with two-way coupled fluid-structure interaction
Younsi, Mohand. "Aéroacoustique et aérodynamique instationnaire, numérique et expérimentale des ventilateurs centrifuges à action." Phd thesis, Paris, ENSAM, 2007. http://pastel.archives-ouvertes.fr/pastel-00003220.
Повний текст джерелаRamanathan, Krishnan Adithya. "Explicit algebraic subfilter scale modeling for DES-like methods and extension to variable density flows." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0117.
Повний текст джерелаThe aim of this work is to improve the predictive capabilities of hybrid RANS/LES methods HRLM through the development of a subfilter scale model which considers an explicit algebraic relation for the non-isotropic turbulent subfilter stress and turbulent scalar fluxes, contributing to the improvement of the safety analysis concerning hydrogen hazards. Firstly, an Explicit Algebraic Reynolds Stress Model EARSM is developed using the direct solution method and calibrated with Menter's BSL model for incompressible flows in a RANS framework. Secondly, the EARSM model is extended to seamless HRLM specifically in the framework of Equivalent-Detached Eddy Simulation, arriving at the Explicit Algebraic Hybrid Stress Model EAHSM. The calibration of the model constant is performed on the decay of isotropic turbulence. The validation is performed against the DNS data available in the literature for the fully developed Channel flow at a moderate friction Reynolds number of 550 and flow in a square pipe at a friction Reynolds number of 600. Finally, assuming the Boussinesq approximation to be valid, the developed EARSM and the EAHSM models are extended to slightly variable density flows. Following the direct solution of the implicit algebraic relationships, the explicit algebraic model for both the Reynolds stresses and the scalar flux is obtained in a RANS framework which leads to the Explicit Algebraic Scalar Flux Model(EASFM). An effective iterative solution method is used to treat the nonlinearity of the coupled expressions for the algebraic relations. The EASFM is extended to the framework of seamless HRLM. The behaviour of the models is assessed for stably stratified flows
Dumas, Thibault. "Écoulements de liquide dans un empilement de sphères : expérimentation locale et simulation fine à l'échelle d'un pore." Thesis, Vandoeuvre-les-Nancy, INPL, 2006. http://www.theses.fr/2006INPL094N/document.
Повний текст джерелаThe first part of this work deals with local measurement of flow direction and velocity gradients in a structured packing of spheres. Tri-segmented micro-electrodes flush mounted at the wall of supporting spheres are used for the measurements. Among other results, these original experiments allowed to charatcerize the flow recirculation within the pore.In the second part, the local liquid flow in the packing was numerically computed. More specifically, the local flow of liquid in a complex geometry was modelled and simulated. Numerical results are in agreement with experiments, especially for low flow rates. Usual turbulence models were shown to be inappropriate for the present case. Finally, some Laser Doppler Velocimetry measurements were carried out and showed the interesting potential of this technique, but improvements are yet to be made to get velocities in the bulk of the bed
Valle, Medina Maria Elena. "Modélisation des décanteurs secondaires : étude en mécanique des fluides numériques de la dynamique de la sédimentation des boues activées." Thesis, Strasbourg, 2019. https://publication-theses.unistra.fr/public/theses_doctorat/2019/VALLEMEDINA_MariaElena_2019_ED269.pdf.
Повний текст джерелаThe conventional activated sludge process is the most widely used process for treating urban wastewater. Biomass (activated sludge) grows and forms biological flocs that must be separated from the treated water. This is usually performed by gravity in a clarifier. Activated sludge particles are subject to different settling processes, depending on their properties. Clarifier simulation is probably the most developed field of application for computational fluid dynamics applied to wastewater treatment. However, all sedimentation mechanisms are not always fully represented. This work began by adding the compression mechanism as a second-order term in the partial differential equation describing sludge sedimentation. The parameters of the modified model were identified based on experimental data from a closed system. Then, simulations of a full-scale clarifier allowed the model to be validated based on the measured sludge blanket height and particle velocity profiles. Small treatment plants are characterized by very dynamic inlet conditions (flow variations, on/off cycles). Thus, the validated model was used to simulate these operating conditions
El proceso de lodos activados convencional para el tratamiento del agua residual es el más usado para remover los contaminantes del agua residual urbana. La biomasa (lodo activado) crece y forma flocs biológicos que deben ser separados del agua tratada. Normalmente esta acción se realiza por medio de la gravedad en un sedimentador. Las partículas de lodo activado pueden someterse a diferentes comportamientos de sedimentación dependiendo de sus propiedades. La simulación de los clarificadores secundarios es probablemente el área más desarrollada para la aplicación de la mecánica de fluidos computacional en el tratamiento del agua residual. Sin embargo, no todos los mecanismos de sedimentación están siempre representados en un modelo. Este trabajo presenta la adición de la compresión como un término de segundo orden en una ecuación diferencial parcial que describe la sedimentación del lodo. La identificación de los parámetros del modelo se realizó a través de experimentos realizados en un sistema cerrado. Luego, simulaciones en un clarificador a escala real permitieron validar el modelo basándose en la medición de la altura del manto de lodos y los perfiles de velocidad de las partículas. Estaciones depurados de pequeña capacidad se caracterizan por una dinámica discontinua de las condiciones de entrada (variaciones en el caudal, ciclos de encendido/apagado). Así el modelo validado se usó para simular estas condiciones operacionales
Fadel, Mariam. "Designing a new electrochemical cell for the study of enzyme that reduces CO2." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0491.
Повний текст джерелаCarbon monoxide dehydrogenase (CODH) catalyzes the reversible reduction of carbon dioxide by its active site. Thus, CODH participates in the first step of fuel production. Using an electrochemical method called protein film voltammetry, we study the enzymatic mechanism of CODH by immobilizing the enzyme at a graphite electrode surface where direct electron transfer is possible. Traditionally, to prevent depletion of the substrate at the electrode, electrochemists use rotating electrodes (RDE). However, since CODH is very active, even RDE cannot prevent depletion, which masks the important kinetic characteristics of the enzyme and complicates the analysis of the enzymatic response.We cannot solve the problem with RDE, since we already use it at maximum speed. Therefore, we must completely change our approach and design a new electrochemical cell. For this, we used computational fluid dynamics (CFD) simulations to explore various geometries to find a suitable one. We began by validating our numerical method with the well-defined theoretical solution of the real cell of RDE. After good validation, we determined the mass transport velocities within several proposed geometries of the flow cell of hydrodynamic channel and jet electrodes. Based on the optimization of geometric parameters, we have achieved our proper design of jet electrode. This new prototype has a uniformly accessible graphite electrode with a transport rate three times faster than the RDE at acceptable solution speeds. We have successfully built and implemented the system to characterize its transport performance. We found an excellent agreement between the numerical and experimental results
Phoemsapthawee, Surasak. "Développement d’un modèle de cavitation à poche sur hydrofoils et hélices en régimes transitoires, implémentation sur codes potentiels et validation expérimentale." Brest, 2009. http://www.theses.fr/2009BRES2028.
Повний текст джерелаA partial sheet cavitation model has been developed and implemented in a steady two-dimensional potential flow code and in an unsteady three-dimensional potential flow code. This cavitation model uses the transpiration velocity technique to simulate the presence of the sheet cavitation. Neither an additional cavity closure model nor empirical parameters are required. Adaptable to every flow solver, the model allows a reasonably rapid simulation both in steady- and unsteady-state flow conditions for a hydrofoil or a propeller. The model is validated by comparing its results with experimental data in steadystate flow condition of a two dimensional hydrofoil. The numerical results agree very well with the observed cavity lengths and the measured pressure distribution. As for the threedimensional flow case, the available data in the literature allowed only the qualitative validation on the cavity length. A series of experiments in cooperation with the Bulgarian Ship Hydrodynamic Centre (BSHC) to measure the lift and drag of a hydrofoil has been then conducted for the quantitative validation of the cavitation model. The comparison results show good agreement between the experimental measurements and the numerical simulations. Finally, the cavitating propellers simulations in unsteady-state flow condition are also presented. It is shown that the partial sheet cavitation has little effect on the propeller hydrodynamic performances
Léautaud, Vincent. "Modélisation numérique de la condensation et de l'évaporation en écoulement turbulent." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAD055.
Повний текст джерелаThe context of this work is to contribute to the optimization of clean room decontamination cycles by using a new decontamination system. The concept of this system is to decontaminate a volume by condensing hydrogen peroxide vapour on all the inner walls of the volume. Different models of wall condensation and evaporation have been studied, developed and implemented in a CFD code, including simple models as well as more complex models taking into account the shape of the liquid phase at the wall. In parallel, in order to validate the models, an experimental isolator device for decontamination was used to create an experimental steam condensation database. Finally, the validation of this numerical model was carried out by comparing the numerical results provided by the model developed in a digital reproduction of the experimental isolator with the results of the experiments
Mari, Raphaël. "Influence of heat transfer on high pressure flame structure and stabilization in liquid rocket engines." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/15616/1/Mari_1.pdf.
Повний текст джерелаKuidjo, Kuidjo Emmanuel Vianney. "Towards a predictive model to reproduce flow regime transitions in gas-liquid flows with Neptune CFD : from a dispersed to a separated regime." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0456.
Повний текст джерелаIn nuclear reactors, several regimes of gas-liquid flows may occur with some transitions between them. The main challenges associated with simulating these transitions in 3D CFD codes are associated with deformable interfaces of different sizes, accounting for coalescence and breakup interactions between gas structures and developing flow regime independent closure relations. This work aims at modelling and simulating the hydrodynamics of adiabatic gas-liquid flows thanks to a three-field two-fluid model in Neptune CFD. In a first step, a model with one continuous liquid field and two dispersed gas fields for small and large bubbles is used to simulate cap and churn flows with a void fraction up to 0.5 and a focus is put on the interfacial area prediction. In a second step, the second dispersed field is replaced by a hybrid continuous/dispersed field representing both large bubbles and continuous gas regions. The model is validated on several flow regimes in large diameter pipes and in confined rectangular channels
Colas, Clément. "Formulation intégrale implicite pour la modélisation d'écoulements fluides en milieu encombré." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0555.
Повний текст джерелаThe thesis issue is the modelling of fluid flows in congsted media by solid obstacles. The purpose is to design an integral approach reconciling the local and the component global scale for the numerical simulation of the coolant flow in the nuclear reactor components. The approcah affords the advantage of embedding the local and "component" representation scales in the same formalism, in ensuring the coherence between the two scales. This technique consists of a multidimensional integral formulation of the fluid flow governing equations allowing to naturally recover the CFD (Computational Fluid Dynamics) standard fluid approach when refining the mesh. The discretization is based on a time-implicit collocated finite volume numerical scheme using a pressure-correction algorithm. The scheme is relevant for weakly compressilbe flows and preserves the positivity of both the density and the internal energy, at the discrete level. Numerous unsteady or steady numerical tests are carried out and show the integral approach ability to simulate channel flows congested by axial or transversal rods
Castells, Marin Pau. "Modelling and simulation of gust and atmospheric turbulence effects on flexible aircraft flight dynamics." Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0061.
Повний текст джерелаThe prediction of the aircraft response to gust and turbulence is of major importance for different purposes. Gust load analysis is an essential part of aircraft design and certification. The effect of gust and turbulence on aircraft flight dynamics is also of interest. Models able to capture relevant effects at these conditions in early design phases are essential in order to anticipate and assess the aircraft response and flight control laws in realistic atmospheric disturbances before flight test. This work proposes a modelling strategy to capture relevant physics when simulating the aircraft response to gust and turbulence for flight dynamics investigations. The model provides accuracy at a low computational cost as well as consistency with gust loads analysis enabling multidisciplinary design. The approach is based on the integration of a nonlinear quasi-steady flexible flight dynamics model with an unsteady aeroelastic model linearized around a nonlinear steady state. The gust-induced forces have a significant impact on aircraft flight dynamics. Low computing times are required to cover several flight conditions and aircraft parameters. A computationally efficient multipoint aerodynamic model, which captures both unsteady aerodynamic and gust propagation effects, is generated from linearized Computational Fluid Dynamics (CFD) simulations in the frequency domain. The model is identified through a rational function approximation allowing for time domain simulations. A reduced number of additional aerodynamic states is sufficient to capture the main effects at low frequencies for flight dynamics analysis. The impact of dynamic flexibility on the response is also evaluated. Only the most energetic flexible modes are retained to reduce the number of states and ensure a low computation time. The approach is applied to simulate the vertical and lateral response of a passenger aircraft to theoretical disturbance profiles as well as realistic atmospheric turbulence at different flight conditions. Aerodynamic nonlinear effects, such as local stalls due to shock motion, in transonic conditions may appear. The linearized model is able to capture the global aircraft response at these conditions with low amplitude shock motions. Results are compared and validated with a CFD simulation based approach, coupled with a structural dynamics and flight mechanics solver. Measures from flight test are also used to assess the modelling approach. The effect of uncertainties on the response is analysed, in terms of the turbulence variation along the wingspan. Simulation results show that relevant aerodynamic effects due to gust and turbulence are captured in the frequency range of interest for flight dynamics investigations
Bellil, Ahmed. "Méthodologie spécifique globale de caractérisation des écoulements gaz/solides pour l'optimisation d'enceintes thermiques." Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2158/document.
Повний текст джерелаDysfunctions observed in thermochemical conversion reactors like dead zones and short circuits generally lead to inaccurate pricing of energy resources and air pollution. They originate in the air flow conditions in these aeraulic reactor. They can then be avoided by a better control of these flows. We propose in this work to develop a new tool for determining the distribution of residence time of the solid phase, based on the luminescence of particles previously coated with phosphorescent pigments. This optical method, non-Intrusive and flexible, has been implemented at a laboratory scale, on an aeraulic test bench.On the other hand, we have developed a numerical model allowing to determine the distribution of the residence time to master the flows at the exit of surrounding walls to optimize them and extrapolate them at the industrial scale. This analytical approach is based on a modelling by coupling MFN by finite volume types via the Code Saturn and DEM by discrete elements of the solid behavior by means of the code SIGRAME. Finally a confrontation of the DTS of the digital model with the experimental DTS has been done
Bel, Mabrouk Imen. "Etude des effets des charges aérodynamiques sur le comportement dynamique non linéaire des éoliennes à axe vertical." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR17.
Повний текст джерелаThis thesis focuses on the study of the aerodynamic loads effects on the nonlinear dynamic behavior of Darrieus--type vertical axis wind turbine. The latter has received more attention due to its efficiency in urban regions compared to other wind turbines. In fact, the wind flow speed in urban regions continuously changes direction and is extremely turbulent. The inherent characteristics of its omni-directionality make it more suitable to harnessing this kind of flow. It is known that Darrieus wind turbine is characterized by an inherently unsteady aerodynamic behavior and a complex flow around rotor blades. The non-stationary behavior of the mentioned turbine increases vibration. These aerodynamic vibrations are transmitted to the gearing mechanism. We have, firstly, developed a numerical simulation, allowing to simulate the complexity of the unsteady aerodynamic phenomena keeping a compromise between the reliability of prediction and the rapidity of calculation. This numerical simulation has been carried out using a two-dimensional unsteady Computational Fluid Dynamics (CFD) method. Simulation results compared to those available in the literature are in good agreement. The Darrieus turbine efficiency is also optimized; thus introducing a significant scientific contribution. The latter is the objective of analyzing the aerodynamic load impact in the dynamic behavior of the Darrieus turbine in non-stationary regime. In this context, a parametric study has been developed in order to find optimal functioning of the studied turbine, which is characterized by the most performing aerodynamic torque associated with acceptable levels of dynamic vibration. In general, it is difficult to predict the dynamic response of the wind turbine with a good level of accuracy due to the aerodynamic loads turbulence and uncertain characteristics. It becomes necessary to take into account the uncertainty in the input parameters to ensure the robustness of the Darrieus turbine geared system. In a robustness study objective, the Polynomial Chaos method is adopted to predict the nonlinear dynamic behavior of the gearing system taking into account uncertainties which are associated to the performance coefficient of the input aerodynamic torque. This leads to an important scientific research contribution. The results have shown a large dispersion of the random parameter in the dynamic response of the gearing system compared to the deterministic study. That proves the insufficiency of that study for a robustness analyses. They have also proved that the Polynomial Chaos method is an efficient probabilistic tool for uncertainty propagation. Finally, the new proposed robust mechanical analysis indicates a good capacity to investigate the dynamic behavior of the Darrieus turbine thanks to its superior predictive capabilities in coupling complex aerodynamic phenomena with a mechanical gearing system vibration. Where the originality of such correlation in our work
Podeur, Vincent. "Modélisation expérimentale et numérique du power take-off d’un bassin houlomoteur." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2022. http://www.theses.fr/2022ENTA0005.
Повний текст джерелаThe present work aims at studying the power take-off of a wave energy converter (WEC). This system is composed of a set of connected tanks. Rubber flaps are installed at tanks inlet and outlet to ensure a one-way flow direction. Thanks to wave induced motions of the supporting platform, sloshing appears inside the WEC tanks which feed a cylindrical basin with a centered drain hole at its bottom. Then, a bathtub vortex flow appears within this tank, where a vertical axis turbine is installed to harvest kinetic energy from the flow. The first phase of this research focuses on studying the steady bathtub flow. To do so, a dedicated experiment is built. Velocity field within the cylindrical basin, with and without the turbine, is studied via Particle Image Velocimetry (PIV). In addition, power production from the turbine and water level inside the tank are measured. These results are used to define starting hypothesis for developing a numerical model of the turbine. The second phase of this research focuses on studying the unsteady bathtub flow. For this purpose, a second experiment is built. This setup provides a more realistic environment, closer to what can be observed with the WEC system. PIV measurements are also used extensively to study the flow with and without the turbine. The last stage of this research focuses on the numerical modelling of the vertical axis turbine. The model is based on the potential flow theory. First, a two-dimensional approach is used to validate the early pieces of the model. Secondly, a three-dimensional approach is adopted to account for more complex flow features. Finally, numerical and experiment results are compared
Boukili, Hamza. "Schémas de simulation d'un modèle à trois phases immiscibles pour application à l'explosion vapeur." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0077.
Повний текст джерелаThis PhD work consists of modeling a three-phase flow: liquid (L), gas (V) for the same component (water) and solid (S) for a second component (high temperature metal). Such a mix is characterized by the risk of occurrence of vapour explosion, where major transfers happen: in this bi-component environment dynamic transfers are important (speed / pressure) and thermodynamic exchanges (heat and mass transfers) also are at stake. More specifically, heat transfers occur between phases S, L and V, while the mass transfer can only occur between the phases L and V. The vapour explosion type applications (EV) generate shock waves propagating within the medium and can impact the structures. Finally, it is essential to note that the actual simulation time, and different time scales are short. The mission is, therefore, to compute an EDP model with closure laws, capable of dealing with strongly unsteady three-phase non-miscible flows, with generation of shock waves and high thermal and mass transfer, and consistent with the second principle of thermodynamics. The second step is to propose a Finite Volume numerical method adapted to the approximation of this model, and in the presence of shock waves. Numerical test cases are given in order to verify the properties of the considered schemes, attention is paid to the consistency between the numerical results and the expected physical behavior of the simulated flow
Daviau, Noëlie. "Études fines des échanges énergétiques entre les bâtiments et l'atmosphère urbaine." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1005/document.
Повний текст джерелаThis thesis work is about the effect of buildings on the urban atmosphere and more precisely the energetic exchanges that take place between these two systems. In order to model more finely the thermal effects of buildings on the atmospheric flows in simulations run under the CFD software Code_Saturne, we proceed to couple this tool with the building model BuildSysPro. This library is run under Dymola and can generate matrices describing the building thermal properties that can be used outside this software. In order to carry out the coupling, we use these matrices in a code that allows the building thermal calculations and the CFD to exchange their results. After a review about the physical phenomena and the existing models, we explain the interactions between the atmosphere and the urban elements, especially buildings. The latter can impact the air flows dynamically, as they act as obstacles, and thermally, through their surface temperatures. At first, we analyse the data obtained from the measurement campaign EM2PAU that we use in order to validate the coupled model. EM2PAU was carried out in Nantes in 2011 and represents a canyon street with two rows of four containers. Its distinctive feature lies in the simultaneous measurements of the air and wall temperatures as well as the wind speeds with anemometers located on a 10 m-high mast for the reference wind and on six locations in the canyon. This aims for studying the thermal influence of buildings on the air flows. Then the numerical simulations of the air flows in EM2PAU is carried out with different methods that allow us to calculate or impose the surface temperature we use, for each of the container walls. The first method consists in imposing their temperatures from the measurements. For each wall, we set the temperature to the surface temperature that was measured during the EM2PAU campaign. The second method involves imposing the outdoor air temperature that was measured at a given time to all the surfaces, reducing every heat exchange to almost zero. The third method at last is the coupled simulation of Code_Saturne and BuildSysPro where BuildSysPro calculates the wall temperature from the Code_Saturne data. . The results of these different ways of modelling the wall temperatures are then compared in order to show the thermal effects of building wall heating on the air flows. We notice that the dynamic effects are dominant and can generate vertical wind speed that can pass several meters per second. On the other hand, differences of surface temperatures higher than 15°C can influence the vertical wind speed for less than 0.5 meters per second. These thermal effects are not easily highlighted with measured data because of the other phenomena that can impact the air flows. However they can be quantified with numerical studies
Toubin, Hélène. "Prediction and phenomenological breakdown of drag for unsteady flows." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066576/document.
Повний текст джерелаAccurate drag prediction is now of a major issue for aircraft designers. Its phenomenological sources need to be identified and quantified for an efficient design process. Far-field methods, which allow such phenomenological drag breakdown, are however restricted to steady flows. This study consists in developing a far-field drag prediction method aiming at a phenomenological breakdown of drag for unsteady flows. The first step has consisted in generalizing the steady formulation of Van der Vooren to unsteady flows, starting from a new rigorous proof. Axes for the improvement of the robustness and physical background have then been explored. Acoustic contributions have in particular been highlighted and quantified. The resulting five-components formulation has then been applied to simple cases, in order to validate as best as possible the phenomenological breakdown. The behavior of the drag components has proved to be consistent with the physics of the flow. Finally, the method has been applied to complex cases in order to demonstrate its capabilities: a 3-D case and a flow simulated by the ZDES method. In the future, it would be interesting to further improve the definition of the induced drag component, for example by using velocity-based formulations. As far as the application cases are concerned, the performance evaluation of a Counter-Rotating-Open-Rotor would strongly benefit from such a method. Unsteady optimization of one of the drag component could also be contemplated. Finally, applications in aeroelasticity or flapping flight would be an interesting perspective
Luminari, Nicola. "Modeling and simulation of flows over and through fibrous porous media." Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/20132/1/LUMINARI_Nicola.pdf.
Повний текст джерелаDucrocq, Thomas. "Etude de l'écoulement à forte pente autour d'un cylindre émergent." Thesis, Toulouse, INPT, 2016. http://www.theses.fr/2016INPT0087/document.
Повний текст джерелаThe dams on rivers are fishes migration obstacles. The fishways are devices allowing the fishes to migrate, permitting the restauration of the ecological continuity. The aim of this work is to better comprehend the physical phenomena existing in the nature-like fishways. This kind of fishway is a high slope channel with staggered rows of blocks. To validate the relevance of the use of a numerical model, the study is limited to the flow around a single free surface piercing cylinder placed in the center of a flume. The work is in two parts, experimental and numérical. The experimental part is conducted in a transparent flume of 4m length, 0.4m width and 0.4m height. The cylinder diameter is 4cm and its height 20cm (always emerged). The studied cases are flow rates of 5 to 20 l/s for a flat bed. The Froude numbers are over 0.5 et the Reynolds numbers, based on the diameter, are in between 15000 and 50000. The flows were filmed and a particules tracking velocimetry (PTV) algorithm was developped. Slow velocities areas exist, even for Fr=1, allowing shelter zones for a fish. The drag forces were also measured. The drag coefficients evolutions with the Froude number and with the flow aspect ratio were estimated. The numerical part is done with OpenFOAM for 4 cases (Q=10 et 20 l/s, S=0 et 2%) and 2 URANS turbulence models, RNG k-epsilon and k-omega SST. 2D simulations are also carried out with Telemac2D. The results are compared with the experimental ones. The 2D modelisation (shallow water) is workable only for small Froude numbers, which justifies the 3D modelisation. The k-omega SST seems the most relevant to reproduce the studied flows. The local velocities and 3D structures, unquantifiable experimentally, were described. The bed and free surface influences on the wake are clearly shown leading to vertical velocities and big scale vorticies. Finally, a LES simulation was conducted. The vortex structures are better reproducted than the URANS simulations, but the computation times are significant
Kacem, Ahmed. "Modélisation numérique de la pyrolyse en atmosphères normalement oxygénée et sous-oxygénée." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4708/document.
Повний текст джерелаThe pyrolysis rate is a key parameter controlling fire behavior, which in turn drives the heat feedback from the flame to the fuel surface. In the present study an in–depth pyrolysis model of a semi–transparent solid fuel with spectrally–resolved radiation and a moving gas/solid interface was coupled with the CFD code ISIS. A combined genetic algorithm/pyrolysis model was used with Cone Calorimeter data from a pure pyrolysis experiment to estimate a unique set of kinetic parameters for PMMA pyrolysis. In order to validate the coupled model, ambient air flaming experiments were conducted on square slabs of PMMA. From measurements at the center of the slab, it was found that the experimental regression rate becomes almost constant with time, and that the radiative contribution to the total heat flux remains almost constant. Coupled model results show a fairly good agreement with the literature and with current measurements. Nevertheless, the flame heat flux feedback at the edges of the slab is underestimated. Predicted flame heights based on a threshold temperature criterion were found to be close to those deduced from the correlation of Heskestad. Finally, in order to predict the pyrolysis of PMMA under reduced ambient oxygen concentration, a two–step chemical reaction and a flammability diagram for flame extinction was used. Model results are compared with data obtained in the experimental facility CADUCEE for ambient oxygen concentrations of 18.2 and 19.5%. Data show that the total mass loss rate and flame temperature decrease with the oxygen concentration, which is well reproduced by the model
Croner, Emma. "Etude de l'écoulement autour des ensembles roulants d'un véhicule en vue de l'optimisation aérodynamique du pneumatique." Thesis, Toulouse, ISAE, 2014. http://www.theses.fr/2014ESAE0008/document.
Повний текст джерелаAs a collaborative task between Michelin and ONERA, this thesis aims to investigate the complex unsteady 3D flow around car wheels and to identify the mechanisms of drag production linked to this part of the car thanks to URANS unsteady numerical simulations using ONERA’s Navier-Stokes code elsA. The wheels (i.e. rims and tyres) are indeed a promising research topic in the field of car aerodynamics. The part of the total drag due to the wheels and wheelhouses is indeed estimated between 20% and 40%. The first step towards wheel optimisation is to achieve full understanding of the aerodynamic phenomena produced around them. The analysis of the flow for three types of tyres (smooth, rough, grooved), both around isolated wheels and around a simplified vehicle, brings further understanding of the flow physics. This work completes previous studies in this field thanks to the description of basic flows around smooth wheels and the study of unsteady effects. It describes the arrangement of vortical structures around an isolated wheel and around the front and rear wheels of a simplified vehicle. Moreover, the analysis of the flow unsteadiness facilitates understanding of the flow dynamics by highlighting the generation of the main vortices and the interaction phenomena with the car body. The validation of numerical models is performed with specific experiments by Michelin on both an isolated wheel and a vehicle configuration. Finally, the use of different tyres shows their ability to modify both space and time characteristics of the whole flow, thus modifying the power dissipated by the car drag and the rotation moment of the wheels
Whyte, Henrietta Essie. "Evaluation of the performance of photocatalytic systems for the treatment of indoor air in medical environments." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2018. http://www.theses.fr/2018IMTA0112/document.
Повний текст джерелаPhotocatalytic oxidation (PCO) is an advanced air cleaning technology that is used asa means to improve air quality in indoor environments and could potentially be used inthe operating rooms (OR). In hospitals, operating rooms (ORs) are very demanding interms of the indoor air quality (IAQ) and require systems that minimize the concentrations of pollutants. In this work, the fate of two OR pollutants acrylonitrile (chemical found insurgical smoke) and isoflurane (anesthetic gas) when they go through a PCO device was investigated. Firstly, a parametric evaluation on the degradation of isoflurane and acrylonitrile by studying the influence of air velocity, light intensity, the change in media geometry, initial pollutant concentration, presence of chemical co-pollutants, presence of particles (bioaerosols) and relative humidity on their degradation efficiencies is performed. Secondly the safety of the use of PCO for the degradation of isoflurane and acrylonitrile through the identification of possible intermediates formed during their degradation is evaluated. The experiments were conducted in a closed loop reactor which has been designed to study low concentration air pollutants and has also been recently modeled. Finally, to better understand how the change in media geometry influenced the degradation efficiency, simulations with ANSYS 14.5 were performed and discussed
Sempey, Alain. "Prise en compte du champ thermo-convectif pour le contrôle thermique des espaces habitables." Phd thesis, Université de La Rochelle, 2007. http://tel.archives-ouvertes.fr/tel-00259196.
Повний текст джерелаVantieghem, Stijn. "Numerical simulations of quasi-static magnetohydrodynamics using an unstructured finite volume solver: development and applications." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209929.
Повний текст джерелаLa première partie de cette thèse (chapitres 2 et 3) est dédiée à la présentation de la machinerie numérique qui a été utilisée et implémentée afin de résoudre les équations de la MHD quasi-statistique (incompressible). Plus précisément, nous avons contribué au développement d’un solveur volumes finis non-structuré parallèle. La discussion sur ces méthodes est accompagnée d’une analyse numérique qui est aussi valable pour des mailles non-structurées. Dans le chapitre 3, nous vérifions notre implémentation par la simulation d’un certain nombre de cas tests avec un accent sur des écoulements dans un champ magnétique intense.
Dans la deuxième partie de cette thèse (chapitres 4-6), nous avons utilsé ce solveur pour étudier des écoulements MHD de proche paroi .La première géometrie considérée (chapitre 4) est celle d’une conduite circulaire infini d’axe à haut nombre de Hartmann. Nous avons investitgué la sensitivité des résultats numériques au schéma de discrétisation et à la topologie de la maille. Nos résultats permettent de caractériser in extenso l’écoulement MHD dans une conduite avec des bords bien conducteurs par moyen des lois d’échelle.
Le sujet du cinquième chapitre est l’écoulement dans une conduite toroïdale à section carée. Une étude du régime laminaire confirme une analyse asymptotique pour ce qui concerne les couches de cisaillement. Nous avons aussi effectué des simulations des écoulements turbulents afin d’évaluer l’effet d’un champ magnétique externe sur l’état des couches limites limites.
Finalement, dans le chapitre 6, nous investiguons l’écoulement MHD et dans un U-bend et dans un coude arrière. Nous expliquons comment générer une maille qui permet de toutes les couches de cisaillement à un coût computationelle acceptable. Nous comparons nos résultats aux solutions asymptotiques.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Choquart, François. "Etude et modélisation d'un véhicule doté d'un système de chauffage par parois rayonnantes pour l'étude du confort thermique des passagers." Paris, ENMP, 2004. http://www.theses.fr/2004ENMP1243.
Повний текст джерелаHadj, Ahmed Asmaa. "Design of new electrochemical cells for studying enzymes by protein film electrochemistry." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0100.
Повний текст джерелаProtein Film Electrochemistry (PFE) is a technique in which an enzyme is adsorbed at an electrode and its catalytic turnover rate is measured as an electrical current which allows the investigation of enzyme’s kinetics as a function of different experimental parameters. However, this technique requires fast transport of the substrate towards the electrode. In a previous study, our team proposed a new design based on the wall-tube electrode that provides better transport than the rotating disc electrode, which is commonly used in PFE methods. In this thesis, we explored, using CFD, the effect of the various parameters of the design and proposed semi-empirical formulas to predict the mass transport coefficient and shear stress at the electrode. We used a 3D-printed cell to validate experimentally our predictions. Moreover, we designed and built a new type of wall-tube electrodes with integrated mixers that should allow faster changes of substrate and inhibitor’s concentrations
Huber, Grégory. "Modélisation des effets d'interpénétration entre fluides au travers d'une interface instable." Phd thesis, Aix-Marseille Université, 2012. http://tel.archives-ouvertes.fr/tel-00833037.
Повний текст джерелаLancial, Nicolas. "Effets de la rotation sur la dynamique des écoulements et des transferts thermiques dans les machines électriques tournantes de grande taille." Thesis, Valenciennes, 2014. http://www.theses.fr/2014VALE0021/document.
Повний текст джерелаEDF operates a large number of electrical rotating machines in its electricity generation capacity. Thermal stresses which affect them can cause local heating, sufficient to damage their integrity. The present work contributes to provide methodologies for detecting hot spots in these machines, better understanding the topology of rotating flows and identifying their effects on heat transfer. Several experimental scale model were used by increasing their complexity to understand and validate the numerical simulations. A first study on a turbulent wall jet over a non-confined backward-facing step (half-pole hydrogenerator) notes significant differences compared to results from confined case : both of them are present in an hydrogenerator. A second study was done on a small confined rotating scale model to determinate the effects of a Taylor-Couette-Poiseuille on temperature distribution and position of hot spots on the heated rotor, by studying the overall flow regimes flow. These studies have helped to obtain a reliable method based on conjugate heat transfer (CHT) simulations. Another method, based on FEM coupled with the use of an inverse method, has been studied on a large model of hydraulic generator so as to solve the computation time issue of the first methodology. It numerically calculates the convective heat transfer from temperature measurements, but depends on the availability of experimental data. This work has also developped new no-contact measurement techniques as the use of a high-frequency pyrometer which can be applied on rotating machines for monitoring temperature
Guimard, Laura. "Étude du comportement et modélisation d’une installation de dessalement d’eau de mer par distillation soumise à des régimes transitoires." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1025/document.
Повний текст джерелаDemand for water will continue to increase over the next decades, leading to more stress on limited resources and ecosystems. However, ¾ of the Earth is water and 97% of it is seawater. Therefore, it is highly interesting to desalinate seawater. It is within this framework that this work was carried out. The goal of this PhD was to model desalination plants, based on the Multiple-Effect Distillation (MED) process, when they are operated under dynamic conditions. The MED plants are mature desalination processes with high energetic performances and are very flexible to load variations. For this study, a coupling between a MED plant and a renewable energy source, therefore transient, was assumed. To study the potential and the feasibility of such an association, a dynamic model representative of the MED plants was developed. With this, it is now possible to study the evolution of all the variables that have a consequence on the plant’s performances as well as to identify which variables are the most critical to the dynamic operation of the MED plant. This model was then combined with a concentrated solar power plant to conclude about the potential of this coupling. To assure an optimal operation of the MED plant under dynamic conditions, a regulation strategy was developed and implemented
Wannassi, Manel. "Etude des transferts thermiques par batteries de jets pour la trempe du verre." Thesis, Valenciennes, 2013. http://www.theses.fr/2013VALE0022/document.
Повний текст джерелаAir quenching is widely applied in security glass manufacturing processes. Proper residual stresses distribution requires strong and homogeneous cooling and both are difficult to achieve over the very short time of the tempering process. Jet arrays used in most processes provide with sufficient cooling but suffer from inherent inhomogeneity, leading to quality loss of the glass product and, in extreme cases, to unacceptable breaking numbers during production.The objective of the present study is to investigate ways to improve cooling homogeneity while maintaining efficiency. For this purpose, swirling jets are located inside the jet arrays to enhance jet mixing prior to impingement. Numerical simulation is performed, corroborated by oil flow visualization and a dedicated test bench has been designed and set up within the frame of this thesis.The first part was concerned with the design of swirlers and their dynamic behaviour in standalone mode. It has been shown that a vortex is forming at the inlet of each swirl compartment. Inserting the swirlers within jet arrays constitutes the seconf phase. It turns out that the cellular structure of the impingement pattern is only marginally affected by the swirlers, which have a weak influence on the flow dynamics. Last, the detailed heat transfer modeling on the impingement surface shows that the swirlers themselves do barely contribute to the overall cooling, while the coupling with the simple jet array slightly improves the local heat transfer close to the impingement area. Although the expected outcome was not achieved, this thesis showed the flow complexity as well as the strong coupling between the feeding and the exhaust phases experienced by the cooling air
Ji, Shengcheng. "Simulation 3D des ondes de batillage générées par le passage des bateaux et des processus associée de transport de sédiments." Thesis, Compiègne, 2013. http://www.theses.fr/2013COMP2068/document.
Повний текст джерелаShip-generated waves in restricted waterways lead to the stream banks erosion and cause environmental damage which harms fish, plants, benthos, plankton, etc. They also alter the channel morphology because of the resuspension and transport of bed material by accelerated flows caused by moving-ships. The magnitude of these waves depends mainly on the geometrical and kinematical parameters of the convoy.The objective of this study is to predict the relationship between these geometrical and kinematical parameters and the amplitude of ship-generated waves as well as the water plane drawdown. Numerical simulations are conducted by solving the 3-dimensional Navier-Stokes equations along with the k-ε model for turbulent processes. The results are compared firstly with the empirical models and secondly with experimental measurements performed by the French Compagnie Nationale of Rhône (CNR). The exitance of the propeller increases the sediment in suspension. Therefore, the relationships between the re-suspended sediments and the advancing speeds of the convoy, the wakes generated by the moving convoy, as well as the number of barges are studied by adding 3D advection-diffusion equation and a propeller model
Kewalramani, Gagan Vikram. "Experimental and theoretical analysis of a turbulent two-phase jet." Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0012.
Повний текст джерелаThe objective of the present thesis is to study two-phase liquid-liquid jets. Someof the features of a two-phase jet (distinct from single phase jet) are fragmentation ofthe injected fluid and energy exchange between fluids. Experimental measurementof the velocity dynamics in a two-phase jet is challenging because it's opacity. Tooptically access the dynamics of a two-phase jet, a transparent fluid with refractiveindex equal to water (referred as Cargille fluid) but with density twice as water isinjected into water tank. By adding a fluorescent dye to the transparent fluid andseeding particles to water, the dynamics of both the fluid are accessible opticallywhen illuminated by laser. A procedure to obtain information of the dynamics ofthe drops and its relation with velocity of the carrier fluid using high speed imagesis detailed in this thesis. To study two phase jets, two experimental setup (i) JaLaDand (ii) JeDi are developed. The work in this thesis can be categorized into severalparts that are explained as follows.Part-I: PTV analysis: Particle Tracking Velocimetry (PTV) algorithm Track isused on JaLad experiments. With PTV software Track, the Lagrangian trajectoriesof the fragmented liquid are analyzed. A procedure to detect primary fragmentation,secondary fragmentation and collision is developed. The methodology of fragmentationand collision detection is also verified with synthetically generated images.Part II: Single phase jet analysis: Before stating the measurement of a twophasejet, single-phase jets are studied on JeDi experiments. Relations to describeReynolds turbulent stress are developed to obtain a mathematical expression forturbulent kinetic energy dissipation and its dissipation.Part III: Simultaneous PTV-PIV measurement and analysis: In JeDi experiments,simultaneous measurement of both the fluids is perfomed. Optical flow and ParticleImage Velocimetry (PIV) are used for measuring dispersed phase (Cargille) andcarrier fluid (water) velocity respectively. For this part of the thesis, two lasers andtwo cameras are used. Camera 1 with a high pass filter (λ > 530 nm) and Camera 2with a low pass filter (λ < 530 nm) are synchronized with two lasers. Both systemsrecord images at the same instant in time and view the same plane. With the followingarrangement, Camera 1 only records the LIF signal in Cargille and Camera2 only records the PIV signal in water. The recorded images are processed to obtainthe average velocity of both phases. A simple integral model for entrainment andatomization based on Eulerian mass weighted average quantities is finally developedand validated against experimental results
Jurczuk, Krzysztof. "Calcul parallèle pour la modélisation d'images de résonance magnétique nucléaire." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S089.
Повний текст джерелаThis PhD thesis concerns computer modeling of magnetic resonance imaging (MRI). The main attention is centered on imaging of vascular structures. Such imaging is influenced not only by vascular geometries but also by blood flow which has to been taken into account in modeling. Next to the question about the quality of developed models, the challenge lies also in the demand for high performance computing. Thus, in order to manage computationally complex problems, parallel computing is in use. In the thesis three solutions are proposed. The first one concerns parallel algorithms of vascular network modeling. Algorithms for different architectures are proposed. The first algorithm is based on the message passing model and thus, it is suited for distributed memory architectures. It parallelizes the process of connecting new parts of tissue to existing vascular structures. The second algorithm is designed for shared memory machines. It also parallelizes the perfusion process, but individual processors perform calculations concerning different vascular trees. The third algorithm combines message passing and shared memory approaches providing solutions for hybrid parallel architectures. Developed algorithms are able to substantially speed up the time-demanded simulations of growth of complex vascular networks. As a result, more elaborate and precise vascular structures can be simulated in a reasonable period of time. It can also help to extend the vascular model and to test multiple sets of parameters. Secondly, a new approach in computational modeling of magnetic resonance (MR) flow imaging is proposed. The approach combines the flow computation by lattice Boltzmann method, MRI simulation by following discrete local magnetizations in time and a new magnetization transport algorithm together. Results demonstrate that such an approach is able to naturally incorporate the flow influence in MRI modeling. As a result, in the proposed model, no additional mechanism (unlike in prior works) is needed to consider flow artifacts, what implies its easy extensibility. In combination with its low computational complexity and efficient implementation, the solution is a user-friendly and manageable at different levels tool which facilitates running series of simulations with different physiological and imaging parameters. The goal of the third solution is to apply the proposed MR flow imaging model on complex vascular networks. To this aim, models of vascular networks, flow behavior and MRI are combined together. In all the model components, computations are adapted to be performed at various parallel architectures. The model potential and possibilities of simulations of flow and MRI in complex vascular structures are shown. The model aims at explaining and exploring MR image formation and appearance by the combined knowledge from many processes and systems, starting from vascular geometry, through flow patterns and ending on imaging technology
Grondeau, Mikaël. "Modélisation des effets de sillage d'une hydrolienne avec la méthode de Boltzmann sur réseau." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC257/document.
Повний текст джерелаIn a global context where access to energy is a major problem, the exploitation of tidal currents with tidal turbines is of particular interest. Flows in areas with high energy potential suitable for the installation of tidal turbines are often highly turbulent. However, the ambient turbulence has a strong impact on the surrounding hydrodynamics and the turbine operation. A precise prediction of turbulence and wake is fundamental to the optimization of a tidal farm. A numerical model of the flow around the turbine must therefore be accurate and take into account the ambient turbulence. A tool based on the Lattice Boltzmann Method (LBM) is used for this purpose, in combination with a Large Eddy Simulation (LES) approach. The LBM is an unsteady method for modelling fluid flows. A synthetic turbulence method is implemented to take into account the ambient turbulence of tidal sites. Complex geometries, potentially in motion, are modelled using the Immersed Boundary Method (IBM). The implementation of a wall model is carried out in order to reduce the cost of the simulations. These tools are then used to model a turbine in a turbulent environment. The calculations, performed at two different turbulence rates, are compared with experimental and NS-LES results. The LBM-LES models are then used to analyze the wake of the turbine. In particular, it is observed that a low turbulence rate has a significant impact on the propagation of tip-vortices