Статті в журналах з теми "Cellulose-containing materials"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Cellulose-containing materials.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Cellulose-containing materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gadd, K. F. "Metal-containing cellulose: Some novel materials." Journal of Inclusion Phenomena 5, no. 2 (April 1987): 265–68. http://dx.doi.org/10.1007/bf00655662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bagrovskaya, N. A., O. V. Alekseeva, O. V. Rozhkova, A. N. Rodionova, and S. A. Lilin. "Extracting heavy metals with cellulose-containing materials." Protection of Metals 44, no. 4 (July 2008): 394–96. http://dx.doi.org/10.1134/s0033173208040152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhong, Tuhua, Gloria S. Oporto, Yucheng Peng, Xinfeng Xie, and Douglas J. Gardner. "Drying cellulose-based materials containing copper nanoparticles." Cellulose 22, no. 4 (May 8, 2015): 2665–81. http://dx.doi.org/10.1007/s10570-015-0646-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mirgorod, Yu A., O. S. Dmitrieva, P. V. Abakumov, and V. V. Rodionov. "Copper-Containing Cellulose Material." Fibre Chemistry 51, no. 1 (May 2019): 18–22. http://dx.doi.org/10.1007/s10692-019-10039-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhu, Yiwen, Audrey Sulkanen, Gang-Yu Liu, and Gang Sun. "Daylight-Active Cellulose Nanocrystals Containing Anthraquinone Structures." Materials 13, no. 16 (August 11, 2020): 3547. http://dx.doi.org/10.3390/ma13163547.

Повний текст джерела
Анотація:
Antimicrobial and antiviral materials have attracted significant interest in recent years due to increasing occurrences of nosocomial infections and pathogenic microbial contamination. One method to address this is the combination of photoactive compounds that can produce reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals to disinfect microbes, with carrier materials that meet the application requirements. Using anthraquinone (AQ) and cellulose nanocrystals (CNCs) as the photoactive and carrier components, respectively, this work demonstrated the first covalent incorporation of AQ onto CNCs. The morphology and the photoactive properties were investigated, revealing the structural integrity of the CNCs and the high degree of photoactivity of the AQ-CNC materials upon UVA exposure. The AQ-CNCs also exhibited an unexpected persistent generation of ROS under darkness, which adds advantages for antimicrobial applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Budenkova, Ekaterina, Stanislav Sukhikh, Svetlana Ivanova, Olga Babich, Vyacheslav Dolganyuk, Philippe Michaud, and Olga Kriger. "Improvement of Enzymatic Saccharification of Cellulose-Containing Raw Materials Using Aspergillus niger." Processes 9, no. 8 (August 3, 2021): 1360. http://dx.doi.org/10.3390/pr9081360.

Повний текст джерела
Анотація:
Enzymatic hydrolysis of cellulose-containing raw materials, using Aspergillus niger, were studied. Filter paper, secondary cellulose-containing or starch-containing raw materials, miscanthus cellulose after alkaline or acid pretreatment, and wood chip cellulose, were used as substrates. The study focused on a wild A. niger strain, treated, or not (control), by ultraviolet (UV) irradiations for 45, 60, or 120 min (UV45, UV60, or UV120), or by UV irradiation for 120 min followed by a chemical treatment with NaN3 + ItBr for 30 min or 80 min (UV120 + CH30 or UV120 + CH80). A mixture of all the A. niger strains (MIX) was also tested. A citrate buffer, at 50 mM, wasthe most suitable for enzymatic hydrolysis. As the UV exposure time increased to 2 h, the cellulase activity of the surviving culturewas increased (r = 0.706; p < 0.05). The enzymatic activities of the obtained strains, towards miscanthus cellulose, wood chips, and filter paper, were inferior to those obtained with commercial enzymes (8.6 versus 9.1 IU), in some cases. Under stationary hydrolysis at 37 °C, pH = 4.7, the enzymatic activity of A. niger UV120 + CH30 was 24.9 IU. The enzymatic hydrolysis of secondary raw materials, using treated A. niger strains, was themost effective at 37 °C. Similarly, the most effective treatment of miscanthus cellulose and wood chips occurred at 50 °C. The maximum conversion of cellulose to glucose was observed using miscanthus cellulose (with alkaline pretreatment), and the minimum conversion was observed when using wood chips. The greatest value of cellulase activity was evidenced in the starch-containing raw materials, indicating that A. niger can ferment not only through cellulase activity, but also via an amylolytic one.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gorzelańczyk, Tomasz, Krzysztof Schabowicz, and Mateusz Szymków. "Tests of Fiber Cement Materials Containing Recycled Cellulose Fibers." Materials 13, no. 12 (June 18, 2020): 2758. http://dx.doi.org/10.3390/ma13122758.

Повний текст джерела
Анотація:
This paper presents the results of investigations into the effect of the use of recycled waste paper cellulose fibers on the properties of fiber cement boards subjected to contamination by moisture. Four series of fiber cement boards were tested. A reference fiber cement board manufactured without the use of recycled cellulose fibers constituted as one of the series. The other three series consisted of boards differing in their recycled cellulose fiber content-ranging from 10% to 50% of the total cellulose fiber content. Specimens of the fiber cement boards were subjected to contamination by moisture by storing them in water for 1–96 h. Subsequently, their basic physical and mechanical parameters, i.e., mass moisture content, absorbability, and modulus of rupture (MOR), were tested. Then, the specimens were investigated by means of acoustic emission during three-point bending. Artificial neural networks were employed to analyze the acoustic emission test results. The tests clearly showed the amount of recycled waste paper cellulose fibers and the length of storage in water to have an adverse effect on the boards, contributing to their degradation. This was reflected in the decrease of the acoustic emission (AE) events count recognized by the artificial neural networks, accompanying the rupture of fibers during the three-point bending of the specimens. In order to gain a more detailed insight into the changes taking place in the structure of the tested fiber cement boards, optical examinations were carried out by means of a scanning electron microscope. Interesting findings crucial for building practice were noted.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Onoiko, Tatyana. "Features of process of preliminary grind of cellulose-containing materials." E3S Web of Conferences 104 (2019): 01012. http://dx.doi.org/10.1051/e3sconf/201910401012.

Повний текст джерела
Анотація:
In the real work, features of technological process of preliminary grind of cellulose-containing materials raw materials are analysed and features of the existing technologies are considered. The expediency of use for grind of cellulose raw materials by a without knife way of influence by hydrodynamic cavitation in the electromechanical transformer with a discrete secondary part is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yudanova, T. N., I. F. Skokova, and A. D. Virnik. "Fabrication of enzyme-containing cellulose fibre materials from graft copolymers containing sulfo groups." Fibre Chemistry 29, no. 1 (January 1997): 9–12. http://dx.doi.org/10.1007/bf02430678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Martirosyan, Irina, Olena Pakholiuk, Galyna Golodyuk, Viktoria Lutskova, and Vira Lubenets. "INVESTIGATION OF ANTIMICROBIAL PROPERTIES OF TEXTILE MATERIALS AFTER WASHING." Fibres and Textiles 29, no. 1 (March 2022): 28–35. http://dx.doi.org/10.15240/tul/008/2022-1-004.

Повний текст джерела
Анотація:
This work is devoted to the study of antimicrobial properties of cellulose-containing textile materials treated with new safe biocidal products of thiosulfonate structure. A resource-saving method of providing antimicrobial properties to cellulose-containing textile materials is presented. High antimicrobial activity of biocidal products after washing was established. The duration of action and expediency of their use in the textile industry are proved. It is shown that after 10 washes the treated tissues lose only 14-15% of antimicrobial properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Khokhlova, G. P., and O. S. Efimova. "Properties of silicon-containing carbon fiber materials prepared using cellulose." Solid Fuel Chemistry 46, no. 3 (May 2012): 200–204. http://dx.doi.org/10.3103/s0361521912030068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Shukla, SR, and Roshan S. Pai. "Removal of Pb(II) from solution using cellulose-containing materials." Journal of Chemical Technology & Biotechnology 80, no. 2 (2005): 176–83. http://dx.doi.org/10.1002/jctb.1176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Seredina, M. A., and M. A. Tyuganova. "Thermal decomposition and combustion of phosphorus-metal-containing cellulose materials." Fibre Chemistry 27, no. 5 (1996): 343–46. http://dx.doi.org/10.1007/bf00551149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bryuzgin, Evgeny, Victor Klimov, Sergey Zaytsev, Alexander Navrotskiy, and Ivan Novakov. "Influence of the Structure of Glycidyl Methacrylate Copolymers on the Hydrophobic Properties of Cellulose Materials." Advanced Materials Research 1098 (April 2015): 98–103. http://dx.doi.org/10.4028/www.scientific.net/amr.1098.98.

Повний текст джерела
Анотація:
The modification of the surface of cellulose-containing materials by copolymers of polyglycidyl methacrylate (PGMA) obtained by means of two ways: acylation of PGMA by stearic acid and copolymerization of glycidyl methacrylate and lauryl methacrylate is proposed. It is demonstrated, that the use of obtained copolymers allows to get the superhydrophobic coatings on the surface of cellulose-containing materials with reaching of contact angles up to 161°. Such modified materials can be used as filters for the separation of the water-oil emulsions.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kazragis, Algimantas, Aušra Juknevičiūte, and Albinas Gailius. "UTILIZATION OF BOON AND CHAFF FOR MANUFACTURING LIGHTWEIGHT WALLING MATERIALS." JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT 12, no. 1 (March 31, 2004): 12–21. http://dx.doi.org/10.3846/16486897.2004.9636810.

Повний текст джерела
Анотація:
Lightweight composites for walls and thermal insulation, containing anhydrite (An) or aluminate cement (Al), vinyl acetate (VA) or cellulose (Cl) polymeric binders and cellulose fiber fillers (boon, chaff) were produced. The best results were obtained for transportation and construction of items containing: An ≥ 30–45 %, Al ≥ 30–50 %, VA ≥ 1–5 %, Cl ≥ 0,5–5,0 %, boon or chaff ≥ 40–47 %. Polymeric binder VA for both kinds of cement is better than Cl. An is better for boon than for chaff. Aluminate cement is a good binder for both types of fiber fillers. Density r of a composite containing cements 50–60 % is less than 400 kg/m3. According to density such composite materials are light‐weight heat‐insulating materials. Density (p ≤ kg/m3) depends on the amount of cement content. Bending strength for samples with p ≤ 400 kg/m3, containing CMC is 0,6–1,3 MPa. Coefficient of thermal conductivity for samples, density with 400 kg/m3 is 0,06 W/m‐K.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Balabanova, M. Yu, S. Yu Panov, and A. A. Khvostov. "Modeling the Process of Chemical-Thermal Processing of Cellulose-Containing Materials." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 26, no. 3 (2020): 421–30. http://dx.doi.org/10.17277/vestnik.2020.03.pp.421-430.

Повний текст джерела
Анотація:
The issues of numerical modeling of chemical-thermal processing of cellulose-containing waste are considered. The simulation results are presented in comparison with the data of experiments carried out in a horizontal pyrolysis reactor with a turner at various process temperatures. The process and the resulting products are influenced by the factors of the mixing rate of the products in the reactor core and the temperature distribution in this zone. To describe the thermal processes and chemical kinetics of cellulose pyrolysis, a model proposed by Yu. Dean was chosen, in which the process is represented by a heterogeneous n-order reaction and the Arrhenius equation. It is assumed that the process of heat transfer during pyrolysis takes place inside a horizontal tube of circular cross-section under conditions of free convection in a limited volume, which has an excess temperature in relation to the surrounding space. It is shown that the results obtained with the help of numerical modeling make it possible to choose the most optimal value of the linear movement of the material in the reactor vessel, depending on the required mode of chemical-thermal processing of cellulose-containing waste.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Fomenko, I. A., and S. N. Tuchkova. "Cellulose-containing waste recycling using fungi." New Technologies 17, no. 5 (December 21, 2021): 123–33. http://dx.doi.org/10.47370/2072-0920-2021-17-5-123-133.

Повний текст джерела
Анотація:
Accumulation of plant waste is a serious environmental problem. Mushrooms with high cellulolytic activity can process it into valuable products that will be useful in solving various industries and agriculture problems. The enzymes of the cellulolytic complex include 1,4-β-D-glucan-4-glucanohydrolase, exo-1,4-β-glucosidase, cellobiohydrolase, β-glucosidase. 1,4-β-D-glucan-4-glucanohydrolases destroy β-1,4-glycosidic bonds within the chain of cellulose and lichenin polysaccharides. Exoglucanases destroy β-1,3- and β-1,4-glycosidic bonds at the end of the molecule. Cellobiohydrolases cleave β-1,4-glycosidic bonds to form cellobiose and glucose. β-glucosidase complete the process of destruction. Fungi with high cellulolytic activity include both representatives of the Ascomycota and Basidiomycota divisions. Ascomycete Chaetomium globosum produces endoglucanases of two families and 8 cellobiohydrolases. Myceliophthora thermophila also produces endoglucanases and cellobiohydrolases, the most abundant of which is Mt Cel7A. The fungus is a promising producer of thermostable enzymes. Trichoderma reesei has a long history of safe use as a source of highly active cellulolytic enzymes and other valuable metabolites. LPMOs of the cellulolytic fungus Thielavia terrestris are considered auxiliary enzymes, but can negatively affect the main enzymes of the complex. Irpex lacteus also produces LPMO and a complete cellulolytic enzyme complex. The cellulolytic activity of fungi and their ability to grow on cheap substrates can be used to bioconvert plant waste into valuable products. One of the ways to utilize them is to convert into compound feed with a high protein content through the use of starter cultures. The use of mushrooms will increase the content of protein and simple carbohydrates, enrich the feed with fats. Another method is to obtain cellulases, which are widely used in many industries. Thanks to the production of biodiesel and bioethanol from cellulose-containing raw materials it is possible to solve the problem of lack of fuel by replacing energy carriers from non-renewable energy sources with their environmentally friendly counterparts. They are less toxic than diesel and gasoline and are also made from renewable resources.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Gorodnev, I. O., I. P. Ivanova, N. G. Ibragimov, and A. E. Golubev. "Plasticization Kinetics and Supramolecular Structure of the Cellulose Nitrates Obtained from Different Cellulose-Containing Raw Materials." Russian Journal of General Chemistry 89, no. 12 (December 2019): 2705–20. http://dx.doi.org/10.1134/s1070363219120478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lakina, Natalia V., Valentin Yu Doluda, Esfir M. Sulman, Irina P. Shkileva, and Olga S. Burmatova. "STUDY OF METHOD OF PROCESSING CELLULOSIC AND LIGNIN-CONTAINING RAW MATERIALS USING CELLULOLYTIC ENZYMES." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 61, no. 1 (December 21, 2017): 78. http://dx.doi.org/10.6060/tcct.20186101.5454.

Повний текст джерела
Анотація:
In the research the results of bioethanol and other valuable products formation are described during peat hydrolytic formation. The factors of cellulose-lignin raw materials (peat and wood sawdust) stability to the action of various hydrolyzing agents were determined. The obtained experimental data indicate the efficiency of peat and sawdust samples pre-treatment with H2SO4 (90 wt.%), which is expressed in the highest yield of reducing substances during hydrolysis of the samples, in comparison with the results obtained with H2SO4 pretreatment of a lower concentration. The article shows the results of cellulose-containing raw materials hydrolysis process study with various ways, including enzymatic treatment. Enzyme complex sample of Celloviridine, containing both exo-and endo-enzymes, was used. Qualitative and quantitative analysis of the cellulose-lignin-containing raw materials hydrolysis products was carried out using high-performance liquid chromatography. It was found that the maximum rate of glucose accumulation (the final product of the hydrolytic process of cellulose-lignin raw materials) was observed when using samples of peat and sawdust pretreated with H2SO4 (90wt.%). As a result of cellulosulignin raw material subsequent enzymatic hydrolysis, the amount of D-glucose in the hydrolyzate increased with the help of the Celloviridin preparation in comparison with its amount in the H2SO4 pretreatment. A comparative characterization of the raw material efficiency for the yield of the desired product - D-glucose is shown. In the process of combined hydrolysis of cellulose and lignin-containing raw materials the maximum yield of the monosaccharide was observed during the hydrolysis of peat samples. After appropriate neutralization the resulting hydrolysis solution can be used to produce bioethanol and bacterial biomass in the microbial synthesis of products used for animal feed, as well as for pharmaceutical practice.Forcitation:Lakina N.V., Doluda V.Yu., Sulman E.M., Shkileva I.P., Burmatova O.S. Study of method of processing cellulosic and lignin-containing raw materials using cellulolytic enzymes. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 1. P. 78-83
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Bolotova, K. S., A. S. Aksenov, M. V. Emelyanova, V. A. Rudakova, O. V. Travina, and A. V. Kanarskiy. "Bioconversion of the Cellulose-containing Materials in the Arctic Region Conditions." Lesnoy Zhurnal (Forestry Journal), no. 4 (July 10, 2019): 179–86. http://dx.doi.org/10.17238/issn0536-1036.2019.4.179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Skiba, E. A. "BIOSYNTHESIS OF BACTERIAL NANOCELLULOSE IN MEDIA OBTAINED FROM CELLULOSE CONTAINING MATERIALS." PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY 8, no. 3 (2018): 41–47. http://dx.doi.org/10.21285/2227-2925-2018-8-3-41-47.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Angelova, Tsvetelina, Nadezhda Rangelova, Ruslan Yuryev, Nelly Georgieva, and Rudolf Müller. "Antibacterial activity of SiO2/hydroxypropyl cellulose hybrid materials containing silver nanoparticles." Materials Science and Engineering: C 32, no. 5 (July 2012): 1241–46. http://dx.doi.org/10.1016/j.msec.2012.03.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gorbacheva, G. A., A. N. Ivankin, V. G. Sanaev, A. K. Ageev, D. P. Kiryukhin, G. A. Kichigina, P. P. Kushch, and E. R. Badamshina. "Surface modification of cellulose-containing materials with solutions of tetrafluoroethylene telomers." Russian Journal of Applied Chemistry 90, no. 8 (August 2017): 1365–71. http://dx.doi.org/10.1134/s1070427217080286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Smirnova, M. Yu, V. I. Dubkova, M. V. Solovskii, O. I. Maevskaya, N. A. Belyasova, and E. F. Panarin. "Composite Phosphorus-Containing Cellulose and Carbon Fiber Materials with Antimicrobial Activity." Fibre Chemistry 50, no. 6 (March 15, 2019): 533–37. http://dx.doi.org/10.1007/s10692-019-10024-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Saksonova, L. R., V. I. Kononenko, A. S. Shubin, V. P. Remez, N. I. Shchetkina, T. A. Sinitsina, N. V. Lukin, M. V. Gridnevskii, and S. A. Perminov. "Bond nature and structure of ferrocyanide-containing materials based on cellulose." Bulletin of the Russian Academy of Sciences Division of Chemical Science 41, no. 3 (March 1992): 446–47. http://dx.doi.org/10.1007/bf00863059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Boltovsky, V. S. "New methods of acid hydrolysis of cellulose and plant raw materials." Proceedings of the National Academy of Sciences of Belarus, Chemical Series 57, no. 1 (February 10, 2021): 119–28. http://dx.doi.org/10.29235/1561-8331-2021-57-1-119-128.

Повний текст джерела
Анотація:
Prospects for the development of hydrolysis production are determined by the relevance of industrial use of plant biomass to replace the declining reserves of fossil organic raw materials and increasing demand for ethanol, especially for its use as automobile fuel, protein-containing feed additives that compensate for protein deficiency in feed production, and other products. Based on the review of the research results presented in the scientific literature, the analysis of modern methods of liquid-phase acid hydrolysis of cellulose and various types of plant raw materials, including those that differ from traditional ones, is performed. The main directions of increasing its efficiency through the use of new catalytic systems and process conditions are identified. It is shown that the most promising methods for obtaining monosaccharides in hydrolytic processing of cellulose and microcrystalline cellulose, pentosan-containing agricultural waste and wood, are methods for carrying out the process at elevated and supercritical temperatures (high-temperature hydrolysis), the use of new types of solid-acid catalysts and ionic liquids.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Prosvirnikov, Dmitry B., Rushan G. Safin, and S. R. Zakirov. "Microcrystalline Cellulose Based on Cellulose Containing Raw Material Modified by Steam Explosion Treatment." Solid State Phenomena 284 (October 2018): 773–78. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.773.

Повний текст джерела
Анотація:
Today’s methods for producing powdered celluloses, in particular microcrystalline cellulose (MCC), from various plant raw materials, while applying new highly efficient methods for the isolation of cellulose are of a great interest. One of these methods is the production of MCC from lignocellulosic material activated by steam explosion treatment. The material obtained by this method from wood has a high reactivity, low content of residual lignin, a high specific surface, which allows to subject it successfully and efficiently to accelerated delignification or hydrolytic breakdown (degradation). This ability of the lignocellulosic material, activated by steam explosion, is the basis of this study, which provides the results of an experimental evaluation of the component and dispersion analysis of MCC, obtained from this material.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Rüttiger, Christian, Steffen Vowinkel, Nicole Herzog, Kathrin Hofmann, Emanuel Ionescu, and Markus Gallei. "POSS-Containing Polymethacrylates on Cellulose-Based Substrates: Immobilization and Ceramic Formation." Coatings 8, no. 12 (December 6, 2018): 446. http://dx.doi.org/10.3390/coatings8120446.

Повний текст джерела
Анотація:
The combination of cellulose-based materials and functional polymers is a promising approach for the preparation of porous, biotemplated ceramic materials. Within this study, cellulose substrates were functionalized with a surface-attached initiator followed by polymerization of (3methacryloxypropyl)heptaisobutyl-T8-silsesquioxane (MAPOSS) by means of surface-initiated atom transfer radical polymerization (ATRP). Successful functionalization was proven by infrared (IR) spectroscopy as well as by contact angle (CA) measurements. Thermal analysis of the polymer-modified cellulose substrates in different atmospheres (nitrogen and air) up to 600 °C led to porous carbon materials featuring the pristine fibre-like structure of the cellulose material as shown by scanning electron microscopy (SEM). Interestingly, spherical, silicon-containing domains were present at the surface of the cellulose-templated carbon fibres after further ceramisation at 1600 °C, as investigated by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wik, V. M., M. I. Aranguren, and M. A. Mosiewicki. "Castor oil-based polyurethanes containing cellulose nanocrystals." Polymer Engineering & Science 51, no. 7 (March 23, 2011): 1389–96. http://dx.doi.org/10.1002/pen.21939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Teixeira, Marta A., Maria C. Paiva, M. Teresa P. Amorim, and Helena P. Felgueiras. "Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing." Nanomaterials 10, no. 3 (March 19, 2020): 557. http://dx.doi.org/10.3390/nano10030557.

Повний текст джерела
Анотація:
Wound healing requires careful, directed, and effective therapies to prevent infections and accelerate tissue regeneration. In light of these demands, active biomolecules with antibacterial properties and/or healing capacities have been functionalized onto nanostructured polymeric dressings and their synergistic effect examined. In this work, various antibiotics, nanoparticles, and natural extract-derived products that were used in association with electrospun nanocomposites containing cellulose, cellulose acetate and different types of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) have been reviewed. Renewable, natural-origin compounds are gaining more relevance each day as potential alternatives to synthetic materials, since the former undesirable footprints in biomedicine, the environment, and the ecosystems are reaching concerning levels. Therefore, cellulose and its derivatives have been the object of numerous biomedical studies, in which their biocompatibility, biodegradability, and, most importantly, sustainability and abundance, have been determinant. A complete overview of the recently produced cellulose-containing nanofibrous meshes for wound healing applications was provided. Moreover, the current challenges that are faced by cellulose acetate- and nanocellulose-containing wound dressing formulations, processed by electrospinning, were also enumerated.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Mosina, N. Yu, and T. V. Druzhinina. "Fabrication of chemisorption amino-containing cellulose fibres." Fibre Chemistry 28, no. 5 (1996): 342–46. http://dx.doi.org/10.1007/bf01057703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Zakharov, A. G., A. N. Prusov, S. M. Prusova, A. V. Bazanov, and V. K. Ivanov. "Cu-Containing Carbon Nanocomposites Based on Cellulose." Fibre Chemistry 47, no. 4 (November 2015): 284–90. http://dx.doi.org/10.1007/s10692-016-9680-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Prusov, A. N., S. M. Prusova, A. G. Zakharov, A. V. Bazanov, and V. K. Ivanov. "Iron-Containing Carbon Nanocomposites Based on Cellulose." Fibre Chemistry 50, no. 3 (September 2018): 154–60. http://dx.doi.org/10.1007/s10692-018-9952-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Ghahari, SeyedAli, Lateef N. Assi, Ali Alsalman, and Kürşat E. Alyamaç. "Fracture Properties Evaluation of Cellulose Nanocrystals Cement Paste." Materials 13, no. 11 (May 31, 2020): 2507. http://dx.doi.org/10.3390/ma13112507.

Повний текст джерела
Анотація:
Due to the need for high-performance and sustainable building materials, the investigation of the determination of fracture toughness of cement paste using new and sustainable materials, such as cellulose nanocrystals (CNCs) is worthwhile. Contrary to other well-known nano-reinforcement particles, such as carbon nanotubes, CNCs are less toxic; therefore, they have less safety and environmental risks. Fracture behavior of cement paste has been studied intensively for a long time. However, the incorporation of new materials in the cement paste, such as cellulose nanocrystal materials (CNCs), has not been fully investigated. In this paper, the fracture behavior, compressive strength, and hydration properties of cement paste reinforced with cellulose nanocrystal particles were studied. At the age of 3, 7, and 28 days, a three-point bending moment test, and a calorimetry and thermogravimetric analysis, scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDX) analysis were performed on the water-to-binder-weight ratio of 0.35 cement paste, containing 0.0%, 0.2%, and 1.0% volume cellulose nanocrystals. Results indicated that the fracture properties and compressive strength were improved for the sample containing 0.2% CNCs. Preliminary results indicate that CNCs can improve the fracture behavior of cementitious materials and can be considered as a renewable and sustainable material in construction.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Zugenmaier, Peter. "Materials of cellulose derivatives and fiber-reinforced cellulose-polypropylene composites: Characterization and application." Pure and Applied Chemistry 78, no. 10 (January 1, 2006): 1843–55. http://dx.doi.org/10.1351/pac200678101843.

Повний текст джерела
Анотація:
Cellulose is a biodegradable polymer produced sustainably in large quantities by nature. It has been used by mankind for centuries because of its favorable properties, but suffers disadvantages such as the high cost of production and limited processibility. For example, it cannot be melted and is only soluble in less common solvents. The latter limitation can be overcome through appropriate derivatization of cellulose, which increases the solubility range and may generate thermoplastic materials. This paper will review three new developments leading to enhanced utilization of cellulosics. Firstly, an overview is given of the progress in the formulation of fiber-reinforced thermoplastic cellulose composites to facilitate extrusion processing. Cellulose-polypropylene composites show enhanced properties in comparison with neat polypropylene, and offer scope for replacing composites containing glass fibers, owing to resultant advantages in weight, recyclability, and ease of disposal. Progress is also reported in improving the predictability of essential physical quantities and melt flow in cellulose esters. Finally, an account is given of the successful development of microcrystalline cellulose (CFM) derivatives, synthesized in a heterogeneous manner, as chiral recognition agents in liquid chromatography. The structural features of these materials are decisive for their use. A model is proposed for the morphology of the cellulosic fibrils.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Miljković, Vojkan, Ivana Gajić, and Ljubiša Nikolić. "Waste Materials as a Resource for Production of CMC Superabsorbent Hydrogel for Sustainable Agriculture." Polymers 13, no. 23 (November 26, 2021): 4115. http://dx.doi.org/10.3390/polym13234115.

Повний текст джерела
Анотація:
Waste materials are receiving more attention as concerns about the future of our planet increase. Cellulose is the most common substance in agricultural waste. Agricultural wastes containing cellulose are misplaced resources that could be reused in various fields for both environmental and economic benefits. In this work, 32 different kinds of waste are investigated for chemical modification in order to obtain carboxymethyl cellulose for the production of a superabsorbent hydrogel that can be applied in agriculture. A brief literature review is provided to help researchers wishing to obtain carboxymethyl cellulose by carboxymethylation starting with waste materials. We also provide details about methods to obtain as well as verify carboxymethylation. Carboxymethyl cellulose (CMC), as a constituent of cellulosic water and superabsorbent hydrogels with applications in agriculture, is described. Superabsorbent hydrogels with CMC are able to absorb huge amounts of water and are biodegradable.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Shibazaki, Hideki, Shigenori Kuga, and Fumihiko Onabe. "Mechanical properties of papersheet containing bacterial cellulose." JAPAN TAPPI JOURNAL 48, no. 12 (1994): 1621–30. http://dx.doi.org/10.2524/jtappij.48.1621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Barud, Hernane S., Celina Barrios, Thais Regiani, Rodrigo F. C. Marques, Marc Verelst, Jeannette Dexpert-Ghys, Younes Messaddeq, and Sidney J. L. Ribeiro. "Self-supported silver nanoparticles containing bacterial cellulose membranes." Materials Science and Engineering: C 28, no. 4 (May 2008): 515–18. http://dx.doi.org/10.1016/j.msec.2007.05.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Kim, Donguk, Jaehyeon Jeong, Ji-Ae Ryu, Sa Rang Choi, Jung Myoung Lee, and Heeyoun Bunch. "In Vitro Evaluation of Lignin-Containing Nanocellulose." Materials 13, no. 15 (July 29, 2020): 3365. http://dx.doi.org/10.3390/ma13153365.

Повний текст джерела
Анотація:
The increasing importance of environmental sustainability has led to the development of new materials that are environmentally friendly, functional, and cost-effective. Lignin-containing cellulose nanomaterials are a common example of these. The advantages of lignocelluloses include their renewability, sustainability, and functionality combined with molecular rigidity and enhanced hydrophobicity. In order to valorize these beneficial traits from lignin-containing nanocellulose, various approaches have been examined in industrial applications. However, the safety of these materials has not been tested or validated in humans. In this study, we tested 21 wt% lignin-containing nanocellulose (L-MFC) in vitro using the human lung and kidney cell lines, H460 and HEK293 cells, respectively. The cytotoxicity of cellulose, L-MFC, and lignin was compared using the water-soluble tetrazolium salt assays. In addition, the gene expressions of HSP70 and HSP90 as cellular stress markers treated with cellulose, L-MFC, and lignin were quantified using real-time polymerase chain reaction (PCR) and Western blotting. Our data indicated little cytotoxicity for cellulose and significant cytotoxicity for lignin and a relatively low level of cytotoxicity for L-MFC, providing the lethal median concentration (LC50) values of L-MFC and lignin. The gene expression of HSP70 and HSP90 was little affected by moderate concentrations of L-MFC. Interestingly, the lignin contained in L-MFC influenced the cell viability and the gene expression of HSP70 and HSP90 less than the same amount of lignin alone. These results indicate that L-MFC displays cell-type-dependent sensitivity and suggest that L-MFC could serve as a new eco-friendly material that is relatively safe for humans.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Bruyako, Mikhail, and Larisa Grigoryeva. "Ecologically safe composite building materials based on cellulose-containing solid household waste." MATEC Web of Conferences 193 (2018): 02007. http://dx.doi.org/10.1051/matecconf/201819302007.

Повний текст джерела
Анотація:
In the article, three technological methods for obtaining a high-filled construction composite on the basis of gypsum binders and cellulose-containing solid household waste are considered. The results of a study on the effect of changing the ratio of cardboard/gypsum binder, the specific pressing pressure, the sequence of combining the components on the properties of the final product are presented and presented. The strength of the material was determined from the final values of the flexural and compressive strengths until the specimen completely destroyed and at its 10% deformation. Studies have been carried out on the possibility of giving the building composite water resistance. The results of the research showed that the most optimal way of combining is the 2 way. The increase in water resistance of the resulting composites is significantly increased when using silicone hydrophobisers.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Aslanli, A. G., N. A. Stepanov, O. V. Senko, O. V. Maslova, I. V. Lyagin, and E. N. Efremenko. "The hexahistidine containing organophosphorus hydrolase enzyme and bacterial cellulose based functional materials." IOP Conference Series: Materials Science and Engineering 525 (June 7, 2019): 012005. http://dx.doi.org/10.1088/1757-899x/525/1/012005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Bryuzgin, E. V., V. V. Klimov, O. V. Dvoretskaya, L. D. Man’, A. V. Navrotskiy, and I. A. Novakov. "Hydrophobization of cellulose-containing materials with fluoroacrylic polymers and fatty carboxylic acids." Russian Journal of Applied Chemistry 87, no. 8 (August 2014): 1119–25. http://dx.doi.org/10.1134/s1070427214080187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Tausarova, B. R., and S. O. Abilkasova. "Flame-Retardant Modification of Cellulose Materials by N- and P-Containing Composites." Fibre Chemistry 49, no. 4 (November 2017): 242–45. http://dx.doi.org/10.1007/s10692-018-9876-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Xie, Kongliang, Xiuriu Gao, and Weiguo Zhao. "Thermal degradation of nano-cellulose hybrid materials containing reactive polyhedral oligomeric silsesquioxane." Carbohydrate Polymers 81, no. 2 (June 2010): 300–304. http://dx.doi.org/10.1016/j.carbpol.2010.02.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zynov’eva, M. E., K. L. Shnaider, and S. K. Zaripova. "Production of lactic acid on enzymatic hydrolysates of cellulose-containing raw materials." IOP Conference Series: Earth and Environmental Science 421 (January 7, 2020): 052011. http://dx.doi.org/10.1088/1755-1315/421/5/052011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Mao, Lijun, and Anna M. Ritcey. "Preparation of cellulose derivatives containing carbazole chromophore." Journal of Applied Polymer Science 74, no. 11 (December 9, 1999): 2764–72. http://dx.doi.org/10.1002/(sici)1097-4628(19991209)74:11<2764::aid-app24>3.0.co;2-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ермолинский, В. Г., and О. П. Ковалева. "Reactivity of cellulose-containing materials in technologies of artificial fibers and pulp and paper production." Известия СПбЛТА, no. 233 (December 29, 2020): 228–45. http://dx.doi.org/10.21266/2079-4304.2020.233.228-245.

Повний текст джерела
Анотація:
Анализ результатов многочисленных исследований показывает, что регулирование свойств волокнистых полуфабрикатов, а также стабильность качества бумаги и картона возможны при условии учёта специфики процессов структурообразования в дисперсных системах, дисперсионной средой в которых является вода или её растворы на каждом этапе в многоступенчатых системах переработки целлюлозосодержащих материалов. В результате исключения изтеоретических основ технологии и практики целлюлозно-бумажного производства понятия об индивидуальности природных волокон целлюлозы, предназначенной для производства бумаги, все исследования физико-химических свойств целлюлозы производились на образцах целлюлозы, предназначенной для дальнейшей химической переработки. При этом представления о гидрофильности волокон гидратцеллюлозы были перенесены и на волокна природной целлюлозы. В связи с этим отрицалась мозаичность поверхности растительных волокон и, следовательно, исключалась возможность реализации гидрофобных взаимодействий в системе «целлюлоза-вода». Характер и степень изменения параметров взаимодействия волокон с образованием фазовых связок в структуре волокон и между волокнами в листе бумаги рассматривает физико-химическая механика дисперсных систем, а выявленные закономерности учитываются в методах золь-гель технологии модифицирования поверхности волокон целлюлозы. Обобщение научно-технической информации на основе единого подхода к проблеме структурообразования в системе «целлюлоза-вода», базирующегося на представлениях физико-химической механики дисперсных систем и физико-химии полимеров, показало, что данные вопросы требуют тщательного и углубленного изучения с целью регулирования и достижения требуемых свойств целлюлозосодержащих материалов. Analysis of the results of numerous studies shows that the regulation of the properties and stability of the quality of paper and cardboard is possible subject to the specifics of the processes of structure formation in dispersed systems, the dispersion medium in which is water or its solutions, at each stage in multi-stage systems for processing cellulose-containing materials. As a result of excluding the concept of the individuality of natural cellulose fibers intended for paper production from the theoretical foundations of pulp and paper production technology and practice, all studies of the physical and chemical properties of cellulose were performed on samples of cellulose intended for further chemical processing. At the same time, ideas about the hydrophilicity of hydrate cellulose fibers were transferred to natural cellulose fibers. In this regard, the mosaic surface of plant fibers was denied and, consequently, the possibility of hydrophobic interactions in the «cellulose-water» system was excluded. The nature and degree of changes in the parameters of the interaction of fibers with the formation of phase bonds in the structure of fibers andbetween fibers in a sheet of paper is considered only by physical and chemical mechanics, and the revealed regularities are taken into account in the methods of Sol-gel technology for modifying the surface of cellulose fibers. Generalization of scientific and technical information based on a unified approach to the problem of structure formation in the "cellulose-water" system, based on the concepts of physical and chemical mechanics of dispersed systems and physical chemistry of polymers, showed that these issues require careful and in-depth study in order to regulate and achieve the required properties of cellulose-containing materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ермолинский, В. Г., and О. П. Ковалева. "Reactivity of cellulose-containing materials in technologies of artificial fibers and pulp and paper production." Известия СПбЛТА, no. 233 (December 29, 2020): 228–45. http://dx.doi.org/10.21266/2079-4304.2020.233.228-245.

Повний текст джерела
Анотація:
Анализ результатов многочисленных исследований показывает, что регулирование свойств волокнистых полуфабрикатов, а также стабильность качества бумаги и картона возможны при условии учёта специфики процессов структурообразования в дисперсных системах, дисперсионной средой в которых является вода или её растворы на каждом этапе в многоступенчатых системах переработки целлюлозосодержащих материалов. В результате исключения изтеоретических основ технологии и практики целлюлозно-бумажного производства понятия об индивидуальности природных волокон целлюлозы, предназначенной для производства бумаги, все исследования физико-химических свойств целлюлозы производились на образцах целлюлозы, предназначенной для дальнейшей химической переработки. При этом представления о гидрофильности волокон гидратцеллюлозы были перенесены и на волокна природной целлюлозы. В связи с этим отрицалась мозаичность поверхности растительных волокон и, следовательно, исключалась возможность реализации гидрофобных взаимодействий в системе «целлюлоза-вода». Характер и степень изменения параметров взаимодействия волокон с образованием фазовых связок в структуре волокон и между волокнами в листе бумаги рассматривает физико-химическая механика дисперсных систем, а выявленные закономерности учитываются в методах золь-гель технологии модифицирования поверхности волокон целлюлозы. Обобщение научно-технической информации на основе единого подхода к проблеме структурообразования в системе «целлюлоза-вода», базирующегося на представлениях физико-химической механики дисперсных систем и физико-химии полимеров, показало, что данные вопросы требуют тщательного и углубленного изучения с целью регулирования и достижения требуемых свойств целлюлозосодержащих материалов. Analysis of the results of numerous studies shows that the regulation of the properties and stability of the quality of paper and cardboard is possible subject to the specifics of the processes of structure formation in dispersed systems, the dispersion medium in which is water or its solutions, at each stage in multi-stage systems for processing cellulose-containing materials. As a result of excluding the concept of the individuality of natural cellulose fibers intended for paper production from the theoretical foundations of pulp and paper production technology and practice, all studies of the physical and chemical properties of cellulose were performed on samples of cellulose intended for further chemical processing. At the same time, ideas about the hydrophilicity of hydrate cellulose fibers were transferred to natural cellulose fibers. In this regard, the mosaic surface of plant fibers was denied and, consequently, the possibility of hydrophobic interactions in the «cellulose-water» system was excluded. The nature and degree of changes in the parameters of the interaction of fibers with the formation of phase bonds in the structure of fibers andbetween fibers in a sheet of paper is considered only by physical and chemical mechanics, and the revealed regularities are taken into account in the methods of Sol-gel technology for modifying the surface of cellulose fibers. Generalization of scientific and technical information based on a unified approach to the problem of structure formation in the "cellulose-water" system, based on the concepts of physical and chemical mechanics of dispersed systems and physical chemistry of polymers, showed that these issues require careful and in-depth study in order to regulate and achieve the required properties of cellulose-containing materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Lan, Tianqing, Haoran Liu, Hui Li, Yuyue Qin, and Guojun Yue. "Preparation and characterization of lignin-containing nanofibrillated cellulose." BioResources 15, no. 3 (May 5, 2020): 4689–98. http://dx.doi.org/10.15376/biores.15.3.4689-4698.

Повний текст джерела
Анотація:
Lignin-containing nanofibrillated cellulose (LNFC) were prepared from p-toluenesulfonic acid (p-TsOH) pretreated sugarcane bagasse (SCB) using either formic acid (FA) or hydrochloric acid (HCl) and high-pressure homogenization. The composition, morphology, dispersity, crystallinity, particle size, thermal stability, and hydrophobicity of LNFC treated with FA (F- LNFC) and HCl (H- LNFC) were compared via electron microscopy, an X-ray diffractometer (XRD), a thermal gravimetric analyzer (TGA), a Fourier transform infrared spectroscope (FTIR), and water contact angle (WCA) analysis. The results of morphology and dispersity testing showed that LNFC with uniform dispersion were successfully prepared using a homogeneous pressure of 30 MPa and the F- LNFC particles were more stable in an aqueous solution. The crystallinity of the LNFC was well maintained after homogenization. The TGA, FTIR, and WCA data indicated that F-LNFC had better thermal stability and were more hydrophobic than H-LNFC because FA could esterify cellulose. Improved dispersity and thermal stability and increased crystallinity and hydrophobicity of cellulose nanofibrils would enhance the performance of nanocomposite materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Nafliu, Ion Marius, Alexandra Raluca Grosu (Miron), Hussam Nadum Abdalraheem Al-Ani, Paul Constantin Albu, Gavril Gheorghievici, and Mihaela Emanuela Craciun. "Neutralization with Simultaneously Separation of Aluminum Ions from Condensate Water through Cellulose Derivatives-Capillary Polypropylene Composite Membranes." Materiale Plastice 56, no. 2 (June 30, 2019): 301–5. http://dx.doi.org/10.37358/mp.19.2.5175.

Повний текст джерела
Анотація:
Environmental problems that arise from acidic water containing aluminum generated from condensing thermal power plants can be suitably solved using membrane processes. In this paper, simultaneous neutralization with aluminum ion separation, from acidic waters containing aluminum traces, through permeation with polypropylene with inclusions of cellulose derivatives (PP / CellD)capillary composite membranes is approached. Cellulose derivatives considered are: acetylcellulose, carboxymethylcellulose, 2-hydroxyethyl cellulose, methyl 2 hydroxyethyl cellulose. The optimum working parameters for the best performance of composite membrane based on carboxymethylcellulose were determined: operating time and pH of the receiving phase. Simultaneously with the quantitative removal of the aluminum ions, it is obtained an almost neutral pH purified water, compatible with the natural waters in which it can be dispersed.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії