Добірка наукової літератури з теми "Cell wall deficiency"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cell wall deficiency".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cell wall deficiency"
Liao, Ya-Yun, Thomas J. Buckhout, and Wolfgang Schmidt. "Phosphate deficiency-induced cell wall remodeling." Plant Signaling & Behavior 6, no. 5 (May 2011): 700–702. http://dx.doi.org/10.4161/psb.6.5.15051.
Повний текст джерелаWu, Weiwei, Shengnan Zhu, Qianqian Chen, Yan Lin, Jiang Tian, and Cuiyue Liang. "Cell Wall Proteins Play Critical Roles in Plant Adaptation to Phosphorus Deficiency." International Journal of Molecular Sciences 20, no. 21 (October 23, 2019): 5259. http://dx.doi.org/10.3390/ijms20215259.
Повний текст джерелаRidge, S. C., J. B. Zabriskie, H. Osawa, T. Diamantstein, A. L. Oronsky, and S. S. Kerwar. "Administration of group A streptococcal cell walls to rats induces an interleukin 2 deficiency." Journal of Experimental Medicine 164, no. 1 (July 1, 1986): 327–32. http://dx.doi.org/10.1084/jem.164.1.327.
Повний текст джерелаVitković, Ljubiša. "Wall turnover deficiency of Bacillus subtilis Nil5 is due to a decrease in teichoic acid." Canadian Journal of Microbiology 33, no. 6 (June 1, 1987): 566–68. http://dx.doi.org/10.1139/m87-096.
Повний текст джерелаOngenae, Véronique, Ariane Briegel, and Dennis Claessen. "Cell wall deficiency as an escape mechanism from phage infection." Open Biology 11, no. 9 (September 2021): 210199. http://dx.doi.org/10.1098/rsob.210199.
Повний текст джерелаZhang, Cheng, Mingliang He, Zhexuan Jiang, Lan Liu, Junbao Pu, Wenjun Zhang, Sheliang Wang, and Fangsen Xu. "The Xyloglucan Endotransglucosylase/Hydrolase Gene XTH22/TCH4 Regulates Plant Growth by Disrupting the Cell Wall Homeostasis in Arabidopsis under Boron Deficiency." International Journal of Molecular Sciences 23, no. 3 (January 23, 2022): 1250. http://dx.doi.org/10.3390/ijms23031250.
Повний текст джерелаYin, Qi, Lu Kang, Yi Liu, Mirza Faisal Qaseem, Wenqi Qin, Tingting Liu, Huiling Li, Xiaomei Deng, and Ai-min Wu. "Boron deficiency disorders the cell wall in Neolamarckia cadamba." Industrial Crops and Products 176 (February 2022): 114332. http://dx.doi.org/10.1016/j.indcrop.2021.114332.
Повний текст джерелаClaessen, Dennis, and Jeff Errington. "Cell Wall Deficiency as a Coping Strategy for Stress." Trends in Microbiology 27, no. 12 (December 2019): 1025–33. http://dx.doi.org/10.1016/j.tim.2019.07.008.
Повний текст джерелаGutierrez-Armijos, L. Roxana, Rodrigo A. C. Sussmann, Ariel M. Silber, Mauro Cortez, and Agustín Hernández. "Abnormal sterol-induced cell wall glucan deficiency in yeast is due to impaired glucan synthase transport to the plasma membrane." Biochemical Journal 477, no. 24 (December 18, 2020): 4729–44. http://dx.doi.org/10.1042/bcj20200663.
Повний текст джерелаLam, Pui Ying, Lanxiang Wang, Andy C. W. Lui, Hongjia Liu, Yuri Takeda-Kimura, Mo-Xian Chen, Fu-Yuan Zhu, et al. "Deficiency in flavonoid biosynthesis genes CHS, CHI, and CHIL alters rice flavonoid and lignin profiles." Plant Physiology 188, no. 4 (December 28, 2021): 1993–2011. http://dx.doi.org/10.1093/plphys/kiab606.
Повний текст джерелаДисертації з теми "Cell wall deficiency"
Fuller, Elizabeth R. "Cell wall-deficiency in Staphylococcus aureus and its role in antibiotic resistance." Thesis, University of Newcastle Upon Tyne, 2008. http://hdl.handle.net/10443/1671.
Повний текст джерелаDell'Era, Simone. "Morphological and molecular characterization of cell wall-deficient L-forms of L. monocytogenes /." Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17588.
Повний текст джерелаPalaiodimou, Lydia. "Molecular insights into Listeria monocytogenes persistence via label-free quantitative proteomics." Electronic Thesis or Diss., université Paris-Saclay, 2024. https://theses.hal.science/tel-04951897.
Повний текст джерелаListeria monocytogenes (Lm) is a facultative intracellular pathogen responsible for listeriosis, a severe foodborne illness in pregnant women and immunocompromised individuals. Known for its adaptability, Lm persists across varied environments, making it difficult to control. During long-term infection in epithelial cells, such as hepatocytes and trophoblasts, Lm shifts from a replicative to a quiescent state within lysosome-like vacuoles, termed Listeria-containing vacuoles (LisCVs). This transition is associated with the loss of the actin-nucleating protein ActA and the arrest of actin polymerisation at the bacterial surface. Within LisCVs, the majority of bacteria remain intact and enter a slow/non-replicative or a viable but non-culturable (VBNC) state, a dormant form enabling persistence under adverse conditions. Prolonged infection of hepatocytes by Listeria disrupts host immunity, particularly reducing the secretion of acute-phase proteins (APPs), key to the immune response. This process might prevent the complete elimination of Listeria from the liver, thereby favoring the establishment of persistent infection. Lm also displays notable adaptability outside host environments, particularly in water systems, where it can enter a VBNC dormant state. VBNC pathogens pose heightened health risks as they are undetectable by growth-based methods and can reactivate into a virulent form. A recent study shows that when exposed to these nutrient-poor conditions, the bacteria lose their rod shape and become round due to their cell wall loss. These cell wall-deficient (CWD) forms can adapt to physicochemical imbalances by modifying their membrane and producing specific proteins. The first part of this thesis explores host-pathogen interactions during Lm infections, focusing on trophoblast cells. Using comparative proteomics via LC-MS/MS, this study analyses differences in secretome profiles between infected and uninfected cells across replicative (24h p.i.) and persistent (96h p.i.) infection phases. Pathway analysis in the trophoblast model indicates that Lm modulates immune responses through intermediary processes like angiogenesis and signalling pathways, including HIF-1α and MAPK, essential for signal transduction. Similar to the liver, these modulations may be crucial for creating and sustaining a niche in trophoblast cells; however, mechanisms remain to be identified. The second part of this thesis investigates Lm environmental persistence using an in vitro mineral water model and comparative proteomics. Proteomic data identified the downregulation of cell wall-related proteins, consistent with the establishment of CWD form. Functional analysis showed additional stress responses, including decreased signal transduction, virulence, and energy production, all consistent with the VBNC state. These findings provide insight into Lm environmental survival strategies, aiding in the understanding of its persistence mechanisms. This work examines Lm persistence in trophoblast cells and environmental conditions, demonstrating its molecular adaptation to survive in diverse environments. Within host cells, Lm emphasises immune repression, while in nutrient-poor conditions, it focuses on nutrient scavenging and stress resistance. These findings highlight its resilience and could lead to potential applications for detection and treatment of persistent infections
Το Listeria monocytogenes (Lm) είναι ένας προαιρετικά ενδοκυτταρικός παθογόνος μικροοργανισμός, υπεύθυνος για τη λιστερίωση, μια σοβαρή τροφιμογενή λοίμωξη που επηρεάζει κυρίως έγκυες γυναίκες και ανοσοκατασταλμένα άτομα. Γνωστό για την προσαρμοστικότητά του, το Lm επιμένει σε ποικίλα περιβάλλοντα, καθιστώντας τον έλεγχό του δύσκολο. Κατά τη διάρκεια χρόνιων λοιμώξεων σε επιθηλιακά κύτταρα, όπως ηπατοκύτταρα και τροφοβλάστες, το Lm μεταβαίνει από πολλαπλασιασμό σε λανθάνουσα κατάσταση σε Listeria-containing vacuoles (LisCVs). Αυτή η μετάβαση συνδέεται με την απώλεια της ActA και την αναστολή του πολυμερισμού της ακτίνης στην επιφάνειά του. Στα LisCVs, τα βακτήρια εισέρχονται σε μια αργή/μη πολλαπλασιαστική ή βιώσιμη αλλά μη καλλιεργήσιμη (VBNC) κατάσταση, ευνοώντας την επιμονή. Η παρατεταμένη λοίμωξη των ηπατοκυττάρων από τη Listeria διαταράσσει την ανοσία του ξενιστή, μειώνοντας την έκκριση πρωτεϊνών οξείας φάσης (APPs), κρίσιμων για την ανοσοαπόκριση. Αυτό μπορεί να εμποδίσει την πλήρη εξάλειψή της από το ήπαρ, προωθώντας χρόνια λοίμωξη. Το Lm εμφανίζει προσαρμοστικότητα και εκτός ξενιστών, ιδιαίτερα σε υδάτινα συστήματα, όπου εισέρχεται στη VBNC κατάσταση. Οι οργανισμοί VBNC συνιστούν κίνδυνο, καθώς δεν ανιχνεύονται με μεθόδους καλλιέργειας αλλά μπορούν να επανενεργοποιηθούν. Πρόσφατη μελέτη δείχνει ότι σε συνθήκες πτωχών θρεπτικών στοιχείων, τα βακτήρια χάνουν το ραβδοειδές σχήμα τους και γίνονται στρογγυλά λόγω απώλειας κυτταρικού τοιχώματος. Αυτές οι μορφές χωρίς κυτταρικό τοίχωμα (CWD) προσαρμόζονται σε φυσικοχημικές ανισορροπίες μέσω τροποποιήσεων στη μεμβράνη και παραγωγής ειδικών πρωτεϊνών. Το πρώτο μέρος αυτής της διατριβής εξετάζει τις αλληλεπιδράσεις ξενιστή-παθογόνου στις λοιμώξεις Lm, εστιάζοντας στα κύτταρα τροφοβλάστης. Με συγκριτική πρωτεομική (LC-MS/MS), αναλύονται οι διαφορές στο εκκρίτωμα μολυσμένων και μη μολυσμένων κυττάρων στις φάσεις πολλαπλασιασμού (24h) και επιμονής (96h). Η ανάλυση μονοπατιών δείχνει ότι το Lm τροποποιεί τις ανοσολογικές αποκρίσεις μέσω διαδικασιών όπως η αγγειογένεση και τα μονοπάτια σηματοδότησης HIF-1α και MAPK, κρίσιμα για τη μεταβίβαση σήματος. Όπως και στο ήπαρ, αυτές οι τροποποιήσεις μπορεί να συμβάλλουν στη διατήρηση μιας λοίμωξης στα κύτταρα τροφοβλάστης, αν και οι ακριβείς μηχανισμοί παραμένουν άγνωστοι. Το δεύτερο μέρος εξετάζει την περιβαλλοντική επιμονή του Lm χρησιμοποιώντας in vitro μοντέλο μεταλλικού νερού και συγκριτική πρωτεομική. Τα δεδομένα ανέδειξαν μείωση πρωτεϊνών κυτταρικού τοιχώματος, επιβεβαιώνοντας τη μορφή CWD. Επιπλέον, η λειτουργική ανάλυση έδειξε αποκρίσεις στο στρες, όπως μείωση μεταβίβασης σήματος, λοιμογόνου δράσης και παραγωγής ενέργειας, συμβατές με την κατάσταση VBNC. Αυτά τα ευρήματα προσφέρουν νέα δεδομένα για τις στρατηγικές περιβαλλοντικής επιβίωσης του Lm, συμβάλλοντας στην κατανόηση των μηχανισμών επιμονής του. Η εργασία αυτή εξετάζει την επιμονή του Lm σε κύτταρα τροφοβλάστης και περιβαλλοντικές συνθήκες, καταδεικνύοντας τη μοριακή του προσαρμογή. Στα κύτταρα ξενιστή, το Lm καταστέλλει το ανοσοποιητικό, ενώ σε συνθήκες πτωχών θρεπτικών στοιχείων εστιάζει στη συλλογή τους και την αντοχή στο στρες. Αυτά τα ευρήματα αναδεικνύουν την ανθεκτικότητά του και θα μπορούσαν να συμβάλουν στην ανίχνευση και θεραπεία επίμονων λοιμώξεων
Книги з теми "Cell wall deficiency"
Mattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens. Taylor & Francis Group, 2000.
Знайти повний текст джерелаMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens. Taylor & Francis Group, 2009.
Знайти повний текст джерелаMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens. Taylor & Francis Group, 2000.
Знайти повний текст джерелаMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens, Fourth Edition. CRC, 2009.
Знайти повний текст джерелаMattman, Lida H. Cell Wall Deficient Forms: Stealth Pathogens, Third Edition. 3rd ed. CRC, 2000.
Знайти повний текст джерелаMattman, Lida H. Cell Wall Deficient FormsStealth Pathogens. Taylor & Francis Group, 2000.
Знайти повний текст джерелаCell wall deficient forms: Stealth pathogens. 3rd ed. Boca Raton, Fla: CRC Press, 2001.
Знайти повний текст джерелаMattman, Lida H. Cell Wall Deficient Forms, Third Edition. Taylor & Francis Group, 2000.
Знайти повний текст джерелаCell wall deficient forms: Stealth pathogens. 2nd ed. Boca Raton, Fla: CRC Press, 1993.
Знайти повний текст джерелаCell Wall Deficient Forms: Stealth Pathogens, Fourth Edition. CRC Press LLC, 2014.
Знайти повний текст джерелаЧастини книг з теми "Cell wall deficiency"
Bonilla, I., H. Perez, G. Cassab, M. Lara, and F. Sanchez. "The effect of boron deficiency on development in determinate nodules: changes in cell wall pectin contents and nodule polypeptide expression." In Boron in Soils and Plants, 213–20. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5564-9_42.
Повний текст джерелаFindeklee, Peter, Monika Wimmer, and Heiner E. Goldbach. "Early effects of boron deficiency on physical cell wall parameters, hydraulic conductivity and plasmalemma-bound reductase activities in young C. pepo and V. faba roots." In Boron in Soils and Plants, 221–27. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5564-9_43.
Повний текст джерелаKoch, Arthur L. "Spirochetes and Spiroplasma and the Special Strategies for CWD (Cell Wall Deficient) Cells." In The Bacteria: Their Origin, Structure, Function and Antibiosis, 137–45. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-3206-6_15.
Повний текст джерелаAllan, D. L., J. R. Shann, and P. M. Bertsch. "Role of root cell walls in iron deficiency of soybean (Glycine max) and aluminium toxicity of wheat (Triticum aestivum)." In Plant Nutrition — Physiology and Applications, 345–49. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0585-6_58.
Повний текст джерела"Fungi Recognizing Wall Deficiency of Fungi." In Cell Wall Deficient Forms, 301–12. CRC Press, 2000. http://dx.doi.org/10.1201/b16928-31.
Повний текст джерелаMarkova, Nadya. "Cell Wall Deficiency in Mycobacteria: Latency and Persistence." In Understanding Tuberculosis - Deciphering the Secret Life of the Bacilli. InTech, 2012. http://dx.doi.org/10.5772/30919.
Повний текст джерелаChambers, James. "I-Cell Disease (Mucolipidosis II)." In Clinical Studies in Medical Biochemistry, 181–94. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195176872.003.0017.
Повний текст джерелаChambers, James. "I-Cell Disease (Mucolipidosis II)." In Clinical Studies In Medical Biochemistry, 181–94. Oxford University PressNew York, NY, 2006. http://dx.doi.org/10.1093/oso/9780195147322.003.0017.
Повний текст джерела"Disclosures by Electron Microscopy." In Cell Wall Deficient Forms, 91–102. CRC Press, 2000. http://dx.doi.org/10.1201/b16928-10.
Повний текст джерела"Public Health and Nosocomial Facets Salmonella and Shigella Carriers." In Cell Wall Deficient Forms, 103–12. CRC Press, 2000. http://dx.doi.org/10.1201/b16928-11.
Повний текст джерелаТези доповідей конференцій з теми "Cell wall deficiency"
Gruber, Matthew J., Varun Krishnamurthy, D. A. Narmoneva, and Robert B. Hinton. "Elastin Haploinsufficiency Is Associated With Altered Interstitial Phenotype and Progressive Aortopathy." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192891.
Повний текст джерелаBian, Shiyao, Ying Zheng, Shuichi Takayama, and James B. Grotberg. "Micro-PIV Measurements of an Airway Closure Model." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206831.
Повний текст джерелаWAJIMA, T. "THROMBOCYTOPENIA IN ACQUIRED IMMUNE DEFICIENCY SYNDRGME(AIDS)-RELATED COMPLEXES:RESOLUTION DURING HERPES VIRAL INFECTION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644145.
Повний текст джерелаEspinosa, Gabriela, Lisa Bennett, William Gardner, and Jessica Wagenseil. "The Effects of Extracellular Matrix Protein Insufficiency and Treatment on the Stiffness of Arterial Smooth Muscle Cells." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14131.
Повний текст джерелаTengborn, L., and A. Wallmark. "ALTERATIONS IN THE COAGULATION AND FIBRINOLYTIC SYSTEMS AS PREDISPOSING FACTORS IN THE DEVELOPMENT OF DEEP VENOUS THROMBOSIS (DVT)." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644203.
Повний текст джерелаTakeshige, T., I. Fuse, I. Hattori, T. Momotsu, A. Shibata, and K. Abe. "NORMAL URINARY PROSTAGLANDIN E2 EXCRETION IN THE PATIENT WITH PLATELET CYCLO-OXYGENASE DEFICIENCY." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644879.
Повний текст джерелаKeyes, Joseph T., Stacy Borowicz, Urs Utzinger, Mohamad Azhar, and Jonathan P. Vande Geest. "Quantification of the Biomechanical Differences in Wild-Type and Heterozygous TGF Beta2 Knockout Mice." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19482.
Повний текст джерелаTeitel, J. M., M. B. Garvey, and J. J. Freedman. "THE ENDOTHELIAL CELL AS THE SII$ OF THE FACTOR VIII BYPASSING ACTIVITY OF PROTHROMBIN COMPLEX CONCENTRATE (PCC)." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644731.
Повний текст джерелаDooi jewaard, G., D. J. Binnema, and C. Kluft. "CONTACT ACTIVATION AND SINGLE-CHAIN UROKINASE-TYPE PLASMINOGEN ACTIVATOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642958.
Повний текст джерелаЗвіти організацій з теми "Cell wall deficiency"
Harman, Gary E., and Ilan Chet. Discovery and Use of Genes and Gene Combinations Coding for Proteins Useful in Biological Control. United States Department of Agriculture, September 1994. http://dx.doi.org/10.32747/1994.7568787.bard.
Повний текст джерелаThomashow, Linda, Leonid Chernin, Ilan Chet, David M. Weller, and Dmitri Mavrodi. Genetically Engineered Microbial Agents for Biocontrol of Plant Fungal Diseases. United States Department of Agriculture, 2005. http://dx.doi.org/10.32747/2005.7696521.bard.
Повний текст джерела