Добірка наукової літератури з теми "Cell culture processing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cell culture processing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Cell culture processing"

1

Wolf, Michael W., and Udo Reichl. "Downstream processing of cell culture-derived virus particles." Expert Review of Vaccines 10, no. 10 (October 2011): 1451–75. http://dx.doi.org/10.1586/erv.11.111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gastens, Martin H., Kristin Goltry, Wolfgang Prohaska, Diethelm Tschöpe, Bernd Stratmann, Dirk Lammers, Stanley Kirana, Christian Götting, and Knut Kleesiek. "Good Manufacturing Practice-Compliant Expansion of Marrow-Derived Stem and Progenitor Cells for Cell Therapy." Cell Transplantation 16, no. 7 (August 2007): 685–96. http://dx.doi.org/10.3727/000000007783465172.

Повний текст джерела
Анотація:
Ex vivo expansion is being used to increase the number of stem and progenitor cells for autologous cell therapy. Initiation of pivotal clinical trials testing the efficacy of these cells for tissue repair has been hampered by the challenge of assuring safe and high-quality cell production. A strategy is described here for clinical-scale expansion of bone marrow (BM)-derived stem cells within a mixed cell population in a completely closed process from cell collection through postculture processing using sterile connectable devices. Human BM mononuclear cells (BMMNC) were isolated, cultured for 12 days, and washed postharvest using either standard open procedures in laminar flow hoods or using automated closed systems. Conditions for these studies were similar to long-term BM cultures in which hematopoietic and stromal components are cultured together. Expansion of marrow-derived stem and progenitor cells was then assessed. Cell yield, number of colony forming units (CFU), phenotype, stability, and multilineage differentiation capacity were compared from the single pass perfusion bioreactor and standard flask cultures. Purification of BMMNC using a closed Ficoll gradient process led to depletion of 98% erythrocytes and 87% granulocytes, compared to 100% and 70%, respectively, for manual processing. After closed system culture, mesenchymal progenitors, measured as CD105+CD166+CD14–CD45– and fibroblastic CFU, expanded 317- and 364-fold, respectively, while CD34+ hematopoietic progenitors were depleted 10-fold compared to starting BMMNC. Cultured cells exhibited multilineage differentiation by displaying adipogenic, osteogenic, and endothelial characteristics in vitro. No significant difference was observed between manual and bioreactor cultures. Automated culture and washing of the cell product resulted in 181 × 106 total cells that were viable and contained fibroblastic CFU for at least 24 h of storage. A combination of closed, automated technologies enabled production of good manufacturing practice (GMP)-compliant cell therapeutics, ready for use within a clinical setting, with minimal risk of microbial contamination.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Stössel, H., F. Koch, E. Kämpgen, P. Stöger, A. Lenz, C. Heufler, N. Romani, and G. Schuler. "Disappearance of certain acidic organelles (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells." Journal of Experimental Medicine 172, no. 5 (November 1, 1990): 1471–82. http://dx.doi.org/10.1084/jem.172.5.1471.

Повний текст джерела
Анотація:
Freshly isolated epidermal Langerhans cells (LC) can actively process native protein antigens, but are weak in sensitizing helper T cells. During culture, when LC mature into potent immunostimulatory dendritic cells, T cell sensitizing capacity develops but antigen processing capacity is downregulated. Processing of exogenous antigens for class II-restricted antigen presentation involves acidic organelles. We used the DAMP-technique to monitor acidic organelles at the ultrastructural level in fresh, as well as cultured, mouse and human LC. We observed that the loss of antigen processing capacity with culture of LC was reflected by the disappearance of certain acidic organelles, namely endosomes (particularly early ones), and the hitherto enigmatic LC granules ("Birbeck Granules"). Our findings support the notion that endosomes are critical for antigen processing and suggest that LC granules might be involved as well.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Zeyu, Xingge Xu, Cristina A. T. Silva, Omar Farnos, Alina Venereo-Sanchez, Cécile Toussaint, Shantoshini Dash, et al. "Membrane Chromatography-Based Downstream Processing for Cell-Culture Produced Influenza Vaccines." Vaccines 10, no. 8 (August 13, 2022): 1310. http://dx.doi.org/10.3390/vaccines10081310.

Повний текст джерела
Анотація:
New influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established. Cell culture-derived influenza virus H1N1/A/PR/8/34 was harvested from benchtop bioreactor cultures. For the clarification of the cell culture broth, a depth filtration was selected as an alternative to centrifugation. After inactivation, an anion exchange chromatography membrane was used for viral capture and further processing. Additionally, two pandemic influenza virus strains, the H7N9 subtype of the A/Anhui/1/2013 and H3N2/A/Hong Kong/8/64, were successfully processed through similar downstream process steps establishing optimized process parameters. Overall, 41.3–62.5% viral recovery was achieved, with the removal of 86.3–96.5% host cell DNA and 95.5–99.7% of proteins. The proposed membrane chromatography purification is a scalable and generic method for the processing of different influenza strains and is a promising alternative to the current industrial purification of influenza vaccines based on ultracentrifugation methodologies.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

NONOYAMA, Ryosuke, Seidai FUJII, Koichiro YORI, Keiichi SUGIURA, and Makoto JINNO. "Study on cell culture processing system to improve task efficiency." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2021 (2021): 1A1—E04. http://dx.doi.org/10.1299/jsmermd.2021.1a1-e04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

NONOYAMA, Ryosuke, Makoto JINNO, Tadashi SAMESHIMA, and Koichiro YORI. "Study on cell culture processing system to improve task efficiency." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2017 (2017): 2A2—H11. http://dx.doi.org/10.1299/jsmermd.2017.2a2-h11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tomic, Sladjana, Lise Besnard, Benjamin Fürst, Rainer Reithmeier, Rolf Wichmann, Pierre Schelling, and Christian Hakemeyer. "Complete clarification solution for processing high density cell culture harvests." Separation and Purification Technology 141 (February 2015): 269–75. http://dx.doi.org/10.1016/j.seppur.2014.12.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

NONOYAMA, Ryosuke, Makoto JINNO, Tadashi SAMESHIMA, and Koichiro YORI. "Study on cell culture processing system to improve task efficiency." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2018 (2018): 1P2—A01. http://dx.doi.org/10.1299/jsmermd.2018.1p2-a01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

NONOYAMA, Ryosuke, Koichiro YORI, Tadashi SAMESHIMA, and Makoto JINNO. "Study on cell culture processing system to improve task efficiency." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2019 (2019): 2A1—Q03. http://dx.doi.org/10.1299/jsmermd.2019.2a1-q03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dernovsek, K. D., and R. S. Bar. "Processing of cell-bound insulin by capillary and macrovascular endothelial cells in culture." American Journal of Physiology-Endocrinology and Metabolism 248, no. 2 (February 1, 1985): E244—E251. http://dx.doi.org/10.1152/ajpendo.1985.248.2.e244.

Повний текст джерела
Анотація:
The processing of cell-bound insulin was determined in endothelial cells cultured from three large blood vessels (human umbilical vein, bovine pulmonary artery, and bovine aorta) and one microvascular source (bovine fat capillaries). Cells were exposed to monoiodinated TyrA14-insulin, the rates of dissociation of cell-bound TyrA14-insulin determined, and cell alteration of insulin assessed by gel filtration and high-performance liquid chromatography analysis. We found that 1) overall degradation rates of insulin are low for all cultured endothelial cells, 2) cell-bound insulin is rapidly processed to a nonreceptor compartment and then rapidly dissociated from all cells, primarily as biologically intact insulin, and 3) degradation of cell-bound insulin, although relatively low, does occur in endothelial cells with the least degradation by capillary cells. The presence of specific surface receptors for insulin on endothelial cells coupled with rapid cellular processing of intact insulin is consistent with a potential role for endothelial cells in either the transport of intact insulin out of the bloodstream or as a regional storage site for intact hormone.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Cell culture processing"

1

Luhr, Katarina. "Prion processing and propagation in neuronal and dendritic cell culture models /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7349-991-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

White, Nicole M. "Inherent Flaw of Cholesterol Processing in Cell Culture and In Vivo Models of Cystic Fibrosis." Case Western Reserve University School of Graduate Studies / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=case1164925733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dubé, Gilles. "Post-translational processing of atrial natriuretic factor. A study using a novel cell culture system." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7779.

Повний текст джерела
Анотація:
In the present work, a reproducible cell culture system using adult rat atrial cardiocytes was developed to study ANF processing. Freshly isolated atrial cardiocytes stored high molecular weight ANF (38.0 $\pm$ 4.5 pg/$\mu$g of DNA) and released almost exclusively (83.3% $\pm$ 6.7%) low molecular weight ANF, at an average rate of 12 pg/hour/$\mu$g of DNA. The cell content and the rate of release of ANF decreased over 15 days in culture to 3.9 $\pm$ 1.2 pg/$\mu$g of DNA and 0.32 pg/h/$\mu$g of DNA $\pm$ 0.08 respectively and 62.7% $\pm$ 6.3% of the released peptide was of a low molecular weight. Cultures of non-cardiocytes, superfused with exogenous proANF, did not process the peptide. There was no correlation between the changes in cell population and the reduction in processing. Therefore, atrial non-cardiocytes are not involved in ANF processing. The results presented in this work vary from other reports which found that ANF processing in cultures is absent. The discrepancies may be due to differences related to serum-free culture conditions versus serum supplemented cultures. This suggests that factors present in the serum may be responsible for maintaining ANF processing activity in culture. (Abstract shortened by UMI.)
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tapia, Delgado Felipe Ignacio [Verfasser], and Udo [Gutachter] Reichl. "Continuous upstream processing for cell culture-derived virus production / Felipe Ignacio Tapia Delgado ; Gutachter: Udo Reichl." Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2020. http://d-nb.info/1219966479/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tapia, Delgado Felipe Ignacio Verfasser], and Udo [Gutachter] [Reichl. "Continuous upstream processing for cell culture-derived virus production / Felipe Ignacio Tapia Delgado ; Gutachter: Udo Reichl." Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2020. http://d-nb.info/1219966479/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wheater, R. F. "The development of an in vitro system for an electron microscope study of procollagen processing in cell culture." Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Debavelaere, Dorothée. "Caractérisation de progéniteurs osseux en culture, développement d'une technique ultrasonore d'analyse dynamique." Valenciennes, 1996. https://ged.uphf.fr/nuxeo/site/esupversions/155642e1-ddd5-4273-99c5-ea8f7bf9663f.

Повний текст джерела
Анотація:
La moelle osseuse est une source de cellules souches ostéogéniques que l'on utilise depuis peu en injection pour réparer certains retards de consolidation osseuse. Le potentiel ostéogénique variant d'un individu à l'autre, son évaluation est entreprise par la réalisation de cultures de prélèvements médullaires. Les techniques de caractérisation de cellules ostéogéniques classiquement utilisées (biologique ou biochimique) sont essentiellement qualitatives et destructives. Ceci entraine la multiplication des échantillons et rend difficile les suivis d'évolution en raison des dispersions de comportement entre cultures distinctes. Aussi, nos travaux ont consisté à développer une nouvelle technique permettant un suivi quantitatif du développement des cellules et compatible avec la stérilité nécessaire aux cultures. La méthode envisagée consiste à mesurer la réflexion d'ultrasons haute fréquence focalisés (50mhz) sur la face interne du substrat de verre sur lequel se sont développées les cellules, afin de réaliser une cartographie acoustique de chaque culture. Ces cartographies sont effectuées par utilisation des modes transversaux crées par conversion de polarisation aux interfaces. Elles permettent, après application d'un traitement d'image spécifique, de quantifier différents paramètres de type morphologique (nombre de colonies cellulaires, taille moyenne, taux de recouvrement). Ces paramètres ont été corrélés aux caractéristiques biologiques des cultures.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MEYER, ANSTETT COLETTE. "Analyse d'images de cellules en culture : description automatique de cellules musculaires lisses vasculaires et suivi de leur comportement." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13063.

Повний текст джерела
Анотація:
Developpement d'un logiciel de traitement d'image pour la reconnaissance de cellules aortiques, l'observation et la quantification des modifications au cours du temps de la forme, de la surface et de la mobilite de myocytes aortiques de rat ont pu etre visualisees. Utilisation de la morphologie mathematique comme outil d'analyse et de description de l'image
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dempsey, Katherine. "Monitoring individual cells within cell cultures using image processing and pattern recognition techniques." Thesis, Keele University, 2017. http://eprints.keele.ac.uk/4179/.

Повний текст джерела
Анотація:
Cells are the building blocks of the human body which are normally specialised by type in accordance with their function. Human cells interact with each other to form the tissues that make up the body. Consequently, it is important to study the behaviour and interactions of these cells at the microscale level, so that the causes of cellular irregularities can be identified; and, possible treatments can be devised. This project aimed to create algorithms that were capable of tracking a variety of cells types within both single cultures and mixed cultures, and from this generate data that was relevant to current clinical trials. There have been successes in tracking some cells types, most notably articular chondrocytes and spinal disk cells. In terms of data generated there has been successes in a whole variety of different types of clinical trials. The algorithms used here have been able to identify the point of mitosis. They have created a better method of determining neural growth and from this have shown that neurons co-cultured with MCSs can grow in places with neural inhibitors. Through the use of algorithms that can analyse culture in three dimensional structures it has been shown that neurons are more affected by topographical cues than chemical cues in their direction of growth. It has also been shown that vesicles are more likely to appear on smaller back disk cells. In the study of gels, it has been found that the more transparent gels are better for imaging. Finally, it has been shown that MSCs and chondrocytes behave differently when in single and co-cultures. These discoveries would not have been possible without the use of the algorithms that allowed for the study of individual cells within a larger culture.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Beck, Mike. "Molekulare Charakterisierung des Amyloidvorläuferproteins des Meerschweinchens." Doctoral thesis, Universitätsbibliothek Leipzig, 2004. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-36500.

Повний текст джерела
Анотація:
Die Bildung von Amyloidablagerungen ist ein Kennzeichen der Alzheimerschen Erkrankung. Hauptbestandteil dieser senilen Plaques sind sogenannte A beta Peptide, die durch proteolytische Prozessierung aus einem Vorläufermolekül (APP) gebildet werden. Die vorliegende Arbeit beschreibt die Klonierung des Meerschweinchen - APP. Diese cDNA-Sequenz zeigt auf DNA-Ebene eine Homologie zum Human-APP von ca. 90%, auf Proteinebene beträgt die Identität ca. 97 %. Damit wird ein weiterer experimenteller Beweis für die evolutionäre Konservierung des Amyloidvorläuferproteins in Säugetieren erbracht. APP mRNA wird in Meerschweinchen-Geweben ubiquitär exprimiert. Durch alternatives Spleißen wird ein zum Human-APP im wesentlichen ähnliches Isoformenmuster gebildet: Isoformen, welche eine Proteaseinhibitordomäne enthalten, werden dominierend in peripheren Organen exprimiert, dagegen ist im Zentralnervensystem das APP 695 mit über 60 % der Gesamttranskripte die bevorzugt exprimierte Isoform. Die klonierte cDNA des Meerschweinchen-APP wurde in prokaryontischen wie auch eukaryontischen Zellsystemen exprimiert. Dabei wurde die Eignung einer Anzahl von gegen Human-APP gewonnenen Antikörpern zur Detektion des Meerschweinchen-APP und seiner Prozessierungsprodukte gezeigt. Die Expression der neuronal dominierend exprimierten Isoform APP 695 des Meerschweinchen-APP in humanen Neuroblastom-Zellen zeigte keine Unterschiede hinsichtlich der APP-Prozessierung und A beta-Bildung im direkten Vergleich zu Human-APP 695. Die proteolytische Prozessierung des Proteins wurde durch Detektion der typischen Spaltprodukte in vivo (im Liquor) als auch in einem neu etablierten in vitro-Modell primär kultivierter neuronaler Zellen untersucht. Diese Zellkulturen wurden zunächst immunhistochemisch und biochemisch charakterisiert und als "mixed brain"-Typ mit einem hohen neuronalen Anteil beschrieben. Die Prozessierung des endogenen Meerschweinchen-APP in kultivierten Zellen führt dabei zur Bildung und Akkumulation aggregationsfähiger A beta - Peptide. Zur Detektion dieser Peptide wurde ein sensitiver Nachweis durch Western-Blot etabliert. Es wird damit ein Modellsystem für in vitro-Untersuchungen vorgeschlagen, welches ein Studium der Expression und Prozessierung des Amyloidvorläuferproteins unter angenähert physiologischen Bedingungen ermöglicht
A beta peptides, the major component of neuritic plaques found in the brains of patients with Alzheimer’s disease, are derived by proteolytic processing from a larger precursor molecule (amyloid precursor protein - APP). A combination of PCR methods was used to clone and sequence APP cDNA from guinea pig (Cavia porcellus). Guinea pig APP exhibits extensive similarities to human APP in terms of primary structure, mRNA expression of differentially spliced isoforms as shown by Northern blot and RT-PCR analysis as well as proteolytic processing to amyloidogenic A beta peptides. In contrast to rat and mouse APP, guinea pig APP - recombinantly expressed in human neuroblastoma-cells - was processed indistinguishable from human APP thus excluding intrinsic sequence-specific factors influencing processing. Further studies were performed using newly established primary cell cultures of guinea pig neurons. Refined methods have been used to detect and characterize major proteolytic processing products of APP in vitro and in vivo. In conclusion, guinea pigs provide a model to study expression and processing of APP that closely resembles the physiological situation in humans and should, therefore, be important in elucidating potential strategies to prevent amyloid formation in Alzheimers Disease
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Cell culture processing"

1

1947-, Butler M., ed. Cell culture and upstream processing. New York, N.Y: Taylor & Francis Group, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Animal cell biotechnology: In biologics production. Berlin: De Gruyter, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kowalski, Adam Jan. Microscale fluid dynamic effects in suspension processing and attrition of cell cultures. Birmingham: University of Birmingham, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

J, Shaw David, and Consortium of European Research Libraries., eds. European cultural heritage in the digital age: Creation, access and preservation : papers presented on 13 November 2003 at the CERL conference hosted by the National Library of Russia, St Petersburg. London: Consortium of European Research Libraries, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Michael, Butler. Cell Culture and Upstream Processing. Taylor & Francis Group, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cell Culture and Upstream Processing. Taylor & Francis, 2007. http://dx.doi.org/10.4324/9780203967232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cell culture and upstream processing. New York, NY: Taylor & Francis, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Butler, Mike. Cell Culture and Upstream Processing. Taylor & Francis, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Michael, Butler. Cell Culture and Upstream Processing. CRC Press LLC, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Michael, Butler. Cell Culture and Upstream Processing. CRC Press LLC, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Cell culture processing"

1

Hu, Wei-Shou. "Medium Design for Cell Culture Processing." In Cell Culture Bioprocess Engineering, 239–77. Second edition. | Boca Raton : CRC Press, [2020]: CRC Press, 2020. http://dx.doi.org/10.1201/9780429162770-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Grima, Emilio Molina, Francisco Gabriel Acién Fernández, and Alfonso Robles Medina. "Downstream Processing of Cell Mass and Products." In Handbook of Microalgal Culture, 267–309. Oxford, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118567166.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bernard, Alain R., Manjula Lusti-Narasimhan, Kathryn M. Radford, Richard S. Hale, Eric Sebille, and Pierre Graber. "Downstream processing of insect cell cultures." In Insect Cell Culture: Fundamental and Applied Aspects, 239–57. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/0-306-46850-6_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ailor, E., and M. J. Betenbaugh. "Engineering Post-Translational Processing of Recombinant Proteins Produced in Insect Cell Culture." In Cell Engineering, 29–42. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4315-8_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Poulsen, Lars, and Willem A. de Jongh. "Advances in the Application of Perfusion Technologies toDrosophilaS2 Insects Cell Culture." In Continuous Processing in Pharmaceutical Manufacturing, 165–82. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527673681.ch08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yúfera, Alberto, Estefanía Gallego, and Javier Molina. "ImagCell: A Computer Tool for Cell Culture Image Processing Applications in Bioimpedance Measurements." In Advances in Experimental Medicine and Biology, 733–40. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7046-6_75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bratthauer, Gary L. "Processing of Tissue Culture Cells." In Immunocytochemical Methods and Protocols, 85–92. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-59745-324-0_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bratthauer, Gary L. "Processing of Tissue-Culture Cells." In Immunocytochemical Methods and Protocols, 89–95. Totowa, NJ: Humana Press, 1994. http://dx.doi.org/10.1385/0-89603285-x:89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Koch, Franz, Bettina Trockenbacher, Gerold Schuler, and Nikolaus Romani. "Antigen Processing Capacity of Dendritic Cells from Mice of Different MHC Backgrounds: Down-Regulation upon Culture and Evidence for Heterogeneity of Dendritic Cell Populations." In Advances in Experimental Medicine and Biology, 203–6. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1971-3_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Weimershaus, Mirjana, and Peter van Endert. "Preparation of Dendritic Cells by In Vitro Cultures." In Antigen Processing, 351–57. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-218-6_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Cell culture processing"

1

Mota, Sakina Mohammed, Carl A. Gregory, Kristen C. Maitland, Maryellen L. Giger, Roland R. Kaunas, Robert E. Rogers, Andrew W. Haskell, and Eoin P. McNeill. "Morphological cell image analysis for real-time monitoring of stem cell culture." In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXVI, edited by Thomas G. Brown and Tony Wilson. SPIE, 2019. http://dx.doi.org/10.1117/12.2507469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

King, Damien, Jonathan Loftus, Raphaela Ferreira, Kevin Keating, Tom Glennon, Josh Fallon-Doran, Ricardo Valdes-Bango Currell, Berta Capella Roca, Padraig Doolan, and Jens Ducree. "Single Cell Analysis Microfluidic Device for Cell Line Optimisation in Upstream Cell Culture Processing Biopharamceutical Applications." In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). IEEE, 2019. http://dx.doi.org/10.1109/transducers.2019.8808220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Baicu, Laurentiu, George Ifrim, Vasilica Barbu, Laurentiu Frangu, and Sergiu Caraman. "Stage evaluation of cell growth in yeast culture through image processing." In 2016 20th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2016. http://dx.doi.org/10.1109/icstcc.2016.7790749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ding, Hao, Ying Zhang, Lingxi Zhao, Yujia Liu, Chunxun Shi, and Zhichao Nie. "Development of a Rotating Endothelial Cell Culture Device." In 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2018. http://dx.doi.org/10.1109/cisp-bmei.2018.8633258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shiraishi, Toshihiko, and Akitoshi Nishijima. "A Study of a Mechanism of Cell Proliferation Promotion of Cultured Osteoblasts by Mechanical Vibration." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87364.

Повний текст джерела
Анотація:
This paper describes a mechanism of cell proliferation promotion of cultured osteoblasts by mechanical vibration focusing on β-catenin. 12.5 Hz and 0.5 G mechanical vibration was reported to promote the cell proliferation of cultured osteoblasts in plane culture. That is because the mechanical vibration weakens cell-cell adhesion, promotes to pile up cells, and allows cells to form multilayer structure. However, it has not been clarified why cells continue cell division after their monolayer confluent state. Here we show that mechanical vibration not only weakens cell-cell adhesion bound by β-catenin but also promotes to move β-catenin from the cytoplasm to the nuclei, where β-catenin associates with DNA-binding members of the Tcf/LEF family and other associated transcription factors including cell division. After osteoblastic cells were cultured under 12.5 Hz and 0.5 G mechanical vibration, cells were fractionated into nuclear and cytoplasmic fractions using a centrifugation method. β-catenin in each fraction was detected by a western blot experiment. The protein bands from western blot films were quantified with an image processing and analysis software, ImageJ. As a result, the vibration group gave higher expression of β-catenin in nuclear fraction than the non-vibration group just after the vibration group reached the saturated cell density. It indicates that 12.5 Hz and 0.5 G mechanical vibration may promote to move β-catenin into the nuclei and the cell division.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chang, Yuan-Hsiang, Hideo Yokota, Kuniya Abe, Chih-Cheng Li, and Ming-Dar Tsai. "Fluorescence Microscopy Image Processing and Visualization for Analyzing Cell Kinematics, Proliferation and Attachment in Mouse Embryonic Stem Cell Culture." In 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE). IEEE, 2016. http://dx.doi.org/10.1109/bibe.2016.44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yufera, Alberto, and Estefania Gallego. "Automatic generation of Analog Hardware Description Language (AHDL) code from cell culture images." In 2010 2nd International Conference on Image Processing Theory, Tools and Applications (IPTA). IEEE, 2010. http://dx.doi.org/10.1109/ipta.2010.5586770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Allier, Cédric, Bastien Laperrousaz, Thomas Bordy, Anthony Berdeu, Sophie Morales, Xavier Gidrol, and Nathalie D'hahan. "3D+time acquisitions of 3D cell culture by means of lens-free tomographic microscopy." In Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV, edited by Thomas G. Brown, Carol J. Cogswell, and Tony Wilson. SPIE, 2018. http://dx.doi.org/10.1117/12.2289474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gong, Haibo, Antonios Kontsos, Yoontae Kim, Peter I. Lelkes, Qingwei Zhang, Donggang Yao, Kavan Hazeli, and Jack G. Zhou. "Micro Characterization of Mg and Mg Alloy for Biodegradable Orthopedic Implants Application." In ASME 2012 International Manufacturing Science and Engineering Conference collocated with the 40th North American Manufacturing Research Conference and in participation with the International Conference on Tribology Materials and Processing. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/msec2012-7395.

Повний текст джерела
Анотація:
Magnesium as a candidate metallic biomaterial for biodegradable orthopedic implants was evaluated in-vitro in terms of degradation behavior, biocompatibility and mechanical property both in macro- and micro-scale. Micro structure of pure Mg and AZ61 after degradation in both simulated body fluid (SBF) and cell culture environment were analyzed. Different from AZ61, pure Mg degraded at a higher rate and attracted large amount of salt precipitation which formed a layer covering the surface. Much less pitting degradation and salt deposition were observed on both pure Mg and AZ61 in cell culture environment compared to in SBF. After culturing for 7 days, EAhy926 cells growing on AZ61 showed significant higher proliferation rate as of cells growing on pure Mg. Higher proliferation rates indicated that cells grew better on slow-degrading AZ61 than on fast-degrading pure Mg. Cells growing on AZ61 proliferated much better and assembled together to form a consistent tissue-like micro-structure, while cells spread and reached out on the surface of pure Mg, possibly due to low cell density and lack of cellular communication. The elastic modulus and tensile yield strength of magnesium are closer to those of natural bone than other commonly used metallic biomaterials. It was shown that Mg was biodegradable, biocompatible and had appropriate mechanical strength, thus Mg and its alloys showed great potential for deployment in a new generation of biodegradable orthopedic implants.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Qiu, Qing-Qing, Paul Ducheyne, and Portonovo S. Ayyaswamy. "Bioactive and Degradable Composite Microcarriers for 3-D Bone Tissue Engineering in Simulated Microgravity." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0575.

Повний текст джерела
Анотація:
Abstract Microcarriers currently used in cell and tissue cultures in microgravity environment simulated by rotating-wall bioreactors are primarily biocompatible polymers. For bone cell cultures and tissue formation, bioactive glasses and ceramics have unique advantages, such as bone bonding ability and stimulation of bone cell functions.1 However, they are difficult to be processed into spherical microcarriers and have not been used in simulated microgravity environment until recently.2 In this study, we developed composite microspheres by incorporating bioactive glasses and ceramics into a polymer microsphere to combine the osteoconductivity of bioactive glasses and ceramics with the ease of polymer processing. In addition, the wide range of mechanical and biological properties of polymer offers the possibility of making composite microspheres with various desired properties, such as biodegradation. Another important factor in the microsphere design is the density of the microcarrier. Previous numerical analysis of the particle dynamics in a rotating-wall bioreactor has revealed that the shear stress imparted to a microcarrier increases with the density difference between the microcarrier and the culture medium.34 Solid ceramic particles would experience a high shear stress due to their high density and, as a results, affect cell attachment and cause cell damage.4 To alleviate the problem, microcarriers with a density close to that of the culture medium are desired. By combining biodegradable polymer with bioactive glasses and ceramics, the density of the composite microsphere could be adjusted and significantly reduced in comparison to solid ceramic microspheres. In this study, we report development and characterization of novel bioactive and degradable composite microspheres for 3-D bone tissue engineering in simulated microgravity environment.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Cell culture processing"

1

Semaan, Dima, and Linda Scobie. Feasibility study for in vitro analysis of infectious foodborne HEV. Food Standards Agency, September 2022. http://dx.doi.org/10.46756/sci.fsa.wfa626.

Повний текст джерела
Анотація:
Hepatitis E virus (HEV) is a member of the Hepeviridae family capable of infecting humans producing a range of symptoms from mild disease to kidney failure. Epidemiological evidence suggests that hepatitis E genotype III and IV cases may be associated with the consumption of undercooked pork meat, offal and processed products such as sausages [1]. A study carried out by the Animal Health and Veterinary Laboratories Agency (AHVLA), found hepatitis E virus contamination in the UK pork production chain and that 10% of a small sample of retail pork sausages were contaminated with the virus [2]. Furthermore, studies have confirmed the presence of HEV in the food chain and the foodborne transmission of Hepatitis E virus to humans [reviewed in 5]. Likewise, Scottish shellfish at retail [6] have also been found positive for HEV viral nucleic acid and some preliminary studies indicate that the virus is also detectable in soft fruits (L Scobie; unpublished data). There are current misunderstandings in what this data represents, and these studies have raised further questions concerning the infectivity of the virus, the processing of these foods by industry and the cooking and/or preparation by caterers and consumers. There are significant gaps in the knowledge around viral infectivity, in particular the nature of the preparation of food matrices to isolate the virus, and also with respect to a consistent and suitable assay for confirming infectivity [1,3]. Currently, there is no suitable test for infectivity, and, in addition, we have no knowledge if specific food items would be detrimental to cells when assessing the presence of infectious virus in vitro. The FSA finalised a comprehensive critical review on the approaches to assess the infectivity of the HEV virus which is published [3] recommending that a cell culture based method should be developed for use with food. In order to proceed with the development of an infectivity culture method, there is a requirement to assess if food matrices are detrimental to cell culture cell survival. Other issues that may have affected the ability to develop a consistent method are the length of time the virally contaminated sample is exposed to the cells and the concentration of the virus present. In most cases, the sample is only exposed to the cells for around 1 hour and it has been shown that if the concentration is less that 1x103 copies then infection is not established [3,5,10,11].
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Elmann, Anat, Orly Lazarov, Joel Kashman, and Rivka Ofir. therapeutic potential of a desert plant and its active compounds for Alzheimer's Disease. United States Department of Agriculture, March 2015. http://dx.doi.org/10.32747/2015.7597913.bard.

Повний текст джерела
Анотація:
We chose to focus our investigations on the effect of the active forms, TTF and AcA, rather than the whole (crude) extract. 1. To establish cultivation program designed to develop lead cultivar/s (which will be selected from the different Af accessions) with the highest yield of the active compounds TTF and/or achillolide A (AcA). These cultivar/s will be the source for the purification of large amounts of the active compounds when needed in the future for functional foods/drug development. This task was completed. 2. To determine the effect of the Af extract, TTF and AcA on neuronal vulnerability to oxidative stress in cultured neurons expressing FAD-linked mutants.Compounds were tested in N2a neuroblastoma cell line. In addition, we have tested the effects of TTF and AcA on signaling events promoted by H₂O₂ in astrocytes and by β-amyloid in neuronal N2a cells. 3. To determine the effect of the Af extract, TTF and AcA on neuropathology (amyloidosis and tau phosphorylation) in cultured neurons expressing FAD-linked mutants. 4. To determine the effect of A¦ extract, AcA and TTF on FAD-linked neuropathology (amyloidosis, tau phosphorylation and inflammation) in transgenic mice. 5. To examine whether A¦ extract, TTF and AcA can reverse behavioral deficits in APPswe/PS1DE9 mice, and affect learning and memory and cognitive performance in these FAD-linked transgenic mice. Background to the topic.Neuroinflammation, oxidative stress, glutamate toxicity and amyloid beta (Ab) toxicity are involved in the pathogenesis of Alzheimer's diseases. We have previously purified from Achilleafragrantissimatwo active compounds: a protective flavonoid named 3,5,4’-trihydroxy-6,7,3’-trimethoxyflavone (TTF, Fl-72/2) and an anti-inflammatory sesquiterpenelactone named achillolide A (AcA). Major conclusions, solutions, achievements. In this study we could show that TTF and AcA protected cultured astrocytes from H₂O₂ –induced cell death via interference with cell signaling events. TTF inhibited SAPK/JNK, ERK1/2, MEK1 and CREBphosphorylation, while AcA inhibited only ERK1/2 and MEK1 phosphorylation. In addition to its protective activities, TTF had also anti-inflammatory activities, and inhibited the LPS-elicited secretion of the proinflammatorycytokinesInterleukin 6 (IL-6) and IL-1b from cultured microglial cells. Moreover, TTF and AcA protected neuronal cells from glutamate and Abcytotoxicity by reducing the glutamate and amyloid beta induced levels of intracellular reactive oxygen species (ROS) and via interference with cell signaling events induced by Ab. These compounds also reduced amyloid precursor protein net processing in vitro and in vivo in a mouse model for Alzheimer’s disease and improvedperformance in the novel object recognition learning and memory task. Conclusion: TTF and AcA are potential candidates to be developed as drugs or food additives to prevent, postpone or ameliorate Alzheimer’s disease. Implications, both scientific and agricultural.The synthesis ofAcA and TTF is very complicated. Thus, the plant itself will be the source for the isolation of these compounds or their precursors for synthesis. Therefore, Achilleafragrantissima could be developed into a new crop with industrial potential for the Arava-Negev area in Israel, and will generate more working places in this region.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hutchinson, M. L., J. E. L. Corry, and R. H. Madden. A review of the impact of food processing on antimicrobial-resistant bacteria in secondary processed meats and meat products. Food Standards Agency, October 2020. http://dx.doi.org/10.46756/sci.fsa.bxn990.

Повний текст джерела
Анотація:
For meat and meat products, secondary processes are those that relate to the downstream of the primary chilling of carcasses. Secondary processes include maturation chilling, deboning, portioning, mincing and other operations such as thermal processing (cooking) that create fresh meat, meat preparations and ready-to-eat meat products. This review systematically identified and summarised information relating to antimicrobial resistance (AMR) during the manufacture of secondary processed meatand meat products (SPMMP). Systematic searching of eight literature databases was undertaken and the resultantpapers were appraised for relevance to AMR and SPMMP. Consideration was made that the appraisal scores, undertaken by different reviewers, were consistent. Appraisal reduced the 11,000 initially identified documents to 74, which indicated that literature relating to AMR and SPMMP was not plentiful. A wide range of laboratory methods and breakpoint values (i.e. the concentration of antimicrobial used to assess sensitivity, tolerance or resistance) were used for the isolation of AMR bacteria.The identified papers provided evidence that AMR bacteria could be routinely isolated from SPMMP. There was no evidence that either confirmed or refuted that genetic materials capable of increasing AMR in non-AMR bacteria were present unprotected (i.e. outside of a cell or a capsid) in SPMMP. Statistical analyses were not straightforward because different authors used different laboratory methodologies.However, analyses using antibiotic organised into broadly-related groups indicated that Enterobacteriaceaeresistant to third generation cephalosporins might be an area of upcoming concern in SPMMP. The effective treatment of patients infected with Enterobacteriaceaeresistant to cephalosporins are a known clinical issue. No AMR associations with geography were observed and most of the publications identified tended to be from Europe and the far east.AMR Listeria monocytogenes and lactic acid bacteria could be tolerant to cleaning and disinfection in secondary processing environments. The basis of the tolerance could be genetic (e.g. efflux pumps) or environmental (e.g. biofilm growth). Persistent, plant resident, AMR L. monocytogenes were shown by one study to be the source of final product contamination. 4 AMR genes can be present in bacterial cultures used for the manufacture of fermented SPMMP. Furthermore, there was broad evidence that AMR loci could be transferred during meat fermentation, with refrigeration temperatures curtailing transfer rates. Given the potential for AMR transfer, it may be prudent to advise food business operators (FBOs) to use fermentation starter cultures that are AMR-free or not contained within easily mobilisable genetic elements. Thermal processing was seen to be the only secondary processing stage that served as a critical control point for numbers of AMR bacteria. There were significant linkages between some AMR genes in Salmonella. Quaternary ammonium compound (QAC) resistance genes were associated with copper, tetracycline and sulphonamide resistance by virtue of co-location on the same plasmid. No evidence was found that either supported or refuted that there was any association between AMR genes and genes that encoded an altered stress response or enhanced the survival of AMR bacteria exposed to harmful environmental conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії