Добірка наукової літератури з теми "Cayley permutations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cayley permutations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cayley permutations"
CHITTURI, BHADRACHALAM. "UPPER BOUNDS FOR SORTING PERMUTATIONS WITH A TRANSPOSITION TREE." Discrete Mathematics, Algorithms and Applications 05, no. 01 (March 2013): 1350003. http://dx.doi.org/10.1142/s1793830913500031.
Повний текст джерелаOlshevskyi, M. S. "Metric properties of Cayley graphs of alternating groups." Carpathian Mathematical Publications 13, no. 2 (November 19, 2021): 545–81. http://dx.doi.org/10.15330/cmp.13.2.545-581.
Повний текст джерелаOlshevskyi, M. "The lower bound of diameter of Alternating groups." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 4 (2021): 11–22. http://dx.doi.org/10.17721/1812-5409.2021/4.1.
Повний текст джерелаBabai, L., and G. L. Hetyei. "On the Diameter of Random Cayley Graphs of the Symmetric Group." Combinatorics, Probability and Computing 1, no. 3 (September 1992): 201–8. http://dx.doi.org/10.1017/s0963548300000237.
Повний текст джерелаAbdesselam, B., and A. Chakrabarti. "Multiparameter Statistical Models from Braid Matrices: Explicit Eigenvalues of Transfer Matrices , Spin Chains, Factorizable Scatterings for All." Advances in Mathematical Physics 2012 (2012): 1–21. http://dx.doi.org/10.1155/2012/193190.
Повний текст джерелаPăun, Udrea. "$G$ method in action: Fast exact sampling from set of permutations of order $n$ according to Mallows model through Cayley metric." Brazilian Journal of Probability and Statistics 31, no. 2 (May 2017): 338–52. http://dx.doi.org/10.1214/16-bjps316.
Повний текст джерелаSkresanov, Saveliy V. "Subgroups of minimal index in polynomial time." Journal of Algebra and Its Applications 19, no. 01 (January 29, 2019): 2050010. http://dx.doi.org/10.1142/s0219498820500103.
Повний текст джерелаAlspach, Brian, and Shaofei Du. "Suborbit Structure of Permutation p-Groups and an Application to Cayley Digraph Isomorphism." Canadian Mathematical Bulletin 47, no. 2 (June 1, 2004): 161–67. http://dx.doi.org/10.4153/cmb-2004-017-9.
Повний текст джерелаLI, CAI HENG, and CHERYL E. PRAEGER. "SELF-COMPLEMENTARY VERTEX-TRANSITIVE GRAPHS NEED NOT BE CAYLEY GRAPHS." Bulletin of the London Mathematical Society 33, no. 6 (November 2001): 653–61. http://dx.doi.org/10.1112/s0024609301008505.
Повний текст джерелаKuznetsov, А. A., and V. V. Kishkan. "A ROUTING ALGORITHM FOR THE CAYLEY GRAPHS GENERATED BY PERMUTATION GROUPS." Siberian Journal of Science and Technology 21, no. 2 (2020): 187–94. http://dx.doi.org/10.31772/2587-6066-2020-21-2-187-194.
Повний текст джерелаДисертації з теми "Cayley permutations"
Muthivhi, Thifhelimbilu Ronald. "Codes Related to and Derived from Hamming Graphs." University of the Western Cape, 2013. http://hdl.handle.net/11394/4091.
Повний текст джерелаCodes Related to and Derived from Hamming Graphs T.R Muthivhi M.Sc thesis, Department of Mathematics, University of Western Cape For integers n; k 1; and k n; the graph k n has vertices the 2n vectors of Fn2 and adjacency de ned by two vectors being adjacent if they di er in k coordinate positions. In particular, 1 n is the classical n-cube, usually denoted by H1(n; 2): This study examines the codes (both binary and p-ary for p an odd prime) of the row span of adjacency and incidence matrices of these graphs. We rst examine codes of the adjacency matrices of the n-cube. These have been considered in [14]. We then consider codes generated by both incidence and adjacency matrices of the Hamming graphs H1(n; 3) [12]. We will also consider codes of the line graphs of the n-cube as in [13]. Further, the automorphism groups of the codes, designs and graphs will be examined, highlighting where there is an interplay. Where possible, suitable permutation decoding sets will be given.
Cerbai, Giulio. "Sorting permutations with pattern-avoiding machines." Doctoral thesis, 2021. http://hdl.handle.net/2158/1235854.
Повний текст джерелаЧастини книг з теми "Cayley permutations"
Grammatikakis, Miltos D., and Jung-Sing Jwo. "Greedy permutation routing on Cayley graphs." In Parallel Processing: CONPAR 92—VAPP V, 839–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55895-0_515.
Повний текст джерелаCooperman, Gene, and Larry Finkelstein. "Permutation routing via Cayley graphs with an example for bus interconnection networks." In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 47–56. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/dimacs/021/05.
Повний текст джерелаHook, Julian. "Groups II." In Exploring Musical Spaces, 209–51. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/oso/9780190246013.003.0006.
Повний текст джерела"Cayley graph and defining relations." In Fundamental Algorithms for Permutation Groups, 33–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3-540-54955-2_24.
Повний текст джерелаТези доповідей конференцій з теми "Cayley permutations"
PRAEGER, CHERYL E. "REGULAR PERMUTATION GROUPS AND CAYLEY GRAPHS." In Proceedings of the 13th General Meeting. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814277686_0003.
Повний текст джерелаYang, Siyi, Clayton Schoeny, and Lara Dolecek. "Order-optimal permutation codes in the generalized cayley metric." In 2017 IEEE Information Theory Workshop (ITW). IEEE, 2017. http://dx.doi.org/10.1109/itw.2017.8277943.
Повний текст джерелаde Lima, Thaynara Arielly, and Mauricio Ayala-Rincon. "Complexity of Cayley distance and other general metrics on permutation groups." In 2012 7th Colombian Computing Congress (CCC). IEEE, 2012. http://dx.doi.org/10.1109/colombiancc.2012.6398020.
Повний текст джерелаChee, Yeow Meng, and Van Khu Vu. "Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875376.
Повний текст джерелаYeh, C. H., and B. Parhami. "Parallel algorithms for index-permutation graphs. An extension of Cayley graphs for multiple chip-multiprocessors (MCMP)." In Proceedings International Conference on Parallel Processing. IEEE, 2001. http://dx.doi.org/10.1109/icpp.2001.952041.
Повний текст джерела