Добірка наукової літератури з теми "Cauchy spinors"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cauchy spinors".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cauchy spinors"
Ammann, Bernd, Klaus Kröncke, and Olaf Müller. "Construction of Initial Data Sets for Lorentzian Manifolds with Lightlike Parallel Spinors." Communications in Mathematical Physics 387, no. 1 (August 3, 2021): 77–109. http://dx.doi.org/10.1007/s00220-021-04172-1.
Повний текст джерелаAmmann, Bernd, Andrei Moroianu, and Sergiu Moroianu. "The Cauchy Problems for Einstein Metrics and Parallel Spinors." Communications in Mathematical Physics 320, no. 1 (April 16, 2013): 173–98. http://dx.doi.org/10.1007/s00220-013-1714-1.
Повний текст джерелаD'ANCONA, PIERO, DAMIANO FOSCHI, and SIGMUND SELBERG. "LOCAL WELL-POSEDNESS BELOW THE CHARGE NORM FOR THE DIRAC–KLEIN–GORDON SYSTEM IN TWO SPACE DIMENSIONS." Journal of Hyperbolic Differential Equations 04, no. 02 (June 2007): 295–330. http://dx.doi.org/10.1142/s0219891607001148.
Повний текст джерелаTESFAHUN, ACHENEF. "GLOBAL WELL-POSEDNESS OF THE 1D DIRAC–KLEIN–GORDON SYSTEM IN SOBOLEV SPACES OF NEGATIVE INDEX." Journal of Hyperbolic Differential Equations 06, no. 03 (September 2009): 631–61. http://dx.doi.org/10.1142/s0219891609001952.
Повний текст джерелаYefremov, Alexander P. "Physical theories in hypercomplex geometric description." International Journal of Geometric Methods in Modern Physics 11, no. 06 (July 2014): 1450062. http://dx.doi.org/10.1142/s0219887814500625.
Повний текст джерелаHerdegen, Andrzej. "Infrared Problem vs Gauge Choice: Scattering of Classical Dirac Field." Annales Henri Poincaré 22, S1 (February 5, 2021): 1–55. http://dx.doi.org/10.1007/s00023-020-01015-y.
Повний текст джерелаWest, GA. "Colobomatus-Icopaius (Copepoda, Philichthyidae), a New Species Parasitic on Lethrinus-Chrysostomus (Pisces, Lethrinidae), From the Great-Barrier-Reef." Australian Journal of Zoology 37, no. 1 (1989): 95. http://dx.doi.org/10.1071/zo9890095.
Повний текст джерелаShojaey, M., M. Khayrandish, S. M. Madjdzadeh, and H. Lotfalizadeh. "New records of Pteromalinae (Hymenoptera: Chalcidoidea, Pteromalidae) from Iran." Far Eastern entomologist 439 (October 1, 2021): 14–23. http://dx.doi.org/10.25221/fee.439.2.
Повний текст джерелаClapp, David F., and Richard D. Clark. "Hooking Mortality of Smallmouth Bass Caught on Live Minnows and Artificial Spinners." North American Journal of Fisheries Management 9, no. 1 (February 1989): 81–85. http://dx.doi.org/10.1577/1548-8675(1989)009<0081:hmosbc>2.3.co;2.
Повний текст джерелаSokolov, Sergey, Ekaterina Voropaeva, and Dmitry Atopkin. "A new species of deropristid trematode from the sterlet Acipenser ruthenus (Actinopterygii: Acipenseridae) and revision of superfamily affiliation of the family Deropristidae." Zoological Journal of the Linnean Society 190, no. 2 (March 21, 2020): 448–59. http://dx.doi.org/10.1093/zoolinnean/zlaa015.
Повний текст джерелаДисертації з теми "Cauchy spinors"
Flamencourt, Brice. "On some problems in spectral analysis, spin geometry and conformal geometry." Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASM014.
Повний текст джерелаThis thesis is divided into two main parts. In the first one, we focus on two problems of spectral analysis concerning the convergence of eigenvalues of operators with parameters. On the one hand, we consider the Schrödinger operator in the plane, with a singular potential supported by a closed curve Γ admitting a cusp. This potential is formally written −αδ(x−Γ), and we describe the behaviour of the spectrum of the operator as α→∞. On the other hand, we study the Dirac operator which appears in the MIT Bag model, by generalizing it from Euclidean spaces to spin manifolds. We observe a convergence of the eigenvalues of this operator when the mass parameter tends to infinity. In the second part, we discuss two different geometric problems. First, we prove structure and classification results in dimension 3 for a particular class of spinors, called Cauchy spinors, arising as restrictions of parallel spinors to oriented hypersurfaces of spin manifolds. Finally, we focus on Weyl connections on conformal manifolds. We define a locally conformally product (LCP) structure as a closed, non-exact, non-flat Weyl structure with reducible holonomy on a compact conformal manifold. We analyse the LCP manifolds in order to initiate a classification
Bergstedt, Viktor. "Spacetime as a Hamiltonian Orbit and Geroch's Theorem on the Existence of Fermions." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-432488.
Повний текст джерелаAllmän relativitetsteori har i över hundra år legat i teoretiska fysikens framkant. Det är möjligt att lösningarna på öppna problem som kvantiseringen av gravitation går att finna i en utvidgning av allmän relativitetsteori – och kanske uppenbarar sig denna utvidgning bara ur en alternativ formulering av teorin. I den här uppsatsen formuleras allmän relativitetsteori och dess Einsteinekvationer som ett begynnelsevärdesproblem, genom vilket rumtiden kan betraktas som rummets historia. Vi visar att rummets rörelseekvationer är Hamiltons ekvationer med tvångsvillkor. Enligt partikelfysiken bör fermioner kunna finnas till i rumtiden. Härom kan vi åberopa Gerochs sats, enligt vilken rumtider som har en Hamiltonsk formulering också medger fermioner. Vi redogör för huvuddragen i beviset av Gerochs sats.
Частини книг з теми "Cauchy spinors"
Baum, Helga, and Thomas Leistner. "Lorentzian Geometry: Holonomy, Spinors, and Cauchy Problems." In Geometric Flows and the Geometry of Space-time, 1–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01126-0_1.
Повний текст джерела"Biology and Management of Dogfish Sharks." In Biology and Management of Dogfish Sharks, edited by Susan D. Hazlett, Nicole Misarti, Alexander G. Andrews, Gordon A. McFarlane, and Matthew J. Wooller. American Fisheries Society, 2009. http://dx.doi.org/10.47886/9781934874073.ch23.
Повний текст джерелаWood, David. "The New Materialism." In Deep Time, Dark Times, 96–106. Fordham University Press, 2018. http://dx.doi.org/10.5422/fordham/9780823281367.003.0008.
Повний текст джерела