Добірка наукової літератури з теми "Cathodes hybrides"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cathodes hybrides".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cathodes hybrides"
Dolphijn, Guillaume, Fernand Gauthy, Alexandru Vlad, and Jean-François Gohy. "High Power Cathodes from Poly(2,2,6,6-Tetramethyl-1-Piperidinyloxy Methacrylate)/Li(NixMnyCoz)O2 Hybrid Composites." Polymers 13, no. 6 (March 23, 2021): 986. http://dx.doi.org/10.3390/polym13060986.
Повний текст джерелаHuang, Kevin. "Performance of Several Excellent Oxide-Based Intercalation Cathodes for Aqueous Zn-Ion Batteries." ECS Meeting Abstracts MA2023-01, no. 5 (August 28, 2023): 921. http://dx.doi.org/10.1149/ma2023-015921mtgabs.
Повний текст джерелаChoudhury, Soumyadip, Marco Zeiger, Pau Massuti-Ballester, Simon Fleischmann, Petr Formanek, Lars Borchardt, and Volker Presser. "Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries." Sustainable Energy & Fuels 1, no. 1 (2017): 84–94. http://dx.doi.org/10.1039/c6se00034g.
Повний текст джерелаWong, Min Hao, Zixuan Zhang, Xianfeng Yang, Xiaojun Chen, and Jackie Y. Ying. "One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes." Chemical Communications 51, no. 71 (2015): 13674–77. http://dx.doi.org/10.1039/c5cc04694g.
Повний текст джерелаEdwards, Sean L., Ronen Fogel, Kudzai Mtambanengwe, Chamunorwa Togo, Richard Laubscher, and Janice L. Limson. "Metallophthalocyanine/carbon nanotube hybrids: extending applications to microbial fuel cells." Journal of Porphyrins and Phthalocyanines 16, no. 07n08 (July 2012): 917–26. http://dx.doi.org/10.1142/s1088424612501027.
Повний текст джерелаCuentas-Gallegos, A. K., R. Vijayaraghavan, M. Lira-Cantú, N. Casañ-Pastor, and P. Gómez-Romero. "Materiales híbridos basados en fosfato de vanadilo y polímeros conductores como cátodos en baterías reversibles de litio." Boletín de la Sociedad Española de Cerámica y Vidrio 43, no. 2 (April 30, 2004): 429–33. http://dx.doi.org/10.3989/cyv.2004.v43.i2.545.
Повний текст джерелаHu, Ting, Lie Chen, Kai Yuan, and Yiwang Chen. "Amphiphilic fullerene/ZnO hybrids as cathode buffer layers to improve charge selectivity of inverted polymer solar cells." Nanoscale 7, no. 20 (2015): 9194–203. http://dx.doi.org/10.1039/c5nr01456e.
Повний текст джерелаAn, Meichun, Mohammad Abdul Aziz, and Yong Lak Joo. "Hybridization of Mesoporous Carbon and Iron Oxide for Better Mitigation of Polysulfide Shuttling in Li-S Batteries." ECS Meeting Abstracts MA2022-01, no. 7 (July 7, 2022): 660. http://dx.doi.org/10.1149/ma2022-017660mtgabs.
Повний текст джерелаCuentas-Gallegos, A. K., M. R. Palacín, M. T. Colomer, J. R. Jurado, and P. Gómez-Romero. "Estudios de materiales de cátodos híbridos y ánodos vítreos. Caracterización en celdas de ion litio." Boletín de la Sociedad Española de Cerámica y Vidrio 41, no. 1 (February 28, 2002): 115–21. http://dx.doi.org/10.3989/cyv.2002.v41.i1.708.
Повний текст джерелаYang, Yiqun, Kayla Strong, Gaind P. Pandey, and Lamartine Meda. "Nanostructured V2O5/Nitrogen-doped Graphene Hybrids for High Rate Lithium Storage." MRS Advances 3, no. 60 (2018): 3495–500. http://dx.doi.org/10.1557/adv.2018.424.
Повний текст джерелаДисертації з теми "Cathodes hybrides"
Adjez, Yanis. "Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Повний текст джерелаNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions
Moraw, Franz Christian. "Hybrid PEM fuel cell : redox cathode approach." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/7720.
Повний текст джерелаOsiecki, Tomasz, Colin Gerstenberger, Holger Seidlitz, Alexander Hackert, and Lothar Kroll. "Behavior of Cathodic dip Paint Coated Fiber Reinforced Polymer/Metal Hybrids." Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-175536.
Повний текст джерелаGustavsson, Lars-Erik. "Hollow Cathode Deposition of Thin Films." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Universitetsbiblioteket [distributör], 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6925.
Повний текст джерелаSöderström, Daniel. "Modelling and Applications of the Hollow Cathode Plasma." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8747.
Повний текст джерелаEzzedine, Mariam. "Fabrication of hierarchical hybrid nanostructured electrodes based on nanoparticles decorated carbon nanotubes for Li-Ion batteries." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX105/document.
Повний текст джерелаThis thesis is devoted to the bottom-up fabrication of hierarchical hybrid nanostructured materials based on active vertically aligned carbon nanotubes (VACNTs) decorated with nanoparticles (NPs). Owing to their unique structure and electronic properties, VACNTs act as a support matrix and an excellent current collector, and thus enhance the electronic and ionic transport pathways. The nanostructuration and the confinement of sulfur (S) in a conductive host material improve its conductivity, while the nanostructuration of silicon (Si) accommodates better the volume change during the electrochemical reactions. In the first part of the thesis, we have synthesized VACNTs by a hot filament chemical vapor deposition (HF-CVD) method directly over aluminum and copper commercial foils without any pretreatment of the substrates. In the second part, we have decorated the sidewalls and the surface of the VACNT carpets with various LIB's active electrode materials, including S and Si NPs. We have also deposited and characterized nickel (Ni) NPs on CNTs as alternative materials for the cathode electrode. No conductive additives or any polymer binder have been added to the electrode composition. The CNTs decoration has been done systematically through two different methods: wet method by electrodeposition and dry method by physical vapor deposition (PVD). The obtained hybrid structures have been electrochemically tested separately in a coin cell against a lithium counter-electrode. Regarding the S evaporationon VACNTs, and the S@VACNTs structure, these topics are investigated for the first time to the best of our knowledge.Preliminary tests on the obtained nanostructured cathodes (S@VACNTs coated with alumina or polyaniline) have shown that it is possible to attain a specific capacity close to S theoretical storage capacity. The surface capacity of S@VACNTs, with 0.76 mg cm-2 of S, at C/20 rate reaches 1.15 mAh cm-2 at the first cycle. For the nanostructured anodes Si@VACNTs, with 4.11 mg cm-2 of Si showed an excellent surface capacity of 12.6 mAh cm-2, the highest value for nanostructured silicon anodes obtained so far. In the last part of the thesis, the fabricated nanostructured electrodes have been assembled in a full battery (Li2S/Si) and its electrochemical performances experimentally tested. The high and well-balanced surface capacities obtained for S and Si nanostructured electrodes pave the way for realization of high energy density, all-nanostructured LIBs and demonstrate the large potentialities of the proposed hierarchical hybrid nanostructures' concept
Holmes, Steven. "An investigation into the practical and theoretical aspects of hybrid cathodic protection." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/12280.
Повний текст джерелаMyalo, Zolani. "Graphenised Lithium Iron Phosphate and Lithium Manganese Silicate Hybrid Cathode Systems for Lithium-Ion Batteries." University of the Western Cape, 2017. http://hdl.handle.net/11394/6036.
Повний текст джерелаThis research was based on the development and characterization of graphenised lithium iron phosphate-lithium manganese silicate (LiFePO4-Li2MnSiO4) hybrid cathode materials for use in Li-ion batteries. Although previous studies have mainly focused on the use of a single cathode material, recent works have shown that a combination of two or more cathode materials provides better performances compared to a single cathode material. The LiFePO4- Li2MnSiO4 hybrid cathode material is composed of LiFePO4 and Li2MnSiO4. The Li2MnSiO4 contributes its high working voltage ranging from 4.1 to 4.4 V and a specific capacity of 330 mA h g-1, which is twice that of the LiFePO4 which, in turn, offers its long cycle life, high rate capacity as well as good electrochemical and thermal stability. The two cathode materials complement each other's properties however they suffer from low electronic conductivities which were suppressed by coating the hybrid material with graphene nanosheets. The synthetic route entailed a separate preparation of the individual pristine cathode materials, using a sol-gel protocol. Then, the graphenised LiFePO4-Li2MnSiO4 and LiFePO4-Li2MnSiO4 hybrid cathodes were obtained in two ways: the hand milling (HM) method where the pristine cathodes were separately prepared and then mixed with graphene using a pestle and mortar, and the in situ sol-gel (SG) approach where the Li2MnSiO4 and graphene were added into the LiFePO4 sol, stirred and calcined together.
2021-04-30
El, jouad Zouhair. "Réalisation et caractérisation des cellules photovoltaïques organiques." Thesis, Angers, 2016. http://www.theses.fr/2016ANGE0022/document.
Повний текст джерелаThis thesis concerns elaboration and characterization of classical and inverse organic photovoltaic cells, specifically improving the anodic and cathodic buffer layers. We started by improving the cathode buffer layers with different electron donors: copper phthalocyanine CuPc, subphtalocyanine SubPc and thiophene derivatives (BSTV and BOTV). In the first case of electron donor (CuPc), we highlighted the effect of the thin layer of cesium compound, used as a cathodic buffer layer in inverse cells, on the collection of electrons after heat treatment.We have also shown that the hybrid cathodic buffer layer, Alq3 (9 nm) / Ca (3nm) improves the cell performance whatever the electron donor without annealing. In the case of thiophene derivatives, we have shown how the morphology of the organic layers surface can influence the performance of organic photovoltaic cells. In the case of SubPc used in inverse cells, we studied the effect of the deposition rate of the layer on the morphology of SubPc surface.Regarding the improvement of the anodic buffer layers, we investigated those based on the SubPc and pentathiophene (5T) in classical cells. After optimization of the electron donors thickness, we have shown that the bilayer MoO3 (3 nm) / CuI (1.5 nm) used as an anodic buffer layer, improves cell performances, whatever the electron donor. In the case of SubPc, we obtained a efficiency approaching 5%
Vickers, Simon. "Particle in cell and hybrid simulations of the Z double-post-hole convolute cathode plasma evolution and dynamics." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17874.
Повний текст джерелаЧастини книг з теми "Cathodes hybrides"
Wen, Zhenhai, Suqin Ci, and Junhong Chen. "Nanocarbon-Based Hybrids as Cathode Electrocatalysts for Microbial Fuel Cells." In Nanocarbons for Advanced Energy Conversion, 215–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527680016.ch8.
Повний текст джерелаMurugesan, Chinnasamy, Baskar Senthilkumar, Kriti Choudhary, and Prabeer Barpanda. "Cobalt–Phosphate-Based Insertion Material as a Multifunctional Cathode for Rechargeable Hybrid Sodium–Air Batteries." In Recent Research Trends in Energy Storage Devices, 35–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6394-2_5.
Повний текст джерелаGodefroidt, Emile, Bjorn Van Belleghem, and Tim Soetens. "Effectiveness and Throwing Power of Hybrid Anode Cathodic Protection in Chloride Contaminated Reinforced Concrete." In RILEM Bookseries, 175–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-75507-1_18.
Повний текст джерелаGoyal, Megha, and Tapas Kumar Mandal. "Influence of Different Precipitating Agents on the Synthesis of NiMn-LDHs Based Cathode Materials for High Performance Hybrid Devices." In Springer Proceedings in Physics, 187–92. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1971-0_28.
Повний текст джерелаParbey, Joseph, Fehrs Adu-Gyamfi, and Michael Gyan. "Progress in Cathode Materials for Methanol Fuel Cells." In Methanol Fuel - New Developments, Perspectives and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1003869.
Повний текст джерелаRajpurohit, Praveen, and Manaswini Behera. "Light-assisted microbial electrochemical technologies for bioelectricity generation and product recovery." In Resource Recovery from Industrial Wastewater through Microbial Electrochemical Technologies, 61–80. IWA Publishing, 2024. http://dx.doi.org/10.2166/9781789063813_0061.
Повний текст джерелаLitovko, Iryna, Alexey Goncharov, Andrew Dobrovolskyi, and Iryna Naiko. "The Emerging Field Trends Erosion-Free Electric Hall Thrusters Systems." In Plasma Science and Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99096.
Повний текст джерелаM. Orona-Hinojos, Jesus. "Innovative Double Cathode Configuration for Hybrid ECM + EDM Blue Arc Drilling." In Drilling Technology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97547.
Повний текст джерелаArif, Khizra, Abdul Shakoor, Muhammad Awais, Marvi Dashi, Behram Khan Ajat Khel, Bentham Science Publisher Sami Ur Rehman, Khansa Masood, Farah Hussain, Waheed Alam, and Muhammad Atif. "Graphene-based Materials for Electrochemical Energy Storage Devices-EESDs; Opportunities and Future Perspective." In The 2-Dimensional World of Graphene, 160–76. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815238938124010011.
Повний текст джерелаMohammadi, Arash. "Hybrid nanomaterials of hollow carbon spheres as cathode materials." In Nanostructured Lithium-ion Battery Materials, 87–109. Elsevier, 2025. http://dx.doi.org/10.1016/b978-0-443-13338-1.00024-1.
Повний текст джерелаТези доповідей конференцій з теми "Cathodes hybrides"
Major, K., G. Brisard, and J. Veilleux. "Lithium Iron Phosphate Coatings Deposited by Means of Inductively-Coupled Thermal Plasma." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0566.
Повний текст джерелаTucker, David, Larry Lawson, Thomas P. Smith, and Comas Haynes. "Evaluation of Cathodic Air Flow Transients in a Hybrid System Using Hardware Simulation." In ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97107.
Повний текст джерелаPezzini, Paolo, Sue Celestin, and David Tucker. "Control Impacts of Cold-Air Bypass on Pressurized Fuel Cell Turbine Hybrids." In ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2014 8th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fuelcell2014-6523.
Повний текст джерелаMagistri, Loredana, Mario L. Ferrari, Alberto Traverso, Paola Costamagna, and Aristide F. Massardo. "Transient Analysis of Solid Oxide Fuel Cell Hybrids: Part C — Whole-Cycle Model." In ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53845.
Повний текст джерелаLambruschini, Fabio, Mario L. Ferrari, Alberto Traverso, and Luca Larosa. "Emergency Shutdown Management in Fuel Cell Gas Turbine Hybrid Systems." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25432.
Повний текст джерелаZaccaria, Valentina, Zachary Branum, and David Tucker. "Fuel Cell Temperature Control With a Pre-Combustor in SOFC Gas Turbine Hybrids During Load Changes." In ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59278.
Повний текст джерелаKroll, Florian, Annette Nielsen, and Stephan Staudacher. "Transient Performance and Control System Design of Solid Oxide Fuel Cell/Gas Turbine Hybrids." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50232.
Повний текст джерелаHao, Xia, Shenghao Wang, Takeaki Sakurai, and Katsuhiro Akimoto. "The effect of cathode buffer in small molecule organic solar cells." In 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.047.
Повний текст джерелаChen, Jinwei, Kuanying Gao, Maozong Liang, and Huisheng Zhang. "Performance Evaluation of a SOFC-GT Hybrid System With Ejectors for the Anode and Cathode Recirculations." In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-63745.
Повний текст джерелаBanta, Larry E., Bernardo Restrepo, Alex J. Tsai, and David Tucker. "Cathode Temperature Management During Hybrid System Startup." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33121.
Повний текст джерелаЗвіти організацій з теми "Cathodes hybrides"
Lawson and Thompson. L52100 Hot-Spot Protection for Impressed Current Systems. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2003. http://dx.doi.org/10.55274/r0010153.
Повний текст джерела