Статті в журналах з теми "Catalytic C-H"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Catalytic C-H.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Catalytic C-H".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hilinski, Michael, Shea Johnson, and Logan Combee. "Organocatalytic Atom-Transfer C(sp3)–H Oxidation." Synlett 29, no. 18 (June 27, 2018): 2331–36. http://dx.doi.org/10.1055/s-0037-1610432.

Повний текст джерела
Анотація:
Predictably site-selective catalytic methods for intermolecular C(sp3)–H hydroxylation and amination hold great promise for the synthesis and late-stage modification of complex molecules. Transition-metal catalysis has been the most common approach for early investigations of this type of reaction. In comparison, there are far fewer ­reports of organocatalytic methods for direct oxygen or nitrogen insertion into C–H bonds. Herein, we provide an overview of early efforts in this area, with particular emphasis on our own recent development of an iminium salt that catalyzes both oxygen and nitrogen insertion.1 Introduction2 Background: C–H Oxidation Capabilities of Heterocyclic Oxidants3 Oxaziridine-Mediated Catalytic Hydroxylation4 Dioxirane-Mediated Catalytic Hydroxylation5 Iminium Salt Catalysis of Hydroxylation and Amination6 Conclusion and Outlook
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Hua, and Li Wang. "Metal-Free Catalytic Aromatic C–H Borylation." Synlett 31, no. 19 (August 11, 2020): 1857–61. http://dx.doi.org/10.1055/s-0040-1707241.

Повний текст джерела
Анотація:
In recent decades, C–H borylation has undergone rapid development and has become one of the most important and efficient methods for the synthesis of organoboron compounds. Although transition-metal catalysis dominates C–H borylation, the metal-free approach has emerged as a promising alternative strategy. This article briefly summarizes the history of metal-free aromatic C–H borylation, including early reports on electrophilic C–H borylation and recent progress in metal-free catalytic intermolecular C–H borylation; it also highlights our recent work on BF3·Et2O-catalyzed C2–H borylation of hetarenes. Despite these recent advances, comprehensive mechanistic studies on various metal-free catalytic aromatic C–H borylations and novel processes with a wider substrate scope are eagerly expected in the near future.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kakiuchi, Fumitoshi, and Shinji Murai. "Catalytic C−H/Olefin Coupling." Accounts of Chemical Research 35, no. 10 (October 2002): 826–34. http://dx.doi.org/10.1021/ar960318p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Murai, S., F. Kakiuchi, S. Sekine, Y. Tanaka, Asayuki Kamatani, M. Sonoda, and Naoto Chatani. "Catalytic C-H/olefin coupling." Pure and Applied Chemistry 66, no. 7 (January 1, 1994): 1527–34. http://dx.doi.org/10.1351/pac199466071527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bach, T., A. Nörder, P. Herrmann, and E. Herdtweck. "Diastereoselective Catalytic C-H Amination." Synfacts 2010, no. 10 (September 22, 2010): 1141. http://dx.doi.org/10.1055/s-0030-1258647.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chen, Qing-An, Wei-Song Zhang, and Yan-Cheng Hu. "Isoprene: A Promising Coupling Partner in C–H Functionalizations." Synlett 31, no. 17 (July 2, 2020): 1649–55. http://dx.doi.org/10.1055/s-0040-1707172.

Повний текст джерела
Анотація:
Five-carbon dimethylallyl units, such as prenyl and reverse-prenyl, are widely distributed in natural indole alkaloids and terpenoids. In conventional methodologies, these valuable motifs are often derived from substrates bearing leaving groups, but these processes are accompanied by the generation of stoichiometric amounts of by-products. From an economical and environmental point of view, the basic industrial feedstock isoprene is an ideal alternative precursor. However, given that electronically unbiased isoprene might undergo six possible addition modes in the coupling reactions, it is difficult to control the selectivity. This article summarizes the strategies we have developed to achieve regioselective C–H functionalizations of isoprene under transition-metal and acid catalysis.1 Introduction2 Catalytic Coupling of Indoles with Isoprene3 Catalytic Coupling of Formaldehyde, Arenes and Isoprene4 Catalytic Coupling of 4-Hydroxycoumarins with Isoprene5 Catalytic Coupling of Cyclic 1,3-Diketones with Isoprene6 Conclusion and Outlook
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nishii, Yuji, and Masahiro Miura. "Construction of Benzo-Fused Polycyclic Heteroaromatic Compounds through Palladium-Catalyzed Intramolecular C-H/C-H Biaryl Coupling." Catalysts 13, no. 1 (December 22, 2022): 12. http://dx.doi.org/10.3390/catal13010012.

Повний текст джерела
Анотація:
Dibenzo-fused five-membered heteroaromatic compounds, including dibenzofuran, carbazole, and dibenzothiophene, are fundamental structural units in various important polycyclic heteroaromatic compounds. The intramolecular C-H/C-H biaryl coupling of diaryl (thio)ethers and amines based on palladium(II) catalysis under oxidative conditions is known to be one of the most effective, step-economic methods for their construction. Representative examples for the construction of structurally intriguing π-extended polycyclic heteroaromatics through catalytic coupling reactions are briefly summarized in this mini-review.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Collet, Florence, Camille Lescot, Chungen Liang, and Philippe Dauban. "Studies in catalytic C–H amination involving nitrene C–H insertion." Dalton Transactions 39, no. 43 (2010): 10401. http://dx.doi.org/10.1039/c0dt00283f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bedford, Robin B., Charlotte J. Mitchell, and Ruth L. Webster. "Solvent free catalytic C–H functionalisation." Chemical Communications 46, no. 18 (2010): 3095. http://dx.doi.org/10.1039/c003074k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Young, Andrew J., and M. Christina White. "Catalytic Intermolecular Allylic CH Alkylation." Journal of the American Chemical Society 130, no. 43 (October 29, 2008): 14090–91. http://dx.doi.org/10.1021/ja806867p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Reed, Sean A., and M. Christina White. "Catalytic Intermolecular Linear Allylic C−H Amination via Heterobimetallic Catalysis." Journal of the American Chemical Society 130, no. 11 (March 2008): 3316–18. http://dx.doi.org/10.1021/ja710206u.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Futatsugi, Kentaro. "Recent Progress in Catalytic C-H Aminations." Journal of Synthetic Organic Chemistry, Japan 66, no. 6 (2008): 629–30. http://dx.doi.org/10.5059/yukigoseikyokaishi.66.629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tosi, Eleonora, Renata Marcia de Figueiredo, and Jean-Marc Campagne. "Enantioselective Catalytic C-H Amidations: An Highlight." Catalysts 11, no. 4 (April 6, 2021): 471. http://dx.doi.org/10.3390/catal11040471.

Повний текст джерела
Анотація:
The crucial role played by compounds bearing amide functions, not only in biological processes but also in several fields of chemistry, life polymers and material sciences, has brought about many significant discoveries and innovative approaches for their chemical synthesis. Indeed, a plethora of strategies has been developed to reach such moieties. Amides within chiral molecules are often associated with biological activity especially in life sciences and medicinal chemistry. In most of these cases, their synthesis requires extensive rethinking methodologies. In the very last years (2019–2020), enantioselective C-H functionalization has appeared as a straightforward alternative to reach chiral amides. Therein, an overview on these transformations within this timeframe is going to be given.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Collet, Florence, Camille Lescot, and Philippe Dauban. "Catalytic C–H amination: the stereoselectivity issue." Chemical Society Reviews 40, no. 4 (2011): 1926. http://dx.doi.org/10.1039/c0cs00095g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Cheng, Chen, and John F. Hartwig. "Catalytic Silylation of Unactivated C–H Bonds." Chemical Reviews 115, no. 17 (February 25, 2015): 8946–75. http://dx.doi.org/10.1021/cr5006414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Doyle, Michael P., Richard Duffy, Maxim Ratnikov, and Lei Zhou. "Catalytic Carbene Insertion into C−H Bonds." Chemical Reviews 110, no. 2 (February 10, 2010): 704–24. http://dx.doi.org/10.1021/cr900239n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gephart, Raymond T., Daria L. Huang, Mae Joanne B. Aguila, Graham Schmidt, Andi Shahu, and Timothy H. Warren. "Catalytic CH Amination with Aromatic Amines." Angewandte Chemie 124, no. 26 (May 15, 2012): 6594–98. http://dx.doi.org/10.1002/ange.201201921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Kakiuchi, Fumitoshi, and Shinji Murai. "ChemInform Abstract: Catalytic C-H/Olefin Coupling." ChemInform 33, no. 51 (May 18, 2010): no. http://dx.doi.org/10.1002/chin.200251254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gephart, Raymond T., Daria L. Huang, Mae Joanne B. Aguila, Graham Schmidt, Andi Shahu, and Timothy H. Warren. "Catalytic CH Amination with Aromatic Amines." Angewandte Chemie International Edition 51, no. 26 (May 15, 2012): 6488–92. http://dx.doi.org/10.1002/anie.201201921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

MURAI, S., F. KAKIUCHI, S. SEKINE, Y. TANAKA, A. KAMATANI, M. SONODA, and N. CHATANI. "ChemInform Abstract: Catalytic C-H/Olefin Coupling." ChemInform 25, no. 42 (August 18, 2010): no. http://dx.doi.org/10.1002/chin.199442300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zhang, Lin, and En-Qing Gao. "Catalytic C(sp)-H carboxylation with CO2." Coordination Chemistry Reviews 486 (July 2023): 215138. http://dx.doi.org/10.1016/j.ccr.2023.215138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Völler, Jan-Stefan. "Catalytic borylation of tertiary C–H bonds." Nature Catalysis 6, no. 4 (April 26, 2023): 287. http://dx.doi.org/10.1038/s41929-023-00953-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Bähr, Susanne, and Martin Oestreich. "The electrophilic aromatic substitution approach to C–H silylation and C–H borylation." Pure and Applied Chemistry 90, no. 4 (March 28, 2018): 723–31. http://dx.doi.org/10.1515/pac-2017-0902.

Повний текст джерела
Анотація:
AbstractSeveral approaches toward electrophilic C–H silylation of electron-rich arenes are discussed, comprising transition-metal-catalyzed processes as well as Lewis-acid- and Brønsted-acid-induced protocols. These methods differ in the catalytic generation of the silicon electrophile but share proton removal in form of dihydrogen. With slight modifications, these methods are often also applicable to the related electrophilic C–H borylation.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Mango, Frank D., Daniel M. Jarvie, and Eleanor Herriman. "Natural catalytic activity in a marine shale for generating natural gas." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, no. 2124 (April 21, 2010): 3527–37. http://dx.doi.org/10.1098/rspa.2010.0032.

Повний текст джерела
Анотація:
Many organic-rich rocks are major sources of oil and gas in sedimentary basins presumably through high-temperature thermal cracking. This view was brought into question with recent reports of marine shales generating catalytic gas in the laboratory at 50 ° C, 300 ° C below thermal-cracking temperatures. Gas forms under natural conditions without artificial stimulation. Compositions of methane, ethane and propane are near thermodynamic equilibrium (2C 2 H 6 =CH 4 +C 3 H 8 ) mirroring those in natural deposits. It is significant because thermal cracking can neither generate hydrocarbons at equilibrium nor can it bring them to equilibrium over geological time. Thus, catalysis must be the source of equilibrium in natural gas habitats and in marine shales. There is experimental evidence for metathesis ( ) as the catalytic path to equilibrium. However, it is without example in contemporary catalysis, and therefore, calls for extraordinary empirical support. Here, we report independent and unequivocal evidence of natural catalytic activity in a marine shale linking metathesis and thermodynamic equilibrium. A Cretaceous Mowry shale catalysed the dimerization of propylene (C 3 H 6 ) to methyl cyclopentane (MCP, C 6 H 12 ) and n -hexane ( n -C 6 , C 6 H 14 ) at 50 ° C in greater than 99 per cent selectivity. Propylene increased the rate of n -C 6 generation by a factor of 100 with 100 per cent selectivity to the straight-chain hexane ( n -C 6 ). Propylene also suppressed the generation of all hydrocarbons except cyclopentane, MCP and n -C 6 . The ratio MCP/ n -C 6 , which swung chaotically between 1 and 25 before propylene addition, was rendered invariant with propylene addition ( R 2 =0.99; MCP/ n -C 6 =1.20±0.034 s.d.). These uniquely catalytic reactions confirm natural catalytic activity in this shale. It appears to be ‘palaeoactivity’ possibly conceived in early diagenesis and sustained over geological time.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Benfatti, Fides, Montse Guiteras Capdevila, Luca Zoli, Elena Benedetto, and Pier Giorgio Cozzi. "Catalytic stereoselective benzylic C–H functionalizations by oxidative C–H activation and organocatalysis." Chemical Communications, no. 39 (2009): 5919. http://dx.doi.org/10.1039/b910185c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lee, Sun Hwa, Serge I. Gorelsky, and Georgii I. Nikonov. "Catalytic H/D Exchange of Unactivated Aliphatic C–H Bonds." Organometallics 32, no. 21 (October 9, 2013): 6599–604. http://dx.doi.org/10.1021/om4009372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mantry, Lusina, Rajaram Maayuri, Vikash Kumar, and Parthasarathy Gandeepan. "Photoredox catalysis in nickel-catalyzed C–H functionalization." Beilstein Journal of Organic Chemistry 17 (August 31, 2021): 2209–59. http://dx.doi.org/10.3762/bjoc.17.143.

Повний текст джерела
Анотація:
Catalytic C‒H functionalization has become a powerful strategy in organic synthesis due to the improved atom-, step- and resource economy in comparison with cross-coupling or classical organic functional group transformations. Despite the significant advances in the metal-catalyzed C‒H activations, recent developments in the field of metallaphotoredox catalysis enabled C‒H functionalizations with unique reaction pathways under mild reaction conditions. Given the relative earth-abundance and cost-effective nature, nickel catalysts for photoredox C‒H functionalization have received significant attention. In this review, we highlight the developments in the field of photoredox nickel-catalyzed C‒H functionalization reactions with a range of applications until summer 2021.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Li, Yanjun, Yan-Cheng Liou, Xinran Chen, and Lutz Ackermann. "Thioether-enabled palladium-catalyzed atroposelective C–H olefination for N–C and C–C axial chirality." Chemical Science 13, no. 14 (2022): 4088–94. http://dx.doi.org/10.1039/d2sc00748g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Guillemard, Lucas, and Joanna Wencel-Delord. "When metal-catalyzed C–H functionalization meets visible-light photocatalysis." Beilstein Journal of Organic Chemistry 16 (July 21, 2020): 1754–804. http://dx.doi.org/10.3762/bjoc.16.147.

Повний текст джерела
Анотація:
While aiming at sustainable organic synthesis, over the last decade particular attention has been focused on two modern fields, C–H bond activation, and visible-light-induced photocatalysis. Couplings through C–H bond activation involve the use of non-prefunctionalized substrates that are directly converted into more complex molecules, without the need of a previous functionalization, thus considerably reduce waste generation and a number of synthetic steps. In parallel, transformations involving photoredox catalysis promote radical reactions in the absence of radical initiators. They are conducted under particularly mild conditions while using the visible light as a cheap and economic energy source. In this way, these strategies follow the requirements of environment-friendly chemistry. Regarding intrinsic advantages as well as the complementary mode of action of the two catalytic transformations previously introduced, their merging in a synergistic dual catalytic system is extremely appealing. In that perspective, the scope of this review aims to present innovative reactions combining C–H activation and visible-light induced photocatalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Li, Jing, Huanan Huang, Weihong Liang, Qun Gao, and Zheng Duan. "Catalytic C–H and C–S Bond Activation of Thiophenes." Organic Letters 15, no. 2 (December 28, 2012): 282–85. http://dx.doi.org/10.1021/ol303136x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Brunard, Erwan, Vincent Boquet, Elsa Van Elslande, Tanguy Saget, and Philippe Dauban. "Catalytic Intermolecular C(sp3)–H Amination: Selective Functionalization of Tertiary C–H Bonds vs Activated Benzylic C–H Bonds." Journal of the American Chemical Society 143, no. 17 (April 26, 2021): 6407–12. http://dx.doi.org/10.1021/jacs.1c03872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ma, Jun-An, and Shen Li. "Catalytic fluorination of unactivated C(sp3)–H bonds." Org. Chem. Front. 1, no. 6 (2014): 712–15. http://dx.doi.org/10.1039/c4qo00078a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Davies, Huw M. L., and Rohan E. J. Beckwith. "Catalytic Enantioselective C−H Activation by Means of Metal−Carbenoid-Induced C−H Insertion." Chemical Reviews 103, no. 8 (August 2003): 2861–904. http://dx.doi.org/10.1021/cr0200217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Davies, Huw M. L., Qihui Jin, Pingda Ren, and Andrey Yu Kovalevsky. "Catalytic Asymmetric Benzylic C−H Activation by Means of Carbenoid-Induced C−H Insertions." Journal of Organic Chemistry 67, no. 12 (June 2002): 4165–69. http://dx.doi.org/10.1021/jo016351t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Al-Fatesh, Ahmed, Kenit Acharya, Ahmed I. Osman, Ghzzai Almutairi, Anis Hamza Fakeeha, Ahmed Elhag Abasaeed, Yousef A. Al-Baqmaa, and Rawesh Kumar. "Kinetic Study of Zirconia-Alumina-Supported Ni-Fe Catalyst for Dry Reforming of Methane: Impact of Partial Pressure and Reaction Temperature." International Journal of Chemical Engineering 2023 (May 11, 2023): 1–11. http://dx.doi.org/10.1155/2023/8667432.

Повний текст джерела
Анотація:
A better understanding of the reaction mechanism and kinetics of dry reforming of methane (DRM) remains challenging, necessitating additional research to develop robust catalytic systems with high catalytic performance, low cost, and high stability. Herein, we prepared a zirconia-alumina-supported Ni-Fe catalyst and used it for DRM. Different partial pressures and temperatures are used to test the dry reforming of methane reaction as a detailed kinetic study. The optimal reaction conditions for DRM catalysis are 800°C reaction temperature, 43.42 kPa CO2 partial pressure, and 57.9 kPa CH4 partial pressure. At these optimal reaction conditions, the catalyst shows a 0.436 kPa2 equilibrium constant, a 0.7725 m o l C H 4 /gCat/h rate of CH4 consumption, a 0.00651 m o l C H 4 /m2/h arial rate of CH4 consumption, a 1.6515 m o l H 2 /gCat/h rate of H2 formation, a 1.4386 molCO/gCat/h rate of CO formation. This study’s findings will inspire the cost-effective production of robust catalytic systems and a better understanding of the DRM reaction’s kinetics.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Gauchot, V., D. R. Sutherland, and A. L. Lee. "Dual gold and photoredox catalysed C–H activation of arenes for aryl–aryl cross couplings." Chemical Science 8, no. 4 (2017): 2885–89. http://dx.doi.org/10.1039/c6sc05469b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Chiusoli, Gian Paolo, Marta Catellani, Mirco Costa, Elena Motti, Nicola Della Ca’, and Giovanni Maestri. "Catalytic C–C coupling through C–H arylation of arenes or heteroarenes." Coordination Chemistry Reviews 254, no. 5-6 (March 2010): 456–69. http://dx.doi.org/10.1016/j.ccr.2009.07.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Yan, Ming, Li-Wei Yang, Wen-Hao Hu, Fu-Yao Zhang, and Albert S. C. Chan. "ChemInform Abstract: Catalytic Asymmetric Formation of C-H and C-C Bonds." ChemInform 32, no. 23 (May 26, 2010): no. http://dx.doi.org/10.1002/chin.200123264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Monguchi, Daiki, Taiki Fujiwara, Hirotoshi Furukawa, and Atsunori Mori. "Direct Amination of Azoles via Catalytic C−H, N−H Coupling." Organic Letters 11, no. 7 (April 2, 2009): 1607–10. http://dx.doi.org/10.1021/ol900298e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Matsuda, Takanori. "Catalytic Functionalization of Unactivated sp3 C-H Bonds." Journal of Synthetic Organic Chemistry, Japan 64, no. 7 (2006): 780–81. http://dx.doi.org/10.5059/yukigoseikyokaishi.64.780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Santoro, Stefano, Sergei I. Kozhushkov, Lutz Ackermann, and Luigi Vaccaro. "Heterogeneous catalytic approaches in C–H activation reactions." Green Chemistry 18, no. 12 (2016): 3471–93. http://dx.doi.org/10.1039/c6gc00385k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Bae, Seri, Ha-Lim Jang, Haeun Jung, and Jung Min Joo. "Catalytic C–H Allylation and Benzylation of Pyrazoles." Journal of Organic Chemistry 80, no. 1 (December 17, 2014): 690–97. http://dx.doi.org/10.1021/jo5025317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Toutov, Anton A., Wen-Bo Liu, Kerry N. Betz, Brian M. Stoltz, and Robert H. Grubbs. "Catalytic C–H bond silylation of aromatic heterocycles." Nature Protocols 10, no. 12 (October 29, 2015): 1897–903. http://dx.doi.org/10.1038/nprot.2015.118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Johnson, S. A. "Nickel complexes for catalytic C–H bond functionalization." Dalton Transactions 44, no. 24 (2015): 10905–13. http://dx.doi.org/10.1039/c5dt00032g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Xu, Liang, Guanghui Wang, Shuai Zhang, Hong Wang, Linghua Wang, Li Liu, Jiao Jiao, and Pengfei Li. "Recent advances in catalytic C−H borylation reactions." Tetrahedron 73, no. 51 (December 2017): 7123–57. http://dx.doi.org/10.1016/j.tet.2017.11.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Huang, Xiongyi, and John T. Groves. "Taming Azide Radicals for Catalytic C–H Azidation." ACS Catalysis 6, no. 2 (December 31, 2015): 751–59. http://dx.doi.org/10.1021/acscatal.5b02474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Bedford, Robin B., Charlotte J. Mitchell, and Ruth L. Webster. "ChemInform Abstract: Solvent-Free Catalytic C-H Functionalization." ChemInform 41, no. 38 (August 26, 2010): no. http://dx.doi.org/10.1002/chin.201038085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Badiei, Yosra M, Adriana Dinescu, Xuliang Dai, Robert M Palomino, Frank W Heinemann, Thomas R Cundari, and Timothy H Warren. "Copper-Nitrene Complexes in Catalytic CH Amination." Angewandte Chemie International Edition 47, no. 51 (December 8, 2008): 9961–64. http://dx.doi.org/10.1002/anie.200804304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Badiei, Yosra M, Adriana Dinescu, Xuliang Dai, Robert M Palomino, Frank W Heinemann, Thomas R Cundari, and Timothy H Warren. "Copper-Nitrene Complexes in Catalytic CH Amination." Angewandte Chemie 120, no. 51 (December 8, 2008): 10109–12. http://dx.doi.org/10.1002/ange.200804304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tomin, Anna, Seema Bag, and Bela Torok. "ChemInform Abstract: Catalytic C-H Bond Activation Reactions." ChemInform 44, no. 18 (April 11, 2013): no. http://dx.doi.org/10.1002/chin.201318231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії