Статті в журналах з теми "Catalyse or/silicium"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Catalyse or/silicium.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Catalyse or/silicium".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bumba, Jakub, Vladislav Drinek, Pavel Krystynik, Pavel Dytrych, and Olga Solcova. "Nickel Silicide Catalyst from Photovoltaic Waste for the Methanation Reaction." Minerals 11, no. 12 (December 14, 2021): 1412. http://dx.doi.org/10.3390/min11121412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A technology designed for recycling photovoltaic (PV) cells at the end of their life was successfully used for the preparation of a nickel silicide catalyst. PV cells were mixed with magnesium scrap to produce magnesium silicide (Mg2Si), with almost total conversion under optimized conditions (400 °C, 5 Pa, 25 min), in a constructed semi-open tubular reactor. Subsequently, magnesium silicide was hydrolyzed by 25% phosphoric acid to produce a mixture of silicon hydrides, which were utilized as chemical vapor deposition (CVD) precursors for the preparation of a nickel silicide catalyst. The activity and stability of the prepared catalyst was repeatedly tested for methanation reactions. It was verified that the nickel silicide catalyst showed an approximately 20% higher activity for the methanation reactions compared to the commonly used nickel catalyst.
2

Du, Jun, Jiao Liu, Hua Qiang Fu, Bu Hui Li, and Qi Wu. "Recent Progress in Titanium Silicide Nanowires: Properties, Preparations and Applications." Applied Mechanics and Materials 446-447 (November 2013): 50–54. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rapid development of nanotechnology has opened up multiple areas of application of titanium silicide nanowires including microscopic fields, sensor and catalyst areas and electrode materials, as well as their potential applications in nanodevices. The preparation of titanium silicide nanowires can be summarized as top-down method and bottom-up method. Its necessary to find some simple and quick ways to prepare titanium silicide nanowires with the desirable pattern. Recent advances in manipulating titanium silicide nanowires are discussed with a focus on the progress of nanowire preparations and applications.
3

Zhang, Liangliang, Xiao Chen, Yujing Chen, Zhijian Peng, and Changhai Liang. "Acid-tolerant intermetallic cobalt–nickel silicides as noble metal-like catalysts for selective hydrogenation of phthalic anhydride to phthalide." Catalysis Science & Technology 9, no. 5 (2019): 1108–16. http://dx.doi.org/10.1039/c8cy02258e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Intermetallic Co–Ni silicide catalyst embedded in a carbon matrix with a unique synergistic effect exhibits excellent activity, selectivity, and acid corrosion resistance in hydrogenation of phthalic anhydride to phthalide, which matches noble metal catalysts.
4

Burnstine-Townley, Alex A., Sajia Afrin, Yuen Yee Li Sip, David Fox, and Lei Zhai. "In Situ Formation of Nanoparticles on Carbon Nanofiber Surface Using Ceramic Intercalating Agents." Journal of Composites Science 6, no. 10 (October 11, 2022): 303. http://dx.doi.org/10.3390/jcs6100303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nickel silicide nanoparticles were prepared in situ on carbon nanofibers through pyrolysis of electrospun fibers containing poly(acrylonitrile) (PAN, carbon fiber precursor), silazane (SiCN ceramic precursor), and nickel chloride (nickel source). SiCN ceramics produced in carbon nanofibers during the pyrolysis expanded the graphitic interlayer spacing and facilitated the diffusion of metal atoms to the fiber surfaces, leading to the formation of nickel silicide nanoparticles at a reduced temperature. In addition, nickel silicide nanoparticles catalyzed an in situ formation of carbon nanotubes, with carbon sourced from the decomposition of silazane. The method introduces a simple route to produce carbon supported metal nanoparticles for catalysis and energy storage applications.
5

Liang, Mei-Keat, Siddharth V. Patwardhan, Elena N. Danilovtseva, Vadim V. Annenkov, and Carole C. Perry. "Imidazole catalyzed silica synthesis: Progress toward understanding the role of histidine in (bio)silicification." Journal of Materials Research 24, no. 5 (May 2009): 1700–1708. http://dx.doi.org/10.1557/jmr.2009.0223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Histidine is an amino acid present in proteins involved in biosilica formation and often found in peptides identified during phage display studies but its role(s) and the extent of its involvement in the silica precipitation process is not fully understood. In this contribution we describe results from an in vitro silicification study conducted using poly-histidine (P-His) and a series of different molecular weight synthetic polymers containing the imidazole functionality (polyvinylimidazole, PVI) for comparison. We show that the presence of imidazole from PVI or P-His is able to catalyze silicic acid condensation; the effect being greater for P-His. The catalytic mechanism is proposed to involve the dual features of the imidazole group—its ability to form hydrogen bonds with silicic acid and electrostatic attraction toward oligomeric silicic acid species.
6

Karabulut, Deniz, and Sema Akyalcin. "Friedel-Crafts alkylation of benzene with benzyl alcohol over H-MCM-22." International Journal of Chemical Reactor Engineering 19, no. 5 (April 28, 2021): 541–51. http://dx.doi.org/10.1515/ijcre-2020-0175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract MCM-22 was synthesized by using silicic acid powder as a silica source under the static hydrothermal condition and characterized by X-ray diffraction, nitrogen adsorption-desorption isotherms, scanning electron microscopy, inductively coupled plasma optical emission spectrometry, and temperature-programmed desorption of ammonia. The liquid phase benzylation of benzene with benzyl alcohol to diphenylmethane was investigated over H-MCM-22. The effects of reaction parameters on the conversion of benzyl alcohol and product distribution were determined. Under optimal reaction conditions, diphenylmethane yield of 92.1% was achieved for 99.3% conversion of benzyl alcohol in 3 h of reaction period. The reusability of the catalyst was also investigated after calcination of the catalyst in stagnant air at 500 °C for 4 h. The results show that the organic species produced during the reaction deposited in the catalyst lead to the deactivation of the catalyst and the calcination of the deactivated catalyst causes catalyst dealumination.
7

Liu, Xin, Cai Liu, and Changgong Meng. "Oligomerization of Silicic Acids in Neutral Aqueous Solution: A First-Principles Investigation." International Journal of Molecular Sciences 20, no. 12 (June 21, 2019): 3037. http://dx.doi.org/10.3390/ijms20123037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Crystallite aluminosilicates are inorganic microporous materials with well-defined pore-size and pore-structures, and have important industrial applications, including gas adsorption and separation, catalysis, etc. Crystallite aluminosilicates are commonly synthesized via hydrothermal processes, where the oligomerization of silicic acids is crucial. The mechanisms for the oligomerization of poly-silicic acids in neutral aqueous solution were systematically investigated by extensive first-principles-based calculations. We showed that oligomerization of poly-silicic acid molecules proceeds through the lateral attacking and simultaneously proton transfer from the approaching molecule for the formation of a 5-coordinated Si species as the transition state, resulting in the ejection of a water molecule from the formed poly-silicic acid. The barriers for this mechanism are in general more plausible than the conventional direct attacking of poly-silicic acid with reaction barriers in the range of 150–160 kJ/mol. The formation of linear or branched poly-silicic acids by intermolecular oligomerization is only slightly more plausible than the formation of cyclic poly-silicic acids via intramolecular oligomerization according to the reaction barriers (124.2–133.0 vs. 130.6–144.9 kJ/mol). The potential contributions of oligomer structures, such as the length of the linear oligomers, ring distortions and neighboring linear branches, etc., to the oligomerization were also investigated but found negligible. According to the small differences among the reaction barriers, we proposed that kinetic selectivity of the poly-silicic acids condensation would be weak in neutral aqueous solution and the formation of zeolite-like structures would be thermodynamics driven.
8

Teh, Aun Shih, Daniel C. S. Bien, Rahimah Mohd Saman, Soo Kien Chen, Kai Sin Tan, and Hing Wah Lee. "Multiwalled Carbon Nanotube Growth Mechanism on Conductive and Non-Conductive Barriers." Advanced Materials Research 403-408 (November 2011): 1201–4. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.1201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report on the catalytic growth of multiwalled carbon nanotubes by plasma enhanced chemical vapor deposition using Ni and Co catalyst deposited on SiO2, Si3N 4,ITO and TiN Xbarrier layers; layers which are typically used as diffusive barriers of the catalyst material. Results revealed higher growth rates on conductive ITO and TiN Xas compared to non con-ductiveSiO2, and Si3N 4,barriers. Micrograph images reveal the growth mechanism for nanotubes grown on SiO2, Si3N 4 and ITO to be tip growth while base growth was observed for the TiN X barrier layer. Initial conclusion suggests that conductive diffusion barrier surfaces promotes growth rates however it is possible that multiwalled carbon nanotubes grown onSiO2, and Si3N 4,were encumbered as a result of the formation of silicide as shown in the results here.
9

Sharma, Anjali, Prabhjot Kaur, Sulekha Chahal, Bindu Battan, and Jitender Sharma. "Relative abundance of silicolytic bacteria in different habitats and its statistical analysis." Research Journal of Chemistry and Environment 27, no. 7 (June 15, 2023): 84–91. http://dx.doi.org/10.25303/2707rjce084091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silicolytic bacteria are widely distributed playing significant role in silicon cycle. They convert silica into free silicic acid which is taken up by various life forms. Silicases catalyze dissolution of silica into silicic acid. Herein, diversity of silicolytic bacteria in different types of soil samples and wild grasses was studied by plate assay using different media. Silicase activity of two isolates from two different habitats was compared. The results revealed that silicolytic bacteria were abundant in number but their population varied in different habitats. Paddy field soil and wild grasses harbored the highest population of silicolytic bacteria. Different screening media were evaluated. Pigment and exo-polysachharide were also produced by some silicolytic endophytes. Statistical analysis showed that silicolytic bacterial population in paddy soil and wild grasses was significantly abundant as compared to that in dumping land and contaminated soil around heavy metal industries.
10

Meng, Xiang, Hiroaki Suzuki, Kenta Sasaki, and Hirokazu Tatsuoka. "Characteristic Modification of Catalysts by Use of a Chloride Source." Solid State Phenomena 247 (March 2016): 106–10. http://dx.doi.org/10.4028/www.scientific.net/ssp.247.106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Structural control and morphological modification of a series of Si-based nanostructures were studied from the viewpoint of modifying the catalyst’s characteristics. The catalyst was modified from a liquid to a solid during its growth. The growth evolution of the faceted Si nanowires occurred via a vapor–liquid–solid mechanism followed by a silicide vapor–solid–solid mechanism. The shapes of the catalysts defined the shapes of the nanowires during the vapor–solid–solid growth. The catalyst was further modified by the deposition of MnCl2. Only irregularly shaped Si particles or MnCl2 particles were observed on top of the Si nanowires. The characteristic modification of catalysts by liquid-phase crystal nucleation and deposition of liquid-phase droplets was discussed. In addition, the synthesis of a CrSi2 nanowire bundle by the formation of dense nanoparticles was studied.
11

Walter, Holger, Gerhard Roewer, and Klaus Bohmhammel. "Mechanism of the silicide-catalysed hydrodehalogenation of silicon tetrachloride to trichlorosilane." Journal of the Chemical Society, Faraday Transactions 92, no. 22 (1996): 4605. http://dx.doi.org/10.1039/ft9969204605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Wen, Hua-Chiang, Koho Yang, Keng-Liang Ou, Wen-Fa Wu, Ren-Chon Luo, and Chang-Pin Chou. "Carbon nanotubes grown using cobalt silicide as catalyst and hydrogen pretreatment." Microelectronic Engineering 82, no. 3-4 (December 2005): 221–27. http://dx.doi.org/10.1016/j.mee.2005.07.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kim, Joondong, Jong-Uk Bae, Wayne A. Anderson, Hyun-Mi Kim, and Ki-Bum Kim. "Solid-state growth of nickel silicide nanowire by the metal-induced growth method." Journal of Materials Research 21, no. 11 (November 2006): 2936–40. http://dx.doi.org/10.1557/jmr.2006.0364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Unique nanowire growth was accomplished at 575 °C by the metal-induced growth (MIG) method. This involved a spontaneous reaction between metal and Si. The deposited metal worked as a catalyst layer to grow nanowires in the solid state. Various metals (Ni, Co, and Pd) were used in MIG nanowire fabrication, and the Ni-induced case was successful in demonstrating that metal species should be the dominant factor for growing nanowires. The Ni to Si composition was studied by energy dispersive spectroscopy showing the Ni diffusion inside the nanowire as well as the Ni silicide layer. The practical application of the MIG nanowire was proved by fabricating nanoscale contacts.
14

Ryabchuk, Pavel, Giovanni Agostini, Marga-Martina Pohl, Henrik Lund, Anastasiya Agapova, Henrik Junge, Kathrin Junge, and Matthias Beller. "Intermetallic nickel silicide nanocatalyst—A non-noble metal–based general hydrogenation catalyst." Science Advances 4, no. 6 (June 2018): eaat0761. http://dx.doi.org/10.1126/sciadv.aat0761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Meng, Erchao, Wen Li, Kaito Nakane, Yuya Shirahashi, Hiroaki Suzuki, Yusuke Sato, and Hirokazu Tatsuoka. "Synthesis of Si nanowires using Au catalyst accompanied with silicide nanoparticle formation." physica status solidi (c) 10, no. 12 (November 11, 2013): 1789–92. http://dx.doi.org/10.1002/pssc.201300347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Devecerski, Aleksandar, Milica Posarac, Adela Egelja, Milena Rosic, Tatjana Volkov-Husovic, and Branko Matovic. "SiC synthesis using domestic mineral resources." Processing and Application of Ceramics 5, no. 2 (2011): 63–67. http://dx.doi.org/10.2298/pac1102063d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The possibility of using domestic Mg-silicate (sepiolite, white) as Si source and novolac resin (as carbon source), for synthesis of fine ?-SiC powder at relatively low temperatures (1673-1873 K), was demonstrated. Obtained SiC powders consist of fine ?-SiC particles and did not retain the fibrous morphology of starting sepiolites. Carbothermal reduction process, which was used in this study, is greatly influenced by catalyst addition (FeCl3, FeSi). In order to obtain pure SiC powders, it is necessary to completely remove all Mg-species, and catalytic influence of Fe is attributed to FeSi important role in reduction of Mg2SiO4 and MgO into Mg(g). Formation of SiC whiskers is observed only in samples with Fe introduced in form of iron-silicide (FeSi).
17

Guerriero, Gea, Ian Stokes, and Christopher Exley. "Is callose required for silicification in plants?" Biology Letters 14, no. 10 (October 2018): 20180338. http://dx.doi.org/10.1098/rsbl.2018.0338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The cell wall polymer callose catalyses the formation of silica in vitro and is heavily implicated in biological silicification in Equisetum (horsetail) and Arabidopsis (thale cress) in vivo . Callose, a β-1,3-glucan, is an ideal partner for silicification, because its amorphous structure and ephemeral nature provide suitable microenvironments to support the condensation of silicic acid into silica. Herein, using scanning electron microscopy, immunohistochemistry and fluorescence, we provide further evidence of the cooperative nature of callose and silica in biological silicification in rice, an important crop plant and known silica accumulator. These new data along with recently published research enable us to propose a model to describe the intracellular events that together determine callose-driven biological silicification.
18

Wang, D. "Silicide formation on a Pt/SiO2 model catalyst studied by TEM, EELS, and EDXS." Journal of Catalysis 219, no. 2 (October 25, 2003): 434–41. http://dx.doi.org/10.1016/s0021-9517(03)00219-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lee, Jin-Bok, Chel-Jong Choi, and Tae-Yeon Seong. "Growth of amorphous silica nanowires using nickel silicide catalyst by a thermal annealing process." Current Applied Physics 11, no. 2 (March 2011): 199–202. http://dx.doi.org/10.1016/j.cap.2010.07.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Bábor, Petr, Radek Duda, Josef Polčák, Stanislav Průša, Michal Potoček, Peter Varga, Jan Čechal, and Tomáš Šikola. "Real-time observation of self-limiting SiO2/Si decomposition catalysed by gold silicide droplets." RSC Advances 5, no. 123 (2015): 101726–31. http://dx.doi.org/10.1039/c5ra19472e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Rao, Deepak, Sangita Yadav, Ravish Choudhary, Dharmendra Singh, Rakesh Bhardwaj, Sharmistha Barthakur, and Shiv Kumar Yadav. "Silicic and Humic Acid Priming Improves Micro- and Macronutrient Uptake, Salinity Stress Tolerance, Seed Quality, and Physio-Biochemical Parameters in Lentil (Lens culinaris spp. culinaris)." Plants 12, no. 20 (October 11, 2023): 3539. http://dx.doi.org/10.3390/plants12203539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lentil is an important grain legume crop which is mostly grown on marginal soils that hamper its productivity. Improvement of salt tolerance in lentils is considered to be a useful strategy of utilizing salt-affected lands in an economic manner. This study was conducted to evaluate the effectiveness of seed priming using silicic acid and humic acid both seperately and in combination to improve salt stress tolerance among three different lentil varieties: IPL-316 (tolerant), PSL-9, and PDL-1 (susceptible). The concentrations and durations of treatments were standardized under the normal condition and the salinity stress condition. Salt stress hindered seedling emergence and biomass production and accelerated Na+ toxicity and oxidative damage at the seedling stage in untreated seeds. Nevertheless, chemical priming improved early seedling emergence, increased root length, shoot length, and seed vigor index I and II, and reduced the mean germination time. A significant quantitative change in biochemical parameters under normal and salinity stress conditions was observed in IPL-316,viz. Specifically, for IPL-316, the following parameters were observed (values under the normal condition and values under salt stress conditions, respectively): chlorophyll-a (16 and 13 mg/g Fw), chlorophyll-b (25 and 16 mg/g FW), total chlorophyll content (42 and 30 mg/g FW), relative leaf water content (92% and 82%), total soluble sugars (26 and 33 ug/g FW), free amino acid (10 and 7 mg/g FW), total phenol (26 and 24 mg of GAE/g FW), total protein (35 and 29 mg/g FW), carbohydrate (208 and 173 mg/g FW), superoxide dismutase (SOD) (29 and 35 unit/min./g FW), proline (0.28 and 0.32 u mol/g FW), catalase (CAT) (84 and 196 unit/mL/g FW), and peroxidase (POX) (217 and 738 unit/mL/g FW). Furthermore, histochemical analysis of H2O2 and O2−, micronutrients, and macronutrients also increased, while malondialdehyde (MDA) (0.31 and 0.47 nmol/mL FW) content decreased using silicic and humic acid priming under salt stress conditions. The combination of silicic and humic acids improved seedling growth and reduced oxidative damage in lentil plants under salt stress conditions. The combination of silicic and humic acid priming hastened seedling emergence, seed quality parameters, and biochemical parameters under salt stress over respective control. To the best of our knowledge, this is the first report of integrated chemical priming in lentils for salinity stress. In conclusion, chemical priming using a combination of silicic and humic acid performed better in terms of seed quality due to enhanced antioxidant machinery, better membrane stability and osmolyte protection, and enhanced nutrient uptake under salt stress conditions.
22

Kleinke, Holger. "Ti5Si1.3Sb1.7 — The first titanium silicide antimonide, forming a crystal structure not found in either binary system." Canadian Journal of Chemistry 79, no. 9 (September 1, 2001): 1338–43. http://dx.doi.org/10.1139/v01-121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ti5SixSb3–x can be prepared by melting mixtures of Ti, Si, and TiSb2. The ternary phase with x = 1.32(5) crystallizes in the W5Si3 type (space group I4/mcm, Z = 8, for x = 1.32(5): a = 1034.6(2), c = 515.2(1) pm), while Ti5Sb3 and Ti5Si3 adopt the Yb5Sb3 type and the Mn5Si3 type, respectively. The Si and Sb atoms share two sites in Ti5Si1.32(5)Sb1.68: one site is located within a linear chain with short interatomic bonds, which is almost exclusively occupied by Si (i.e., 92(1)% Si and 8% Sb), whereas the second site, being occupied by 80(2)% Sb and 20% Si, shows no significant interactions between the main group elements. Band structure calculations reveal the new silicide antimonide being metallic as a consequence of partly filled Ti d states. The structure is mainly stabilized by bonding Ti—Sb, Ti—Si, and Si—Si interactions.Key words: titanium, silicide, antimonide, crystal structure, electronic structure, structure and bonding.
23

Tarasov, I. A., M. V. Rautskii, I. A. Yakovlev, and M. N. Volochaev. "Effect of epitaxial alignment on electron transport from quasi-two-dimensional iron silicide alpha-FeSi-=SUB=-2-=/SUB=- nanocrystals into p-Si(001)." Физика и техника полупроводников 52, no. 5 (2018): 523. http://dx.doi.org/10.21883/ftp.2018.05.45867.56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractSelf-assembled growth of α-FeSi_2 nanocrystal ensembles on gold-activated and gold-free Si(001) surface by molecular beam epitaxy is reported. The microstructure and basic orientation relationship (OR) between the silicide nanocrystals and silicon substrate were analysed. The study reveals that utilisation of the gold as catalyst regulates the preferable OR of the nanocrystals with silicon and their habitus. It is shown that electron transport from α-FeSi2 phase into p-Si(001) can be tuned by the formation of (001)—or (111)—textured α-FeSi2 nanocrystals ensembles. A current-voltage characteristic of the structures with different preferable epitaxial alignment (α-FeSi_2(001)/Si(100) and α-FeSi_2(111)/Si(100)) shows good linearity at room temperature. However, it becomes non-linear at different temperatures for different ORs due to different Schottky barrier height governed by a particular epitaxial alignment of the α-FeSi_2/ p -Si interfaces.
24

KINOSHITA, Masataka, Teruhisa HONGO, Yoshio MATSUI, and Atsushi YAMAZAKI. "Catalytic activity of manganese oxide type raney catalyst prepared by alkali treatment of metal silicide." Journal of the Ceramic Society of Japan 128, no. 7 (July 1, 2020): 424–26. http://dx.doi.org/10.2109/jcersj2.20078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Li, Suwen, Changjian Zhou, Salahuddin Raju, and Mansun Chan. "Catalyst design for high-density and low-temperature CNT synthesis on conductive Ti silicide substrate." Diamond and Related Materials 75 (May 2017): 39–43. http://dx.doi.org/10.1016/j.diamond.2017.01.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Grignon-Dubois, Micheline, Michelle Fialeix, and Bernadette Rezzonico. "Nouveaux modèles siliciés dérivés de la quinoléine." Canadian Journal of Chemistry 68, no. 12 (December 1, 1990): 2153–58. http://dx.doi.org/10.1139/v90-330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silylation of quinoline with Me3SiCl/Li/THF reagent has been studied. We obtained new tri-, tetra-, and hexasilylated derivatives whose stereochemistry has been established using NMR data. Comparison of these results to those previously obtained from naphthalene shows the effect of nitrogen on the silylation process. Keywords: silylation, quinoline, polysilyl-hydro-quinolines.
27

Ludeña Huaman, Michael Azael. "Proceso Sol-Gel en la Síntesis de Dióxido de Silicio (Sio2)." Revista Bases de la Ciencia. e-ISSN 2588-0764 6, no. 2 (August 30, 2021): 1. http://dx.doi.org/10.33936/rev_bas_de_la_ciencia.v6i2.2548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
En ciencia de los materiales el dióxido de silicio, también conocido como sílice, ha recibido significante atención en diferentes áreas de investigación, ganando un espacio importante y de mucho interés entre los investigadores, debido a sus diversas aplicaciones que abarcan desde la síntesis de soportes para catalizadores hasta materiales para la liberación controlada de fármacos. Es motivo por el cual, en este manuscrito se dan a conocer aspectos químicos fundamentales e importantes sobre el proceso sol-gel en la síntesis de la sílice a partir de moléculas precursoras de alcóxidos de silicio y organosilanos. Se analiza cómo el catalizador ácido/básico y el tipo de precursor afectan a las reacciones de hidrólisis y condensación, así como a la estructura y morfología del material. Palabra clave: Sílice, Sol-gel, Hidrólisis, Condensación, Alcóxido. Abstract In materials science, silicon dioxide has received significant attention in different research areas, gaining valuable space and interest between researchers due to its diverse applications, ranging from the synthesis of supports for catalysts to materials for controlled drug liberation. Herein we describe fundamental and important chemical aspects of the sol-gel process in the synthesis of silica, starting from precursor molecules of silicon alkoxides and organosilanes. Moreover, this review analyses how the acid/basic catalyst and the type of precursor affect the hydrolysis and condensation reaction, as well as the structure and morphology of the obtained material. Keywords: Silica, Sol-gel, Hydrolysis, Condensation, Alkoxide.
28

Babizhetskyy, Volodymyr, Jérome Roger, Stéphanie Députier, Roland Guérin, Régis Jardin, Josef Bauer, Kurt Hiebl, Christophe Jardin, Jean-Yves Saillard, and Jean-François Halet. "Gd5Si2B8: A Ternary Rare-Earth-Metal Silicide Boride Compound." Angewandte Chemie International Edition 43, no. 15 (April 2, 2004): 1979–83. http://dx.doi.org/10.1002/anie.200352468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Potoczna-Petru, Danuta, Leszek Kępiński, and Ludwina Krajczyk. "Interaction of Co nanoparticles with SiO2: silicide formation." Reaction Kinetics and Catalysis Letters 97, no. 2 (July 11, 2009): 321–27. http://dx.doi.org/10.1007/s11144-009-0033-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Carlow, G. R., and M. Zinke-Allmang. "Article." Canadian Journal of Chemistry 76, no. 11 (November 1, 1998): 1737–45. http://dx.doi.org/10.1139/v98-161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present results on the formation of buried silicide layers at ion implantation doses in the range of 1-60% of the critical dose for formation of a uniform layer. We emphasize observations for the low-dose range of 1-5% where the precipitate density is quite dilute. The Co redistribution during post-implant annealing is measured using Rutherford backscattering techniques and secondary ion mass spectrometry. Experimental observations during post-implantation annealing at 1000°C involves (i) a contraction of the Co depth profile for all doses, (ii) shifting of the peak of the profile towards the bulk, and (iii) formation of a secondary Co peak near the surface. The secondary peak is only present in samples implanted to greater than 3% of the critical dose. The interpretation of the shift of the main peak and the occurrence of the secondary peak requires a model exceeding the standard ripening model used previously to describe mesotaxy. We suggest that more recent ripening-based concepts allow for a full description of these observations with a minimum of parameters, particularly not requiring interaction with the complex defect profiles formed initially during implantation. Essential for this model is a proper inclusion of precipitate-precipitate interactions and the role of diffusion screening.Key words: silicide, Co implantation, mesotaxy, precipitate, ripening, screening.
31

Gao, Changjiu, Chune Liang, Qing Wang, Wenchao Li, Qichao Liang, Chunhui Wang, and Lili Chen. "A biodegradable nanodrug of molybdenum silicide for photothermal oncotherapy." New Journal of Chemistry 44, no. 14 (2020): 5211–17. http://dx.doi.org/10.1039/d0nj00762e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kamegawa, Takashi, Shoki Kawakami, Misumi Okamoto, and Ryoichi Katsumi. "Synthesis of Flower-Like Structured Calcium Silicide and Its Application in the Preparation of Palladium-Loaded Catalyst." Bulletin of the Chemical Society of Japan 94, no. 8 (August 15, 2021): 2089–91. http://dx.doi.org/10.1246/bcsj.20210158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zhu, Ji, and G. A. Somorjai. "Formation of Platinum Silicide on a Platinum Nanoparticle Array Model Catalyst Deposited on Silica during Chemical Reaction." Nano Letters 1, no. 1 (January 2001): 8–13. http://dx.doi.org/10.1021/nl005512q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Bouchmella, Karim, P. Hubert Mutin, Mariana Stoyanova, Claude Poleunis, Pierre Eloy, Uwe Rodemerck, Eric M. Gaigneaux, and Damien P. Debecker. "Olefin metathesis with mesoporous rhenium–silicium–aluminum mixed oxides obtained via a one-step non-hydrolytic sol–gel route." Journal of Catalysis 301 (May 2013): 233–41. http://dx.doi.org/10.1016/j.jcat.2013.02.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Al-husseny, Wasan H., Israa F. Al-Sharuee, and Ban R. Ali. "SPECTRAL AND STRUCTURAL ANALYSIS FOR SODIUM SILICATE-BASED AEROGEL VIA NORMAL DRYING PRESSURE." Malaysian Journal of Science 42, no. 2 (June 30, 2023): 47–55. http://dx.doi.org/10.22452/mjs.vol42no2.7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Five types of silica aerogel were prepared at ambient pressure: sodium silicate, TEOS, and sodium silicate, with TEOS utilized as precursors. We investigated the effects of catalysis, mixing water or ethanol with the precursors, as well as the procedure of modification. Aqueous is a low-cost alternative, and many applications utilize it. A manufacturing colloidal silicic acid hydrosol was created from the ion exchange of an industrial water glass. The properties of physical, chemical, and hydrophobicity were examined via density, XRD, FTIR, and contact angle. BET, FESEM, and EDS analysis determined the structural properties. The silica hydrogel's pore liquid (H20) was successively removed. The spectral properties confirmed the modification by the derived high contact angle of 152º, low transparency, and amorphous structure. The resulting aerogel monoliths have a well-developed mesoporous structure, a large specific surface area of 961 m2/g, and a low density of 0.04 g/cm3.
36

Wang, Limin, Zhongjia Tang, Bernd Lorenz, and Arnold M. Guloy. "Remarkable Rare-Earth Metal Silicide Oxides with Planar Si6Rings." Journal of the American Chemical Society 130, no. 34 (August 2008): 11258–59. http://dx.doi.org/10.1021/ja803632x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Higgins, Jeremy M., Andrew L. Schmitt, Ilia A. Guzei, and Song Jin. "Higher Manganese Silicide Nanowires of Nowotny Chimney Ladder Phase." Journal of the American Chemical Society 130, no. 47 (November 26, 2008): 16086–94. http://dx.doi.org/10.1021/ja8065122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Meng, Erchao, Wen Li, Kaito Nakane, Yuya Shirahashi, Yasuhiro Hayakawa, and Hirokazu Tatsuoka. "Shape modification of Si nanowires by using faceted silicide catalysts nucleated in Au-Si catalyst solution during the growth." AIP Advances 3, no. 9 (September 2013): 092107. http://dx.doi.org/10.1063/1.4821119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Lund, Isaac N., Jae Ho Lee, Harry Efstathiadis, Pradeep Haldar, and Robert E. Geer. "Influence of catalyst layer thickness on the growth of nickel silicide nanowires and its application for Li-ion batteries." Journal of Power Sources 246 (January 2014): 117–23. http://dx.doi.org/10.1016/j.jpowsour.2013.07.059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Yang, Wei-Chang, Tsung-Yeh Yang, and Tri-Rung Yew. "Growth of self-aligned carbon nanotube for use as a field-effect transistor using cobalt silicide as a catalyst." Carbon 45, no. 8 (July 2007): 1679–85. http://dx.doi.org/10.1016/j.carbon.2007.03.047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kwon, Ri-Ye, Su-Min Youn, and Soo-Jin Choi. "Oral Excretion Kinetics of Food-Additive Silicon Dioxides and Their Effect on In Vivo Macrophage Activation." International Journal of Molecular Sciences 25, no. 3 (January 28, 2024): 1614. http://dx.doi.org/10.3390/ijms25031614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A food additive, silicon dioxide (SiO2) is commonly used in the food industry as an anti-caking agent. The presence of nanoparticles (NPs) in commercial food-grade SiO2 has raised concerns regarding their potential toxicity related to nano size. While recent studies have demonstrated the oral absorption and tissue distribution of food-additive SiO2 particles, limited information is available about their excretion behaviors and potential impact on macrophage activation. In this study, the excretion kinetics of two differently manufactured (fumed and precipitated) SiO2 particles were evaluated following repeated oral administration to rats for 28 d. The excretion fate of their intact particles, decomposed forms, or ionic forms was investigated in feces and urine, respectively. Monocyte uptake, Kupffer cell activation, and cytokine release were assessed after the oral administration of SiO2 particles. Additionally, their intracellular fates were determined in Raw 264.7 cells. The results revealed that the majority of SiO2 particles were not absorbed but directly excreted via feces in intact particle forms. Only a small portion of SiO2 was eliminated via urine, predominantly in the form of bioconverted silicic acid and slightly decomposed ionic forms. SiO2 particles were mainly present in particle forms inside cells, followed by ionic and silicic acid forms, indicating their slow conversion into silicic acid after cellular uptake. No effects of the manufacturing method were observed on excretion and fates. Moreover, no in vivo monocyte uptake, Kupffer cell polarization, or cytokine release were induced by orally administered SiO2 particles. These finding contribute to understanding the oral toxicokinetics of food-additive SiO2 and provide valuable insights into its potential toxicity.
42

Imai, Motoharu, Akira Sato, Takeshi Aoyagi, Takashi Kimura, Yoshitaka Matsushita, and Naohito Tsujii. "Superconductivity in the AlB2-Type Ternary Rare-Earth Silicide YbGa1.1Si0.9." Journal of the American Chemical Society 130, no. 10 (March 2008): 2886–87. http://dx.doi.org/10.1021/ja077669r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Iftekhar Jaim, H. M., and John G. Hagopian. "Enhanced straylight suppression of short carbon nanotubes by using Platinum silicide catalyst enhancer in rapid thermal chemical vapor deposition process." Applied Surface Science 579 (March 2022): 152250. http://dx.doi.org/10.1016/j.apsusc.2021.152250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

ISHIKAWA, Yutaka, Ryo HARUTA, and Tomohiro UENO. "Growth of Single-Walled Carbon Nanotubes Using Cobalt on Cobalt Silicide as a Catalyst by Hot-Filament Chemical Vapor Deposition." Hyomen Kagaku 35, no. 1 (2014): 50–55. http://dx.doi.org/10.1380/jsssj.35.50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wang, Junjie, Lifeng Cui, Shasha Li, Tingting Pu, Xueyou Fang, Shifei Kang, and Xiaodong Zhang. "A high-capacity iron silicide–air primary battery in an acidic saline electrolyte." New Journal of Chemistry 44, no. 4 (2020): 1624–31. http://dx.doi.org/10.1039/c9nj05607f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Grignon-Dubois, Micheline, Michelle Fialeix, and Jean-Michel Leger. "Silylation de l'isoquinoléine: influence des conditions opératoires sur l'obtention de nouveaux hétérocycles siliciés." Canadian Journal of Chemistry 71, no. 5 (May 1, 1993): 754–61. http://dx.doi.org/10.1139/v93-099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silylation of isoquinoline with Me3SiCl/Li/THF or Me3SiCl/Mg/THF reagents has been studied. The choice of the metal and the experimental conditions govern the course of the silylation reaction and lead to new trimethylsilyl heterocyclic compounds.
47

Qu, Yongquan, Jingwei Bai, Lei Liao, Rui Cheng, Yung-Chen Lin, Yu Huang, Ting Guo, and Xiangfeng Duan. "Synthesis and electric properties of dicobalt silicide nanobelts." Chem. Commun. 47, no. 4 (2011): 1255–57. http://dx.doi.org/10.1039/c0cc03922e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Juszczyk, Wojciech, Zbigniew Karpiński, Dariusz Łomot, and Jerzy Pielaszek. "Transformation of Pd/SiO2 into palladium silicide during reduction at 450 and 500°C." Journal of Catalysis 220, no. 2 (December 10, 2003): 299–308. http://dx.doi.org/10.1016/s0021-9517(03)00246-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Artyukh, V. A., V. N. Borshch, V. S. Yusupov, S. Ya Zhuk, V. A. Zelensky, and B. F. Belelyubsky. "Synthesis of Al – Fe/SiO2 and Al – Co/SiO2 catalysts by solid-phase method." Physics and Chemistry of Materials Treatment 2 (2021): 72–79. http://dx.doi.org/10.30791/0015-3214-2021-2-72-79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Powders of catalysts from aluminides Fe and Co on a SiO2 support (33.3 wt. %) were obtained by mechano-thermal synthesis. The formation of large powder fractions (> 100 μm) was experimentally established. The fractions of these fractions for Fe – Al – SiO2 and Co – Al – SiO2 respectively amounted to ~ 43 % and ~ 55 %, which is a positive result for further catalytic studies. After annealing the powders at 700 and 900 °C in vacuum, the SiO2 support and compounds: Co27Al73 (close in composition to CoAl3, Co4Al13 type intermetallic compounds), Fe3Al intermetallic compound with iron silicide type Fe0.9Si0.1 and compound Al0,3Fe3Si0.7 in small volumes. On the synthesis of cobalt aluminides, a conclusion has been made about more efficient annealing at 900 °C than at 700 °C. For Fe – Al – SiO2 powders, it is advisable to anneal in the temperature range 700 – 750 °C with the assumption that the SiO2 support influences the thermosynthesis of iron aluminides. An experimental analysis of the morphology and elemental composition of the surface of the obtained samples is presented. It was found that the catalyst powders have medium sphericity and angularity. Fe – Al – SiO2 powders have a more developed surface than Co – Al – SiO2. Lower intermetallics are predominantly formed on the surface of the Co – Al – SiO2 sample. The correction of the mechanical alloying modes by means of the fragmentation of the process, changes in the intensity of its parameters, and various annealing conditions for Co – Al – SiO2 and Fe – Al – SiO2 are proposed.
50

Savin, A., K. Vogel, H. Preuss, H. Stoll, R. Nesper, and H. G. Von Schnering. "Pseudopotential calculations on alkali silicide clusters with Si2 and tetrahedral Si4 backbones." Journal of the American Chemical Society 110, no. 2 (January 1988): 373–75. http://dx.doi.org/10.1021/ja00210a009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії