Добірка наукової літератури з теми "Cartographie automatisée"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cartographie automatisée".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cartographie automatisée"
ASSELIN, Camille, Jérémy JACOB, Régis MOILLERON, and Stéphane RICAN. "Approche méthodologique pour la cartographie des zones d’apport de sédiments dans le réseau d’assainissement parisien." Techniques Sciences Méthodes, TSM 6/ 2024 (June 20, 2024): 55–69. http://dx.doi.org/10.36904/20240655.
Повний текст джерелаNZIGOU BOUCKA, Farrel, Conan Vassily OBAME, Francis MANFOUMBI, Armel NZUE MBA, Michel NGUI ONDO, Vanessa OVONO, and Aboubakar MAMBIMBA NDJOUNGUI. "Cartographie de l’occupation du sol du Gabon en 2015 - changements entre 2010 et 2015." Revue Française de Photogrammétrie et de Télédétection 223 (October 11, 2021): 118–28. http://dx.doi.org/10.52638/rfpt.2021.567.
Повний текст джерелаBugnet, Pierre, François Cavayas, and Langis Gagnon. "Vers la cartographie automatisée des surfaces boisées en milieu urbanisé fondée sur la texture d'images IKONOS panchromatiques : le cas de la Région métropolitaine de Montréal." Canadian Journal of Remote Sensing 29, no. 6 (December 2003): 755–69. http://dx.doi.org/10.5589/m03-035.
Повний текст джерелаBourbier, Lucas, Guillaume Cornu, Alexandre Pennec, Christine Brognoli, and Valéry Gond. "Estimation à grande échelle de l'ouverture du couvert forestier en Afrique centrale à l'aide de données de télédétection." BOIS & FORETS DES TROPIQUES 315, no. 315 (March 1, 2013): 3. http://dx.doi.org/10.19182/bft2013.315.a20537.
Повний текст джерелаMoine, Monique, Henri Giraud, and Anne Puissant. "Mise en place d'une méthode semi-automatique de cartographie de l'occupation des sols à partir d'images SAR polarimétriques." Revue Française de Photogrammétrie et de Télédétection, no. 215 (August 16, 2017): 13–23. http://dx.doi.org/10.52638/rfpt.2017.319.
Повний текст джерелаBrossier, Patrick, and Marie-Thérèse Lernout. "Une procédure de cartographie automatique : UNISAS." Mappemonde 1, no. 1 (1986): 46–48. http://dx.doi.org/10.3406/mappe.1986.2315.
Повний текст джерелаEttinger, Susanne, Marie Zeghdoudi, Nélida Manrique Llerena, Anne-Françoise Yao-Lafourcade, and Jean-Claude Thouret. "L'apport de l'imagerie à haute résolution spatiale à la cartographie du risque de crue torrentielle." Revue Française de Photogrammétrie et de Télédétection, no. 209 (September 5, 2014): 73–79. http://dx.doi.org/10.52638/rfpt.2015.129.
Повний текст джерелаSimon, François-Xavier, Julien Guillemoteau, Guillaume Hulin, Joachim Rimpot, Julien Thiesson, and Alain Tabbagh. "De nouvelles perspectives pour les applications des méthodes électromagnétiques basse fréquence en archéologie." Archimède. Archéologie et histoire ancienne 7 (June 9, 2020): 272–82. http://dx.doi.org/10.47245/archimede.0007.act.14.
Повний текст джерелаHumbert, Joël. "Cartographie automatique des précipitations mensuelles et annuelles en zone montagneuse." Annales de Géographie 104, no. 581 (1995): 168–73. http://dx.doi.org/10.3406/geo.1995.13875.
Повний текст джерелаNyandue Ompola, José. "La cartographie numérique et son apport dans l’organisation du recensement en République Démocratique du Congo." Revue Congolaise des Sciences & Technologies 01, no. 02 (November 20, 2022): 110–18. http://dx.doi.org/10.59228/rcst.022.v1.i2.14.
Повний текст джерелаДисертації з теми "Cartographie automatisée"
Noël, François. "Cartographie semi-automatisée des chutes de pierres le long d'infrastructures linéaires." Master's thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/27124.
Повний текст джерелаThe detailed characterization of large area is a challenging task because time and resources are frequently limited. This Master’s thesis is part of the ParaChute research project. The aim of this project is to develop a rockfall susceptibility rating system along linear infrastructures. A partially automated method has been developed to facilitate field works planning while optimizing time and resources. It is mainly based on 3D rockfall simulations carried out systematically and efficiently on every rock slopes located nearby the infrastructure to help identify potential hazardous natural cliffs. Automation tools were developed to allow the realization of simulations over large area. The proposed method also uses the software Rockyfor3D and only requires surface elevation model obtained from airborne LiDAR survey as input data. However, other data, such as orthophotos, were used for calibration. The method was applied along the ArcelorMittal Infrastructures Canada railway. The covered zone starts near Port-Cartier (Québec) and extends 260 km north along the ArcelorMittal Infrastructures Canada railway up to the Groulx Mountains. In this Master’s thesis, a partially automated method that helps to choose on which areas to focus field work by telling if there is a possibility for a block to reach the linear infrastructure is detailed.
Frédéricque, Benoit. "Saisie photogrammétrique multi-représentation de bâtiments : une approche Semi-Automatisée Initialisée et Supportée par l'Intervention humainE." Doctoral thesis, Université Laval, 2008. http://hdl.handle.net/20.500.11794/19747.
Повний текст джерела3D MRDB (Multi Representation Data Base) population is more and more required to support advanced cartographical applications and advanced geospatial decisional analysis. This dissertation presents a new photogrammetric approach dedicated to multiple representation acquisition process to populate the buildings of a 3D MRDB. The proposed approach is named SAISIE (this French acronym matches with a semi-automatic acquisition process, initialized and supported by human intervention). The SAISIE approach tackles simultaneously the Detailed Geometries (DG) extraction and the Simplified Geometries (GS) extraction. This uses both the Multi-Representation Acquisition Pattern concept and the Instance Driven SASS concept (SASS : Selection of the Algorithms, Sources and Setting) to improve the process performance. These two new concepts have been introduced during this research. The MRAP concept stems from bridging together the geometric pattern concept (used to support generalisation process) and the parametric model (used to support the photogrammetric building extraction). Two new algorithms have also been introduced. The first one deals with the automatic implantation of 3D geometric pattern and the second one with the automatic extraction of building footprints. The SAISIE approach, the new concepts and the two new algorithms, have been implemented and tested with four test sites. These test sites cover more than three hundred buildings. Results analysis and several recommendations, based on our experimentation and experience, are proposed to conclude this dissertation.
Barbier, Valessa. "Développement, étude et applications de nouvelles matrices "intelligentes" pour l'analyse automatisée d'ADN par électrophorèse : séquençage, cartographie et diagnostic." Paris 6, 2002. http://www.theses.fr/2002PA066388.
Повний текст джерелаVilley-Migraine, Marjolaine. "Multimédia et carto-géographie : Ergonomie des interfaces de navigation hypermédia dans les systèmes documentaires." Paris 2, 2003. http://www.theses.fr/2003PA020016.
Повний текст джерелаDaynac, Jimmy. "Contribution de l'Intelligence Artificielle à la cartographie pour l'analyse des dunes à l'échelle d'un désert : cas d'étude du Rub'Al Khali." Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1027.
Повний текст джерелаAeolian dunes at different scales (m-km) are the primary topographic forms in aeolian systems and are found on various planetary bodies such as Earth, Mars, or Venus. They result from the interaction between wind, transported sediments, and the substrate. The shape, size, spatial arrangement, and movement of dunes allow for the analysis of interactions between airflows and sediment supply, modulated by surface conditions. The production of detailed maps of individual dune characteristics, coupled with spatial morphometric statistical analysis, is thus necessary to understand better and characterize the origin of dune formation and evolution.However, accurately mapping dunes over large areas remains a challenging task today for two reasons. Firstly, considering the availability of remote sensing datasets with ever-increasing spatial (and temporal) resolution, such mapping requires automated processes since manual digitization i) is time-consuming and ii) can be subjective and of uneven quality. These limitations are mainly because human operators cannot maintain consistent mapping criteria across large study areas, especially when dealing with complex morphologies. Secondly, this mapping is challenging, particularly due to the complexity of some forms and the lack of a universally accepted dune classification, despite recent research efforts.The primary objective of this work is to propose a new method for mapping aeolian dunes, focusing on an approach that couples Deep Learning to delineate the dune outlines, "skeletonization," and network analysis to map their crestlines and connectivities (defects). The originality of this study lies in the ability to map these features at various scales, ranging from a few kilometers to entire deserts. The developed algorithms demonstrate excellent performance in analyzing large and complex geographic areas with an accuracy of around 90%. This method has enabled the creation, for the first time, of a database containing several thousand dunes from the Rub'Al Khali desert (the largest active desert in the world), with high fidelity compared to visual observations of the dunes present in the Digital Elevation Model (DEM).From this database, we studied the morphological variability of the dunes by comparing them with wind data (ERA5 Land Reanalysis) on a desert scale, in order to quantify and understand their morphological changes and spatial distributions in relation to wind dynamics. This spatialized morphometric analysis is based on Principal Component Analysis (PCA) and highlights the dominant parameters as follows: dune length (PC1) explains more than 50% of the variance and describes the linear dunes in the SW of the desert; height (PC2) represents 18% of the variance and describes the crescent-shaped dunes in the NW; and defect density (PC3) explains 14% of the variance, representing star and dome dunes in the SE. P-value tests were also conducted on these parameters and revealed values below 0.05, thus confirming a significant spatial organization of dunes at the desert scale.Each archetypal dune form is dominated by one of the three parameters identified by the PCA, and transitions between these forms represent evolutionary stages. By comparing these results with wind data, we obtain an evolutionary model in which dunes shape, size, and orientation are strongly influenced by the directional characteristics of sand flow associated with the Shamal and Kharif winds. The analysis of wind data to the different statistically defined dune populations also revealed two dune growth modes: an elongation mode in the west, where the crests of linear dunes align with the sediment flow, favoring their stretching, and an instability mode in the east, where isolated and crescentic dunes, perpendicular to the flow, optimize their vertical growth
Ogier, Jean-Marc. "Contribution à l'analyse automatique de documents cartographiques. Interprétation de données cadastrales." Rouen, 1994. http://www.theses.fr/1994ROUES008.
Повний текст джерелаDupont, François. "Contribution à l'analyse automatique de documents géographiques scannés : extraction de l'altimétrie." Paris 9, 1999. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1999PA090047.
Повний текст джерелаChesneau, Élisabeth. "Modèle d'amélioration automatique des contrastes de couleur en cartographie : application aux cartes de risques." Université de Marne-la-Vallée, 2006. http://www.theses.fr/2006MARN0294.
Повний текст джерелаLefrère, Laurent. "Contribution au développement d'outils pour l'analyse automatique de documents cartographiques." Rouen, 1993. http://www.theses.fr/1993ROUES045.
Повний текст джерелаAït, Ettajer Taoufik. "Modélisation de surfaces géologiques complexes sous contraintes géométriques : application à la génération automatique de modèles géologiques." Vandoeuvre-les-Nancy, INPL, 1995. http://www.theses.fr/1995INPL058N.
Повний текст джерелаКниги з теми "Cartographie automatisée"
Tremblay, Roger. Collecte d'informations avec localisation automatisée pour les systêmes d'information géographique, projet no 3007. Québec, Qué: Service d'extension en foresterie de l'Est-du-Québec, 1995.
Знайти повний текст джерелаDavtian, Gourguèn. Analyse des données et cartographie automatique: Application aux principales variables climatiques du versant méditerranéen du maghreb. Lille: A.N.R.T, Université de Lille III, 1998.
Знайти повний текст джерелаSieffert, Nathalie. Étude méthodologique de cartographie automatique des écoulements fluviaux: Application aux bassins de la Fecht et du Giessen. Lille: A.N.R.T., Université de Lille III, 2000.
Знайти повний текст джерелаKanevski, Mikhail, Vadim Timonin, and Alexi Pozdnukhov. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software. Taylor & Francis Group, 2009.
Знайти повний текст джерелаKanevski, Mikhail, Vadim Timonin, and Alexi Pozdnukhov. Machine Learning for Spatial Environmental Data: Theory, Applications, and Software. Taylor & Francis Group, 2009.
Знайти повний текст джерелаЗвіти організацій з теми "Cartographie automatisée"
Logan, C. E., H. A. J. Russell, A. K. Burt, A. Burt, R. P. M. Mulligan, D. R. Sharpe, and A. F. Bajc. A three-dimensional surficial geology model of southern Ontario. Natural Resources Canada/CMSS/Information Management, 2024. http://dx.doi.org/10.4095/pudw24j7tx.
Повний текст джерела