Зміст
Добірка наукової літератури з теми "Cartes haute définition"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cartes haute définition".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cartes haute définition"
Collignon, Bernard. "Apports de la télédétection des puits pastoraux à la cartographie des eaux souterraines du Sahel." Revue Française de Photogrammétrie et de Télédétection 223 (December 13, 2021): 189–99. http://dx.doi.org/10.52638/rfpt.2021.602.
Повний текст джерелаThompson, M. E., and W. F. Forbes. "The Various Definitions of Biological Aging." Canadian Journal on Aging / La Revue canadienne du vieillissement 9, no. 2 (1990): 91–94. http://dx.doi.org/10.1017/s0714980800013088.
Повний текст джерелаAronson, Jane. "Anne Opie. Beyond Good Intentions: Support Work with Older People. Wellington, New Zealand: Institute of Policy Studies, Victoria University of Wellington, 1995, pp. 253." Canadian Journal on Aging / La Revue canadienne du vieillissement 16, no. 2 (1997): 384–87. http://dx.doi.org/10.1017/s0714980800014422.
Повний текст джерелаRAKOTOMALALA, Fety Abel. "Mesure et suivi de la dynamique du couvert forestier : cas de l'écorégion des forêts humides de l’Est de Madagascar." BOIS & FORETS DES TROPIQUES 348 (July 9, 2021): 107–8. http://dx.doi.org/10.19182/bft2021.348.a36756.
Повний текст джерелаДисертації з теми "Cartes haute définition"
Caron, Jean. "Réalisation d'une carte d'acquisition et de génération de signal de haute définition dans les spectres audio et ultrasonique." Mémoire, École de technologie supérieure, 2009. http://espace.etsmtl.ca/30/1/CARON_Jean.pdf.
Повний текст джерелаCamarda, Federico. "Fusion de données multi-capteurs pour la détection des bords de voie appliquée au véhicule autonome." Thesis, Compiègne, 2022. http://www.theses.fr/2022COMP2673.
Повний текст джерелаPerception and correct understanding of the road scene is crucial for any application of assisted and automated driving. In order to guarantee safety of the passenger and other road users, planning and navigation must be made on the basis of a reliable environment representation. Multi-sensor data and prior information is used to build this representation which incorporates identification of road users and road structure. For the latter, the focus is put on the drivablespace and lane repartition. On highways, urban streets and generally all over the road network, the drivable space is organized in oriented corridors which enablesafer and predictable navigation for everyone. In the development of intelligentvehicles, identifying the lane repartition and building an accurate road representation outlines the lane boundaries detection task. Depending on the specifics of the target automated system, car manufacturers integrate in currently commercialized vehicles ready-to-use lane detection solutions from Tier-1 suppliers generally featuring single and vision-based smart sensors. Such solutions may not be adequate in highly automated systems where the driver is allowed to divert their attention from the driving task and become passenger. This thesis addresses the problem of lane boundaries identification relying on multi-sensor fusion of smart camera data (specifically, frontal and AVM cameras) and HD-maps. In the first part, an appropriate modeling for smart sensor measurements which is independent from the sensor nature is proposed. Uncertain detections of markings, barriers and other road elements contribute to the tracking of the surrounding lane boundaries using a novel clothoid-spline model. The second part focuses on the integration of prior information coming from digital maps. Similarly to the modeling of smart sensors, the involved uncertainties in the usage of map-providers have been taken into account to support the lane boundaries estimation. For the testing of the proposed approaches, a custom dataset of road data has been recorded using both off-the-shelf smart sensors and live streamed HD-maps. Validated and tuned tracking solutions are then integrated in close-loop experimentations on Renault prototype vehicle of SAE Level 3 of automation
La percezione e la corretta comprensione della scena stradale e fondamentale per qualsiasi applicazione di guida assistita e automatizzata. Per garantire la sicurezza del passeggero e degli altri utenti della strada, la pianificazione e la navigazione devono essere effettuate sulla base di una rappresentazione affidabile dell’ambiente. Dati di origine multi-sensore e informazioni disponibili a priori sono utilizzati per costruire questa rappresentazione che incorpora l’identificazione degli utenti della strada e la struttura della strada stessa. Per quest’ultima, l’attenzione e posta sullo spazio percorribile e sulla ripartizione in corsie. Sulle autostrade, le strade urbane e in generale su tutta la rete stradale, lo spazio percorribile e organizzato in corridoi orientati che permettono una navigazione piu sicura e prevedibile per tutti. Nello sviluppo di veicoli intelligenti, l’identificazione della ripartizione in corsie e la costruzione di una rappresentazione accurata della strada delinea il compito di rilevamento dei confini delle corsie o lane boundaries detection. A seconda delle specifiche del sistema automatizzato di destinazione, le case automobilistiche integrano nei veicoli attualmente commercializzati soluzioni di rilevamento di corsia pronte all’uso da fornitori Tier-1, generalmente composte di singoli sensori intelligenti e basate sulla visione computerizzata. Tali soluzioni potrebbero non essere adeguate in sistemi altamente automatizzati dove al guidatore e permesso di distogliere l’attenzione dal compito di guida e di diventare passeggero. Questa tesi di dottorato affronta il problema dell’identificazione dei limiti di corsia basandosi sulla fusione multi-sensore di dati provenienti da telecamere intelligenti (in particolare, telecamere frontali e AVM) e mappe HD. Nella prima parte, viene proposta una modellazione appropriata per le misure dei sensori intelligenti che e indipendente dalla natura del sensore. I rilevamenti incerti di marcature, barriere e altri elementi stradali contribuiscono alla stima dei limiti delle corsie circostanti utilizzando un nuovo modello di spline di clotoidi. La seconda parte si concentra sull’integrazione di informazioni provenienti da mappe digitali. Analogamente alla modellazione dei sensori intelligenti, le incertezze coinvolte nell’uso di map-providers sono state prese in considerazione per supportare l’identificazione dei limiti di corsia. Per testare gli approcci proposti, e stato registrato un dataset personalizzato di dati stradali utilizzando sia sensori intelligenti off-the-shelf che mappe HD in live streaming. Le soluzioni di tracking convalidate e correttamente regolate sono poi integrate in sperimentazioni a circuito chiuso su un veicolo prototipo Renault di livello 3 di automazione SAE
Boujut, Hugo. "Mesure sans référence de la qualité des vidéos haute définition diffusées avec des pertes de transmission". Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14578/document.
Повний текст джерелаThe goal of this Ph.D thesis is to design a no-reference video quality assessment method for lossy net-works. This Ph.D thesis is conducted in collaboration with the Audemat Worldcast Systemscompany.Our first no-reference video quality assessment indicator is the frozen frame detection.Frozen frame detection was a research topic which was well studied in the past decades.However, the challenge is to embed a frozen frame detection method in the GoldenEagleAudemat equipment. This equipment has low computation resources that not allow real-time HD video decoding. Two methods are proposed: one based on the compressed videostream motion vectors (MV-method) and another one based on the DC coefficients from thedct transform (DC-method). Both methods only require the partial decoding of the com-pressed video stream which allows for real-time analysis on the GoldenEagle equipment.The evaluation shows that results are better than the frame difference base-line method.Nevertheless, the MV and the DC methods are only suitable with for MPEG2 and H.264video streams. So a third method based on SURF points is proposed.As a second step on the way to a no-reference video quality assessment metric, we areinterested in the visual perception of transmission impairments. We propose a full-referencemetric based on saliency maps. This metric, Weighted Mean Squared Error (WMSE), is theMSE metric weighted by the saliency map. The saliency map role is to distinguish betweennoticeable and unnoticeable transmission impairments. Therefore this spatio-temporal saliencymaps is computed on the impaired frame. Thus the pixel difference in the MSE computationis emphasized or diminished with regard to the pixel saliency. According to the state of theart, several improvements are brought to the saliency map computation process. Especially,new spatio-temporal saliency map fusion strategies are designed.After our successful attempt to assess the video quality with saliency maps, we develop ano-reference quality metric. This metric, Weighted Macro-Block Error Rate (WMBER), relies on the saliency map and the macro-block error detection. The macro-block error detectionprovides the impaired macro-blocks location in the frame. However, the impaired macro-blocks are concealed with more or less success during the decoding process. So the saliencymap provides the user perceived impairment strength for each macro-block.Several psycho-visual studies have shown that semantics play an important role in visualscene perception. These studies conclude that faces and text are the most attractive. Toimprove the spatio-temporal saliency model a semantic dimension is added. This semanticsaliency is based on the Viola & Jones face detector.To predict the Mean Opinion Score (MOS) from objective metric values like WMBER,WMSE, PSNR or SSIM, we propose to use a supervised learning approach. This approach iscalled Similarity Weighted Average (SWA). Several improvements are brought to the originalSWA.For the metrics evaluation a psycho-visual experiment with 50 subjects has been carriedout. To measure the saliency map models accuracy, a psycho-visual experiment with aneye-tracker has also been carried out. These two experiments habe been conducted in col-laboration with the Ben Gurion University, Israel. WMBER and WMSE performances arecompared with reference metrics like SSIM and PSNR. The proposed metrics are also testedon a database provided by IRCCyN research laboratory
Héry, Elwan. "Localisation coopérative de véhicules autonomes communicants." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2516.
Повний текст джерелаTo be able to navigate autonomously, a vehicle must be accurately localized relatively to all obstacles, such as roadside for lane keeping and vehicles and pedestrians to avoid causing accidents. This PhD thesis deals with the interest of cooperation to improve the localization of cooperative vehicles that exchange information. Autonomous navigation on the road is often based on coordinates provided in a Cartesian frame. In order to better represent the pose of a vehicle with respect to the lane in which it travels, we study curvilinear coordinates with respect to a path stored in a map. These coordinates generalize the curvilinear abscissa by adding a signed lateral deviation from the center of the lane and an orientation relative to the center of the lane taking into account the direction of travel. These coordinates are studied with different track models and using different projections to make the map-matching. A first cooperative localization approach is based on these coordinates. The lateral deviation and the orientation relative to the lane can be known precisely from a perception of the lane borders, but for autonomous driving with other vehicles, it is important to maintain a good longitudinal accuracy. A one-dimensional data fusion method makes it possible to show the interest of the cooperative localization in this simplified case where the lateral deviation, the curvilinear orientation and the relative positioning between two vehicles are accurately known. This case study shows that, in some cases, lateral accuracy can be propagated to other vehicles to improve their longitudinal accuracy. The correlation issues of the errors are taken into account with a covariance intersection filter. An ICP (Iterative Closest Point) minimization algorithm is then used to determine the relative pose between the vehicles from LiDAR points and a 2D polygonal model representing the shape of the vehicle. Several correspondences of the LiDAR points with the model and different minimization approaches are compared. The propagation of absolute vehicle pose using relative poses with their uncertainties is done through non-linear equations that can have a strong impact on consistency. The different dynamic elements surrounding the ego-vehicle are estimated in a Local Dynamic Map (LDM) to enhance the static high definition map describing the center of the lane and its border. In our case, the agents are only communicating vehicles. The LDM is composed of the state of each vehicle. The states are merged using an asynchronous algorithm, fusing available data at variable times. The algorithm is decentralized, each vehicle computing its own LDM and sharing it. As the position errors of the GNSS receivers are biased, a marking detection is introduced to obtain the lateral deviation from the center of the lane in order to estimate these biases. LiDAR observations with the ICP method allow to enrich the fusion with the constraints between the vehicles. Experimental results of this fusion show that the vehicles are more accurately localized with respect to each other while maintaining consistent poses