Добірка наукової літератури з теми "Carina Dwarf Spheroidal Galaxy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Carina Dwarf Spheroidal Galaxy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Carina Dwarf Spheroidal Galaxy"

1

Mateo, Mario, Denise Hurley-Keller, and James Nemec. "Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy." Astronomical Journal 115, no. 5 (May 1998): 1856–68. http://dx.doi.org/10.1086/300330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mighell, Kenneth J. "WFPC2 Observations of the Carina Dwarf Spheroidal Galaxy." Astronomical Journal 114 (October 1997): 1458. http://dx.doi.org/10.1086/118576.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carlin, J. L., S. R. Majewski, D. I. Casetti-Dinescu, and T. M. Girard. "Preliminary proper motion analysis of the Carina dwarf spheroidal." Proceedings of the International Astronomical Union 3, S248 (October 2007): 492–93. http://dx.doi.org/10.1017/s174392130801990x.

Повний текст джерела
Анотація:
AbstractWe present preliminary results from a proper motion study of the Carina dwarf spheroidal galaxy. Our proper motions show a scatter of ~1.1 mas yr−1 per Carina member star, and we determinate the mean ensemble motion to an accuracy of ~7 mas century−1. While this is a precise measurement of the relative proper motions of Carina members, our correction to an absolute frame is limited by the small number of measured QSOs in the field.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mateo, Mario, Edward W. Olszewski, Carlton Pryor, Douglas L. Welch, and Philippe Fischer. "The Carina dwarf spheroidal galaxy - How dark is it?" Astronomical Journal 105 (February 1993): 510. http://dx.doi.org/10.1086/116449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Godwin, P. J. "Core and Tidal Radii of the Carina Dwarf Spheroidal Galaxy from UK Schmidt Telescope Plates." Symposium - International Astronomical Union 113 (1985): 77–79. http://dx.doi.org/10.1017/s0074180900147254.

Повний текст джерела
Анотація:
Core and tidal radii of the Carina dwarf galaxy are determined by fitting King dynamical models to number count radial profiles, derived from COSMOS data. These values are compared with those of the other six known Local Group dwarf spheroidals.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuhn, J. R., Horace A. Smith, and Suzanne L. Hawley. "Tidal Disruption and Tails from the Carina Dwarf Spheroidal Galaxy." Astrophysical Journal 469, no. 2 (October 1, 1996): L93—L96. http://dx.doi.org/10.1086/310270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fabrizio, Michele, Ivan Ferraro, Giacinto Iannicola, Giuseppe Bono, Mario Nonino, and Frédéric Thévenin. "On the kinematic structure of the Carina dwarf spheroidal galaxy." Journal of Physics: Conference Series 383 (October 1, 2012): 012009. http://dx.doi.org/10.1088/1742-6596/383/1/012009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

de Boer, T. J. L., E. Tolstoy, B. Lemasle, A. Saha, E. W. Olszewski, M. Mateo, M. J. Irwin, and G. Battaglia. "The episodic star formation history of the Carina dwarf spheroidal galaxy." Astronomy & Astrophysics 572 (November 18, 2014): A10. http://dx.doi.org/10.1051/0004-6361/201424119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Monelli, M., A. R. Walker, G. Bono, R. Buonanno, F. Caputo, M. Castellani, V. Castellani, et al. "Short and long period variable stars in the Carina dwarf Spheroidal galaxy." International Astronomical Union Colloquium 193 (2004): 133–37. http://dx.doi.org/10.1017/s0252921100010484.

Повний текст джерела
Анотація:
AbstractWe present first results concerning the detection of variable stars in the Carina dwarf Spheroidal from B, V images collected with the 4-m CTIO telescope. We show a sample of candidate variables spanning from the tip of the Red Giant Branch down to the Main Sequence turn off. Finally, we discuss the future photometric and spectroscopic developments of this project.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mateo, Mario, Denise Hurley-Keller, and James Nemec. "Erratum: Dwarf Cepheids in the Carina Dwarf Spheroidal Galaxy [Astron. J. [BF]115[/BF], 1856 (1998)]." Astronomical Journal 117, no. 1 (January 1999): 638. http://dx.doi.org/10.1086/300662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Carina Dwarf Spheroidal Galaxy"

1

Godwin, Philip John. "A study of the Carina dwarf spheroidal galaxy." Thesis, University of Edinburgh, 1986. http://hdl.handle.net/1842/28115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pascale, Raffaele. "Action-based dynamical models of the Fornax dwarf spheroidal galaxy." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/9896/.

Повний текст джерела
Анотація:
Il lavoro presentato in questa Tesi si basa sul calcolo di modelli dinamici per Galassie Sferoidali Nane studiando il problema mediante l'utilizzo di funzioni di distribuzione. Si è trattato un tipo di funzioni di distribuzione, "Action-Based distribution functions", le quali sono funzioni delle sole variabili azione. Fornax è stata descritta con un'appropriata funzione di distribuzione e il problema della costruzione di modelli dinamici è stato affrontato assumendo sia un alone di materia oscura con distribuzione di densità costante nelle regioni interne sia un alone con cuspide. Per semplicità è stata assunta simmetria sferica e non è stato calcolato esplicitamente il potenziale gravitazionale della componente stellare (le stelle sono traccianti in un potenziale gravitazionale fissato). Tramite un diretto confronto con alcune osservabili, quali il profilo di densità stellare proiettata e il profilo di dispersione di velocità lungo la linea di vista, sono stati trovati alcuni modelli rappresentativi della dinamica di Fornax. Modelli calcolati tramite funzioni di distribuzione basati su azioni permettono di determinare in maniera autoconsistente profili di anisotropia. Tutti i modelli calcolati sono caratterizzati dal possedere un profilo di anisotropia con forte anisotropia tangenziale. Sono state poi comparate le stime di materia oscura di questi modelli con i più comuni e usati stimatori di massa in letteratura. E stato inoltre stimato il rapporto tra la massa totale del sistema (componente stellare e materia oscura) e la componente stellare di Fornax, entro 1600 pc ed entro i 3 kpc. Come esplorazione preliminare, in questo lavoro abbiamo anche presentato anche alcuni esempi di modelli sferici a due componenti in cui il campo gravitazionale è determinato dall'autogravità delle stelle e da un potenziale esterno che rappresenta l'alone di materia oscura.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GIUFFRIDA, GIULIANO. "VIMOS@VLT photometric and spectroscopic survey of the Sagittarius dwarf spheroidal galaxy." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/487.

Повний текст джерела
Анотація:
In questi tre anni ho lavorato sulla riduzione di dati fotometrici e spettroscopici della galassia sferoidale nana Sagittario. L'analisi è stata effettuata utilizzando dati nei filtri V e I presi con strumento VIMOS@VLT in modalità Imaging (per la fotometria) e MOS (per la spettroscopia multi oggetto). I dati fotometrici consistono in 8 campi distribuiti lungo l'asse maggiore e minore della galassia più 6 campi centrati su 6 ammassi globulari probabilmente appartenenti alla galassia nana Sagittario (NGC 4147, Pal5, Pal12, Arp2, Ter7, Ter8 ). L'indagine fotometrica mi ha permesso di ottenere un catalogo che conta più di 400000 oggetti. Questo grande campione è stato utilizzato per selezionare target per la spettroscopia a bassa risoluzione con MOS@VIMOS, uno strumento in grado di osservare contemporaneamente circa 150 oggetti nei 4 rilevatori di cui è dotato, ciascuno dei quali osserva in cielo un'area di 7x8 arcmin. Lo scopo ultimo di questa analisi spettroscopica è di realizzare una mappa delle velocità radiali delle stelle con l'intento di separare gli oggetti della Via Lattea dagli oggetti di Sagittario. In tal modo si sono ottenuti spettri per circa 1200 stelle. Lo studio degli spettri mi ha dunque permesso di selezionare tramite un triplo filtro (colore,magnitudine e velocità radiale) una lista "pulita" di stelle di Sagittario che conta 230 oggetti. Infine, questo campione di 230 oggetti è stato osservato con lo spettroscopio ad alta risoluzione FLAMES@ESO. Data la capacità di questo strumento di osservare un grande numero di oggetti, alle 230 stelle di Sagittario sono state aggiunte circa 1400 stelle vicine alle prime in colore e magnitudine; confido in tal modo di ottenere un catalogo di stelle di Sagittario molto più numeroso delle iniziali 230 stelle. Con questi spettri potrò anzitutto confermare le velocità radiali precedentemente calcolate, aumentando notevolmente la precisione delle misure (da una incertezza di circa 15-20 km/s conto di passare a una incertezza inferiore a 1 km/s), e al contempo misurando abbondanze chimiche con grande precisione.
I undertook a photometric and spectroscopic survey of Sgr dSph with VIMOS@VLT, to derive colour - magnitude diagrams (CMD) and radial velocities across the extension of the galaxy. I observed 8 fields along the major and minor axis of the galaxy (along 7 and 2 degrees respectively), plus 6 globular cluster likely associated with the galaxy ( NGC 4147, Pal5, Pal12, Arp2, Ter7, Ter8 ). All of them were observed with V and I filters. The photometric catalogue was then used to select target for VIMOS-MOS high resolution mode. I obtained spectra for about 1200 stars: 250 stars in the Sgr main body fields were established as Sgr dSph members, and will now be the subject of high resolution spectroscopy studies for the purpose of chemical analysis using FLAMES@VLT This constitutes one of the richest photometric and spectroscopic homogeneous catalog of Sgr dSph stars ever obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Spencer, Meghin E., Mario Mateo, Matthew G. Walker, and Edward W. Olszewski. "A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/623237.

Повний текст джерела
Анотація:
We conducted a large spectroscopic survey of 336 red giants in the direction of the Leo II dwarf galaxy using Hectochelle on the Multiple Mirror Telescope, and we conclude that 175 of them are members based on their radial velocities and surface gravities. Of this set, 40 stars have never before been observed spectroscopically. The systemic velocity of the dwarf is 78.3 +/- 0.6 km s(-1) with a velocity dispersion of 7.4 +/- 0.4 km s(-1). We identify one star beyond the tidal radius of Leo II but find no signatures of uniform rotation, kinematic asymmetries, or streams. The stars show a strong metallicity gradient of -1.53 +/- 0.10 dex kpc(-1) and have a mean metallicity of -1.70 +/- 0.02 dex. There is also evidence of two different chemodynamic populations, but the signal is weak. A larger sample of stars would be necessary to verify this feature.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alfaro, Cuello Mayte [Verfasser], and Nadine [Akademischer Betreuer] Neumayer. "The Nucleus of the Sagittarius Dwarf Spheroidal Galaxy: M54 / Mayte Alfaro Cuello ; Betreuer: Nadine Neumayer." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1196207690/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Saeedi, Sara [Verfasser], and Manami [Akademischer Betreuer] Sasaki. "X-ray Population Study of the Draco Dwarf Spheroidal Galaxy / Sara Saeedi ; Betreuer: Manami Sasaki." Tübingen : Universitätsbibliothek Tübingen, 2016. http://d-nb.info/1164017837/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Alfaro-Cuello, Mayte [Verfasser], and Nadine [Akademischer Betreuer] Neumayer. "The Nucleus of the Sagittarius Dwarf Spheroidal Galaxy: M54 / Mayte Alfaro Cuello ; Betreuer: Nadine Neumayer." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1196207690/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sohn, Sangmo Tony, Ekta Patel, Gurtina Besla, der Marel Roeland P. van, James S. Bullock, Louis E. Strigari, de Ven Glenn van, Matt G. Walker, and Andrea Bellini. "Space Motions of the Dwarf Spheroidal Galaxies Draco and Sculptor Based on HST Proper Motions with a ∼10 yr Time Baseline." IOP PUBLISHING LTD, 2017. http://hdl.handle.net/10150/626180.

Повний текст джерела
Анотація:
We present new proper motion (PM) measurements of the dwarf spheroidal galaxies (dSphs) Draco and Sculptor using multiepoch images obtained with the Hubble Space Telescope ACS/WFC. Our PM results have uncertainties far lower than previous measurements, even those made with the same instrument. The PM results for Draco and Sculptor are (mu(W),mu(N))(Dra) = (-0.0562 +/- 0.0099, -0.1765 +/- 0.0100 mas yr(-1) and (mu(W), mu(N) )(Scl) = (-0.0296 +/- 0.0209, 0.1358 +/- 0.0214 mas yr(-1)) -1. The implied Galactocentric velocity vectors for Draco and Sculptor have radial and tangential components: (V-rad, V-tan)(Dra) =(-88.6, 161.4) +/- (4.4, 5.6) km s(-1) and (V-rad, V-tan )(Scl) = (72.6, 200.2)+/-(1.3, 10.8) km s(-1). We study the detailed orbital histories of both Draco and Sculptor via numerical orbit integrations. Orbital periods of Draco and Sculptor are found to be 1-2 Gyr and 2-5 Gyr, respectively, accounting for uncertainties in the Milky Way (MW) mass. We also study the influence of the Large Magellanic Cloud (LMC) on the orbits of Draco and Sculptor. Overall, the inclusion of the LMC increases the scatter in the orbital results. Based on our calculations, Draco shows a rather wide range of orbital parameters depending on the MW mass and inclusion/exclusion of the LMC, but Sculptor's orbit is very well constrained, with its most recent pericentric approach to the MW being 0.3-0.4 Gyr ago. Our new PMs imply that the orbital trajectories of both Draco and Sculptor are confined within the " Disk of Satellites," better so than implied by earlier PM measurements, and likely rule out the possibility that these two galaxies were accreted together as part of a tightly bound group.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jardel, John Raymond. "Measuring dark matter profiles non-parametrically in dwarf spheroidal galaxies." Thesis, 2014. http://hdl.handle.net/2152/24763.

Повний текст джерела
Анотація:
Although exotic objects like supermassive black holes (SMBHs) and dark matter halos do not emit or interact with light, we can still detect them across the vastness of space. By observing the gravitational dance of objects we can see, astronomers are able to infer the mass of the invisible objects they orbit. This has led to the discovery that nearly every massive galaxy hosts a SMBH at its center, and has confirmed that every galaxy is embedded in an extended halo of dark matter. However, the practice of inferring mass from the motions of bright kinematics tracers has many complications, not the least of which is that we seldom observe more than the line-of-sight component of the instantaneous velocity of a star. Consequently, astronomers must build dynamical models of the galaxies they wish to study. These models often rely on overly restrictive assumptions, or are crippled by degeneracies amongst their parameters and lack predictive power. In this thesis, I introduce a significant advancement into the field of dynamical modeling. My modeling technique is based on the powerful principle of orbit superposition, also known as Schwarzschild Modeling. This technique is robust to many of the degeneracies associated with dynamical modeling, and has enjoyed much success in measuring the SMBHs and dark matter halos of large elliptical or bulge-dominated galaxies. I use it in Chapter 2 to accurately measure the SMBH in the Sombrero Galaxy (NGC 4594) and to constrain its dark matter halo. Unfortunately, when measuring dark matter halos with Schwarzschild Modeling, the modeler is required to adopt a parameterization for the dark matter density profile. Often this is precisely the quantity one wishes to measure. To avoid this reliance on a priori parameterizations, I introduce a technique that calculates the profile non-parametrically. Armed with this powerful new technique, I set out to measure the distribution of dark matter in the halos of some of the smallest galaxies in the Universe. These dwarf spheroidal galaxies (dSphs) orbit the Milky Way as satellites, and their dark matter content has been studied extensively. However, the models used to probe their halos have been simplistic and required overly restrictive assumptions. As a result, robust conclusions about their dark matter content have remained elusive. Into this controversial and active area of study, I bring Non-Parametric Schwarzschild Modeling. The results I find offer the most robust and detailed measurements of the dark matter profiles in the dSphs to date. I begin my study with the first application of standard Schwarzschild Modeling to any dSph galaxy by using it in Chapter 3 on Fornax. This chapter details the process of re-tooling Schwarzschild Modeling for the purpose of measuring these small galaxies. In Chapter 4, I introduce the fully non-parametric technique, and apply it to Draco as proof of concept. Chapter 5 presents the main results of this thesis. Here I apply Non-Parametric Schwarzschild Modeling to Draco, Carina, Fornax, Sculptor, and Sextans. By relaxing the assumption of a parameterization for the dark matter profile, I find a variety of profile types in these five galaxies---some of which are consistent with past observations, others consistent with predictions from simulations, and still others were completely unanticipated. Finally, in Chapter 6 I describe the modeling of these galaxies in more detail. I demonstrate the accuracy of Non-Parametric Schwarzschild Modeling by recovering a known dark matter profile from artificial simulated data. I also expound upon the modeling results by presenting the detailed orbit structure of the five dSphs. Lastly, I compare my results to hydrodynamical simulations to explore the link between dark matter profile type and the baryon content of the dSphs.
text
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pan, Yen-Yu, and 潘彥宇. "Direct N-Body Simulation with Graphic Processing Units : Dynamical Evolution of Galaxy Cluster Collisions and a Dynamaical Fossil in Ursa Minor Dwarf Spheroidal Galaxy." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/87096251829178541370.

Повний текст джерела
Анотація:
碩士
國立臺灣大學
天文物理研究所
102
In this paper, we discuss the density distribution of DM halo. We want to understand that if the core size of the dark matter halo will change with different initial conditions of merging. We use NFW model with two param- eters to describe the DM halo, and these two parameters are concentration and the mass of the total halo. Concentration is the ratio between the size of DM halo and the core. In order to speed up the computing time, our lab use the GPU parallel computing process to simulate, thus it is 300 times faster than CPU code( [1]Chen 2007). The merging simulation is only consider the grav- itational interaction. We let the halos merge to others with different relative velocities and also the free falling case. The result shows that when we let the DM halos free fall to each other, the concentration of the new DM halo will increase 8%. On the other hand, if the relative kinetic energy increase 30%, the total mass of the new halo will decrease 8% and the concentration also decrease 5 On the other hand, we try to simulate the star clump underlie in the Ursa Minor dwarf spheroidal. We try to use our BEC dark matter, ψDM, to explain the possible orbits of the clump,which are all on the sky surface or with a small radius velocity 1km/s. We also give the upper limit of velocity of the clump that the halo can not move faster than 6km/s on the sky surface.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Carina Dwarf Spheroidal Galaxy"

1

Godwin, P. J. "Core and Tidal Radii of the Carina Dwarf Spheroidal Galaxy from UK Schmidt Telescope Plates." In Dynamics of Star Clusters, 77–79. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5335-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cannon, R. D. "Carbon Stars in the Carina Dwarf Galaxy." In Cool Stars with Excesses of Heavy Elements, 175–78. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5325-3_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Paltoglou, George, and K. C. Freeman. "Dynamics of the Fornax Dwarf Spheroidal Galaxy." In Structure and Dynamics of Elliptical Galaxies, 447–48. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3971-4_66.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Carney, Bruce W., and P. Seitzer. "Deep Photometry of the Draco Dwarf Spheroidal Galaxy." In The Harlow-Shapley Symposium on Globular Cluster Systems in Galaxies, 581. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-015-1104-9_116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tinney, C. G. "A Gravitational Lens Candidate Behind the Fornax Dwarf Spheroidal Galaxy." In Astrophysical Applications of Gravitational Lensing, 351–52. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0221-3_101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Aleksić, Jelena. "Dark Matter Searches in Dwarf Spheroidal Galaxy Segue 1 with MAGIC." In Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC, 109–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23123-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Menzies, John. "The Brightest AGB Stars of the Leo I Dwarf Spheroidal Galaxy." In Mass-Losing Pulsating Stars and their Circumstellar Matter, 205–8. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0139-7_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mateo, Mario, Nick Suntzeff, James Nemec, Donald Terndrup, William Weller, Edward Olszewski, Michael Irwin, and Richard McMahon. "The Stellar Population and Internal Kinematics of the Sextans Dwarf Spheroidal Galaxy." In The Stellar Populations of Galaxies, 455. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2434-8_122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wyse, Rosemary F. G., Gerard Gilmore, Sofia Feltzing, and Mark Houdashelt. "Faint Stars in the Ursa Minor Dwarf Spheroidal Galaxy: Implications for the Stellar IMF." In The Evolution of The Milky Way, 379–85. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0938-6_38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

"Dwarf spheroidal galaxies." In Galaxy Morphology and Classification, 63–68. Cambridge University Press, 1998. http://dx.doi.org/10.1017/cbo9780511600166.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Carina Dwarf Spheroidal Galaxy"

1

Abia, C., P. de Laverny, R. Wahlin, I. Domínguez, S. Cristallo, O. Straniero, Roald Guandalini, Sara Palmerini, and Maurizio Busso. "Analysis of Two Carbon Stars in the Carina Dwarf Spheroidal Galaxy." In IXTH TORINO WORKSHOP ON EVOLUTION AND NUCLEOSYNTHESIS IN AGB STARS AND THE IIND PERUGIA WORKSHOP ON NUCLEAR ASTROPHYSICS. AIP, 2008. http://dx.doi.org/10.1063/1.2916965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Valcke, Sander, S. De Rijcke, H. Dejonghe, Victor P. Debattista, and C. C. Popescu. "Tidal Stripping of Dwarf Spheroidal Galaxies." In HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION. AIP, 2010. http://dx.doi.org/10.1063/1.3458557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Revaz, Yves, Pascale Jablonka, Victor P. Debattista, and C. C. Popescu. "The Origin of the Diversity of Dwarf Spheroidal Galaxies." In HUNTING FOR THE DARK: THE HIDDEN SIDE OF GALAXY FORMATION. AIP, 2010. http://dx.doi.org/10.1063/1.3458554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Honda, Satoshi, Wako Aoki, Nobuo Arimoto, and Kozo Sadakane. "Enrichment of heavy elements in the Sextans dwarf Spheroidal Galaxy." In 11th Symposium on Nuclei in the Cosmos. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.100.0078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aleksic, Jelena, Javier Rico, Manel Martinez, and Saverio Lombardi. "Deep survey of the Segue 1 dwarf spheroidal galaxy with the MAGIC Telescopes." In The European Physical Society Conference on High Energy Physics. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.180.0389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Loewenstein, Michael, and David B. Cline. "Suzaku search for evidence of sterile neutrinos in the Ursa Minor dwarf spheroidal galaxy." In SOURCES AND DETECTION OF DARK MATTER AND DARK ENERGY IN THE UNIVERSE: Proceedings of the 8th UCLA Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3232178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Maggio, Camilla, Daniel Kerszberg, Daniele Ninci, Vincenzo Vitale, Victor A. Acciari, Stefano Ansoldi, Lucio Angelo Antonelli, et al. "Upper limits on the WIMP annihilation cross section from a joint analysis of dwarf spheroidal satellite galaxy observations with the MAGIC telescopes." In 37th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.395.0512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії