Добірка наукової літератури з теми "Carbon particulate emission"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Carbon particulate emission".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Carbon particulate emission"

1

Weise, DR, DE Ward, TE Paysen, and AL Koonce. "Burning California Chaparral - an Exploratory Study of Some Common Shrubs and Their Combustion Characteristics." International Journal of Wildland Fire 1, no. 3 (1991): 153. http://dx.doi.org/10.1071/wf9910153.

Повний текст джерела
Анотація:
Prescribed fire is a tool used to manage vegetation in southern California. The nature and quan tity of gaseous and particulate emissions have not been described for California chaparral. A study examining carbon monoxide (CO), carbon dioxide (CO2), and par ticulate matter emissions from fuel beds constructed from common chaparral shrubs was initiated. Chamise (Adenostoma fasciculatum), ceanothus (Ceanothus crassifolius), manzanita (Arctostaphylos glandulosa), and scrub oak (Quercus dumosa) fuel beds were burned in December 1989, and March, May, and August, 1990. Gas and particulate matter samples were collected from 45 fires. Emission factors for CO2 and particulate matter were affected by species and month individually; month and species interacted and affected CO emission factors. Pearson's correlation coefficient and Kendall's tau indi cated that emission factors for CO and particulate matter were inversely related to combustion efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dragičević, Viktor, Marina Levak, Anton Turk, and Ivan Lorencin. "Ship production processes air emissions analysis." Pomorstvo 36, no. 1 (June 30, 2022): 164–71. http://dx.doi.org/10.31217/p.36.1.19.

Повний текст джерела
Анотація:
Compliance with modern environmental norms and regulations is an increasingly important requirement in the shipbuilding process of ship design and construction. Related to the ship production process, volatile organic compounds (VOCs), nitric oxides and particulate matter are the main emissions of harmful gases in the shipyard. This paper analyzes air emissions from the ship production process in a shipyard. Air emissions are quantified from either in-situ measurements from emission sources, or by materials that are used in the shipbuilding process, and the acquired data from those measurements is calculated as yearly emissions. Emission quantities of VOCs, nitric oxides, carbon dioxide, carbon monoxide and particulates are analyzed regarding possible reduction techniques considering efficiency and investment costs for using these methods. In conclusion, the best available and feasible emission reduction methods are suggested, and a suggestion for achieving the goal of a net zero emission shipyard.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huang, Junfeng, Jianbing Gao, Yufeng Wang, Ce Yang, and Chaochen Ma. "Real-World Pipe-Out Emissions from Gasoline Direct Injection Passenger Cars." Processes 11, no. 1 (December 27, 2022): 66. http://dx.doi.org/10.3390/pr11010066.

Повний текст джерела
Анотація:
The analysis of real-world emissions is necessary to reduce the emissions of vehicles during on-road driving. In this paper, the matrix of gasoline direct injection passenger cars is applied to analyze the real-world emissions. The results show that high acceleration and high speed conditions are major conditions for the particulate number emissions, and the particulate number emissions are positively correlated with torque and throttle opening. The catalyst temperature and saturation are important factors that affect nitrogen oxide emission. The nitrogen oxide emissions of low speed and low torque conditions cannot be ignored in real-world driving. The carbon dioxide emissions are positively correlated with acceleration, torque and throttle opening. Once the vehicles are in the acceleration condition, the carbon dioxide emissions increase rapidly. The vehicles with higher average emission factors are more susceptible to driving behaviors, and the differences in the emission factors are more obvious, leading to an increase in the difficulty of emission control.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Czaplicka, Marianna, Ewelina Cieślik, Bogusław Komosiński, and Tomasz Rachwał. "Emission Factors for Biofuels and Coal Combustion in a Domestic Boiler of 18 kW." Atmosphere 10, no. 12 (December 3, 2019): 771. http://dx.doi.org/10.3390/atmos10120771.

Повний текст джерела
Анотація:
The differences in the pollutant emissions from the combustion of bituminous coal and biofuels (wood, straw, and miscanthus pellets) under real-world boiler operating conditions were investigated. The experiments were performed on an experimental installation that comprised an 18 kW boiler, used in domestic central heating systems, equipped with a retort furnace, an automatic fuel feeder, a combustion air fan, and a fuel storage bin. The emission factors of gaseous pollutants, particulate matter, organic carbon, elemental carbon, and polycyclic aromatic hydrocarbons (PAHs), as well as some PAH concentration ratios for coal and biofuel combustion, were determined. The obtained results indicate that fuel properties have a strong influence on the emission factors of gaseous and carbonaceous pollutants. The total particulate matter (PM) emissions from the biofuel combustion were about 5-fold lower than those from the coal burned in the same boiler. The emission factors of the total carbons from the biofuel combustion were between 10 and 20 times lower than those from the coal combustion. The mean organic carbon (OC) and elemental carbon (EC) emission factors, based on the burned fuel, were 161–232 and 42–221 mg/kg for the biofuels and 1264 and 3410 g/kg for the coal, respectively. The obtained results indicate that molecular diagnostic ratios, based on the concentration of PAHs, vary significantly, depending on the fuel type.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shukla, Pravesh Chandra, Tarun Gupta, Nitin Kumar Labhsetwar, and Avinash Kumar Agarwal. "Development of low cost mixed metal oxide based diesel oxidation catalysts and their comparative performance evaluation." RSC Advances 6, no. 61 (2016): 55884–93. http://dx.doi.org/10.1039/c6ra06021h.

Повний текст джерела
Анотація:
A four cylinder diesel engine was used to evaluate the performance of two non-noble metal based diesel oxidation catalysts for emission parameters such as particulate mass, elemental/organic carbon (EC/OC), and trace-metal content in particulates.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lavoué, David, Sunling Gong, and Brian J. Stocks. "Modelling emissions from Canadian wildfires: a case study of the 2002 Quebec fires." International Journal of Wildland Fire 16, no. 6 (2007): 649. http://dx.doi.org/10.1071/wf06091.

Повний текст джерела
Анотація:
The present paper proposes an original approach to estimate gaseous and particulate emissions from boreal forest fires based on the Canadian Forest Fire Behaviour Prediction (FBP) System. The FBP System permits calculation of fuel consumption and rate of spread for individual fires on an hourly basis from meteorological conditions and fuel patterns. Weather data are obtained by running the Canadian weather forecast model GEM (Global Environmental Multiscale). Hourly emission point sources can then be generated from a given wildfire database. The smoke emission model was first applied to the boreal forest fires in Quebec in the summer of 2002. Geographical distribution and temporal variability of emission amounts, as well as injection heights, were assessed hourly. In July, ~150 wildfires released 39 Mt of CO2 equivalent of greenhouse gases and 470 kt of fine particulate matter to the atmosphere. They contributed 32 and 5% of Quebec’s and Canada’s annual greenhouse gas emissions, respectively. Black carbon was estimated to account for 4% of the total fine particulate matter. Wildfires were responsible for 51 and 90% of all Canada’s black carbon and particulate organic matter sources, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klimont, Zbigniew, Kaarle Kupiainen, Chris Heyes, Pallav Purohit, Janusz Cofala, Peter Rafaj, Jens Borken-Kleefeld, and Wolfgang Schöpp. "Global anthropogenic emissions of particulate matter including black carbon." Atmospheric Chemistry and Physics 17, no. 14 (July 17, 2017): 8681–723. http://dx.doi.org/10.5194/acp-17-8681-2017.

Повний текст джерела
Анотація:
Abstract. This paper presents a comprehensive assessment of historical (1990–2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude–latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bebkiewicz, Katarzyna, Zdzisław Chłopek, Hubert Sar, Krystian Szczepański, and Magdalena Zimakowska-Laskowska. "Influence of the Thermal State of Vehicle Combustion Engines on the Results of the National Inventory of Pollutant Emissions." Applied Sciences 11, no. 19 (September 29, 2021): 9084. http://dx.doi.org/10.3390/app11199084.

Повний текст джерела
Анотація:
The article presents the results of studies on the influence of the thermal state of vehicle combustion engines on pollutant emissions. This influence was analyzed based on data from Poland’s inventory of pollutant emissions for the years 1990–2017. The results show that during engine warm-up, carbon monoxide emission constitutes the largest share (up to 50%) in the national annual total emission. Volatile organic compounds are next in the ranking, whereas the share of nitrogen oxides is the lowest (less than 5%). Under the model traffic conditions, close to those in Poland’s cities in winter, simulation tests regarding additional pollutant emissions from passenger cars during engine warm-up were also carried out. As a result of the cold-start emissive behavior of internal combustion engines, emissions of carbon monoxide and volatile organic compounds showed a considerably greater impact on national pollutant emission, as compared to carbon dioxide, nitrogen oxides and particulate matter. This is particularly evident for the results of the inventory of pollutant emissions from road transport.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Khujamberdiev, Ramozon, and Haengmuk Cho. "Impact of Biodiesel Blending on Emission Characteristics of One-Cylinder Engine Using Waste Swine Oil." Energies 16, no. 14 (July 20, 2023): 5489. http://dx.doi.org/10.3390/en16145489.

Повний текст джерела
Анотація:
The influence of biodiesel blending on the emission parameters of a one-cylinder engine using waste swine oil was investigated in this research. This research focused on particulate matter, nitrogen oxides, hydrocarbons, carbon monoxide, and carbon dioxide emissions at various engine speeds and biodiesel mixing percentages. According to the results, increasing the amount of biodiesel in diesel blends might result in considerable reductions in particulate matter emissions while potentially raising nitrogen oxide emissions due to biodiesel’s higher oxygen content. Engine speed considerably affects hydrocarbon and carbon monoxide emissions, with biodiesel mixes benefiting more at higher engine speeds. This study also discovered that when the amount of biodiesel in a fuel blend grows, so do carbon dioxide emissions, but brake thermal efficiency drops. These findings indicate that using waste swine oil biodiesel as a fuel source has both advantages and disadvantages in terms of engine emissions, and more study is needed to optimize biodiesel consumption and reduce nitrogen oxide emissions.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yu, Geun-Hye, Myoung-Ki Song, Sea-Ho Oh, Seo-Yeong Choe, Min-Wook Kim, and Min-Suk Bae. "Determination of Vehicle Emission Rates for Ammonia and Organic Molecular Markers Using a Chassis Dynamometer." Applied Sciences 13, no. 16 (August 18, 2023): 9366. http://dx.doi.org/10.3390/app13169366.

Повний текст джерела
Анотація:
Stringent regulations have been implemented to address vehicle exhaust emissions and mitigate air pollution. However, the introduction of exhaust gas reduction devices, such as Three-Way Catalytic converters, has raised concerns about the generation and release of additional pollutants such as NH3. This study utilized a chassis dynamometer to investigate the characteristics of exhaust pollutants, including carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM), ammonia (NH3), organic carbon (OC), and elemental carbon (EC). The emissions were examined across various vehicle fuel types, namely liquefied petroleum gas, gasoline, and diesel (EURO4, EURO6), to assess their individual contributions to exhaust emissions. The results revealed significant variations in the emission levels of regulated pollutants (CO, HC, NOx, and PM) during driving, depending on factors such as engine technology, emissions control strategies, fuel type, and test cycle. Notably, NH3 emissions analysis according to driving mode indicated that gasoline vehicles exhibited the highest NH3 emissions, while diesel vehicles emitted negligible amounts. This observation can be attributed to the production of NH3 as a byproduct of catalytic reduction processes implemented by exhaust gas reduction devices targeting CO, HC, and NOx. In addition, EURO4 vehicles demonstrated higher emission levels of OC and EC compared with other fuel types. Furthermore, the presence of diesel particulate filters (DPFs) in diesel vehicles effectively reduced PM emissions. Moreover, this study investigated the emission characteristics of organic molecular markers within the organic carbon fraction, revealing distinct emission profiles for each vehicle and fuel type. These findings contribute to the identification of emission sources by discerning the primary components emitted by specific fuel types.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Carbon particulate emission"

1

Jilla, Abhinay Mr. "Particulate Matter and Carbon Monoxide Emission Factors from Incense Burning." ScholarWorks@UNO, 2017. http://scholarworks.uno.edu/td/2380.

Повний текст джерела
Анотація:
Indoor air quality is a growing concern in the world. People spend a considerable amount of time in indoor environments such as homes, workplaces, shopping malls, stores, and so on. Indoor sources like incense and candle burning, cooking contribute a significant amount of indoor air pollutants such as particulate matter, carbon monoxide (CO), volatile organic compounds. Exposure to these kinds of pollutants can result in adverse health effects. The purpose of this research is to determine the particulate matter and carbon monoxide emission factors (EFs) from incense stick burning. A test chamber with a rectangular exhaust duct, a fan to exhaust air with pollutants in it, and pollutant sensors were used to achieve the project goals. Several experiments were performed with different cases/scenarios to accurately estimate the EFs and several test runs were conducted for each case to test the repeatability of the results. The CO, PM2.5 (mass), PM2.5 (number), PM10 (mass), PM10 (number) EFs developed in this research are between 110-120 mg/g of incense, 2.5-3 mg/g of incense, 800-1100 #particles/µg of incense, 32-33 mg/g of incense, 1200-1400 #particles/µg of incense respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Matsui, Kenta, Fumihiro Fujikake, and Kazuhiro Yamamoto. "Non-catalytic after-treatment for diesel particulates using carbon-fiber filter and experimental validation." Elsevier, 2013. http://hdl.handle.net/2237/20042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jiang, Mei. "Mobile Laboratory Measurement of Black Carbon, Particulate Polycyclic Aromatic Hydrocarbons and Other Exhaust Emissions in Mexico City." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/41133.

Повний текст джерела
Анотація:
Black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) are two atmospheric pollutants produced by motor vehicles using carbonaceous fuels. As a part of the Mexico City Project, measurements of BC, PPAHs and many other gas- and particle-phase emissions were measured in Mexico City using a mobile laboratory during the Mexico City Metropolitan Area field campaign in April 2003 (MCMA-2003). The main goal of this research is to estimate emissions of BC and particulate PAHs (PPAHs) for Mexico Cityâ s vehicle fleet. The emissions of gas-phase pollutants such as carbon monoxide (CO), total nitrogen oxides (NOy) and volatile organic compounds (VOC) are also estimated. The mobile lab has previously been used to chase vehicles and measure their emissions, but analysis has traditionally focused on determining emission factors of individual vehicles associated with specific chasing events. The laboratory continuously samples ambient air from an inlet at the front of the van, and it is always â seeingâ exhaust plumes from the vehicles around it while driving through traffic. We have developed an algorithm that automatically identifies the exhaust plume measurement points, which are then used as the basis for calculation of emission factors. In the nearly 90 hours of on-road sampling during the field campaign, we have identified ~30,000 exhaust measurement points. The large sample size enables us to estimate fleet-average emission factors and thus the emission inventory. Motor vehicles are estimated to emit annually 1,960 tons of BC, 56.2 tons of PPAHs, 1,320,000 tons of CO, 125,000 tons of NOy and 2440 tons of VOCs. The spatial and temporal patterns of BC and PPAHs in different locations with in MCMA are also studied.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klapmeyer, Michael Evan. "Characterization of Urban Air Pollutant Emissions by Eddy Covariance using a Mobile Flux Laboratory." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/37675.

Повний текст джерела
Анотація:
Air quality management strategies in the US are developed largely from estimates of emissions, some highly uncertain, rather than actual measurements. Improved knowledge based on measurements of real-world emissions is needed to increase the effectiveness of these strategies. Consequently, the objectives of this research were to (1) quantify relationships among urban emissions sources, land use, and demographics, (2) determine the spatial and temporal variability of emissions, and (3) evaluate the accuracy of official emissions estimates. These objectives guided three field campaigns that employed a unique mobile laboratory equipped to measure pollutant fluxes by eddy covariance. The first campaign, conducted in Norfolk, Virginia, represented the first time fluxes of nitrogen oxides (NOx) were measured by eddy covariance in an urban environment. Fluxes agreed to within 10% of estimates in the National Emissions Inventory (NEI), but were three times higher than those of an inventory used for air quality modeling and planning. Additionally, measured fluxes were correlated with road density and increased development. The second campaign took place in the Tijuana-San Diego border region. Distinct spatial differences in fluxes of carbon dioxide (CO2), NOx, and particles were revealed across four sampling locations with the lowest fluxes occurring in a residential neighborhood and the highest ones at a port of entry characterized by heavy motor vehicle traffic. Additionally, observed emissions of NOx and carbon monoxide were significantly higher than those in emissions inventories, suggesting the need for further refinement of the inventories. The third campaign focused on emissions at a regional airport in Roanoke, Virginia. NOx and particle number emissions indices (EIs) were calculated for aircraft, in terms of grams of pollutant emitted per kilogram of fuel burned. Observed NOx EIs were ~20% lower than those in an international databank. NOx EIs from takeoffs were significantly higher than those from taxiing, but relative differences for particle EIs were mixed. Observed NOx fluxes at the airport agreed to within 25% of estimates derived from the NEI. The results of this research will provide greater knowledge of urban impacts to air quality and will improve associated management strategies through increased accuracy of official emissions estimates.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hemmings, Stephen. "Supporting the regeneration process of a diesel particulate filter with the addition of hydrogen and hydrogen/carbon monoxide mixtures : diesel engine aftertreatment system." Thesis, Brunel University, 2012. http://bura.brunel.ac.uk/handle/2438/7073.

Повний текст джерела
Анотація:
This investigation aims to enhance the regeneration performance of a diesel particulate filter. This is achieved by introducing various chemical components to the regeneration process, which are representative of what can be generated ‘on board’ a vehicle using an exhaust gas fuel reformer. By researching the effects of introducing such components using a periodic injection cycle the aim is to reduce the volume of ‘reformates’ required to assist in proficient diesel particulate filter regeneration. As a result, this study also aims to support future work in the development of exhaust gas fuel reformer design for DPF aftertreatment applications. All experiments were performed using a Ford Puma 2.0 litre diesel engine. A test rig was constructed and installed that featured a mini diesel particulate filter housed within a tubular furnace. Exhaust gas could be sampled directly from the exhaust manifold and fed through the DPF. Exhaust gas measurements were taken both pre and post DPF using a FTIR spectrometer. It was shown that the regeneration process could be supported substantially by the introduction of hydrogen. Similar properties were also demonstrated when introducing a hydrogen-carbon monoxide mixture. The introduction of these species allowed for the regeneration process to be implemented at filter temperatures substantially lower than the passive regeneration temperature. Furthermore, by introducing these simulated reformates using a periodic injection strategy, it was evident that similar benefits to the regeneration process could be attained with significantly less volumes of simulated reformates. In an attempt to effectively utilise the carbon monoxide generated during hydrogen production by an exhaust gas fuel reformer, this study defined an optimised hydrogen/carbon monoxide mixture ratio of 60% (v/v) hydrogen balanced with carbon monoxide. At this optimised mixture ratio, the filter demonstrated the highest regeneration efficiency of all ratios tested. Such data could be utilised in future work in the development of fuel reformer design.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Whelan, Paul. "Raman microscopy studies of carbon particles from diesel particulate matter (DPM) and coal dust." Thesis, Sheffield Hallam University, 2001. http://shura.shu.ac.uk/17384/.

Повний текст джерела
Анотація:
Diesel Particulate Matter (DPM) and coal dust samples were characterised using Raman microscopy, X-ray Photoelectron Spectroscopy (XPS), Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), Thermo-Gravimetric Analysis (TGA), X-ray Fluorescence (XRF) spectrometry and Scanning electron Microscopy. The sp2/sp3 carbon bonding ratios for DPM and coal dust were determined as 6.1 and 0.7, respectively, from XPS. Principal Component Analysis (PCA) was successfully implemented as a tool for distinguishing between the very similar DPM and coal dust Raman spectra, with over 99% of the variance contained in the first principal component. DPM and coal dust mixtures with known compositions were produced. Raman instrumental parameters were systematically optimised by varying the objective lenses, acquisition times and laser powers, to improve spectral and obtain the most reproducible integrated spectral areas. A rotation stage was developed and employed to spin the specimens during analysis, resulting in a larger sampling area. This resulted in a more representative sampling regime for the heterogeneous specimens and a considerable improvement in the reproducibility of integrated spectral areas. The error in the integrated spectral areas of 10 replicate spectra of different mixtures ranged from 5-22% before implementation of the rotating stage and was notably reduced to 2 -6% due to the action of spinning. Raman spectra of mixtures were used to construct a Partial Least Squares (PLS) model. The R2 values for the DPM and coal dust were 0.865 and 0.763, respectively. The differential bum-off of volatile organics during the Raman analysis due to localised heating from the laser hindered the ability to gain highly reproducible spectra and thus markedly affected the PLS model. A method development stage aimed at improving the R2 values was applied to the samples. This involved heat-treating the specimens to 625°C in an inert nitrogen atmosphere, before the Raman analysis. The resultant PLS model, after heat-treatment, dramatically improved the R2 values such that the DPM and coal dust were 0.974 and 0.907, respectively. This model was used to predict the composition of a test sample with known amounts of DPM and coal dust. The concentrations predicted by the model were 166 ± 3.9pg for the DPM and 68 ± 7.8jxg for the coal dust. The model slightly overestimated the amount of DPM present in the sample but gave a large underestimation of the coal dust content. The diagnostics of the model were investigated and recommendations for the improvement of future models were given.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kuppili, Sudheer Kumar. "Biodiesel Properties and Characterization of Particulate Matter Emissions from TARTA Buses Fueled by B20 Biodiesel." University of Toledo / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1471631394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Galvis, Remolina Boris. "Characterizing the emissions of fine particulate matter in the vicinity of a rail yard." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/52927.

Повний текст джерела
Анотація:
Aerosol emissions from diesel combustion and other activities in rail yards can affect the health of urban populations. Fine particulate (PM[subscript 2.5]) concentrations near the Inman and Tilford rail yards in Atlanta, Georgia, are the highest measured in the state. The rail yard complex is surrounded by homes, schools, businesses and other industries. The impact of the aerosol emissions from these rail yards on local concentrations of PM[subscript 2.5] was quantified. Specifically, black carbon and PM[subscript 2.5] fuel-based emission factors from the rail yards were estimated by carbon balance using high time-resolution monitoring, a BC and PM[subscript 2.5] emissions inventory was estimated and dispersion modeling was applied to assess the impact of the rail yard activities on local air quality and the cost and benefits of upgrading locomotive engines with cleaner technologies was assessed. Further, baseline information that will allow a later evaluation of the improvement of local air quality as locomotives operating in the rail yards are upgraded was generated, and a composition profile of the rail yard aerosols was developed using chemical speciation techniques. These results found that activities from locomotives in the Inman and Tilford Rail yards lead to and an average emission factor of 6.0 ± 0.5 g of PM[subscript 2.5] per gallon of fuel and are responsible for increases in annual average concentrations of approximately 1.3 µg/m³ of PM[subscript 2.5] as far as 1 km from the perimeter of the rail yard complex. Approximately 11.7 tons of BC and 26 tons of PM[subscript 2.5] per year were emitted from the rail yards in 2011. The rail yards were found to be important sources of hydrocarbon-like organic aerosols (HOA) and black carbon from fuel (BCf). Upgrading the engines at the rail yards would decrease PM[subscript 2.5] emissions by about 9 t/year, reducing PM[subscript 2.5] concentrations around 0.5±0.1 µg/m³ as far as 1 km from the perimeter of the rail yard complex and producing monetized health benefits of approximately 24 million dollars per year.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chen, Cheng. "Retrieving global sources of aerosol emissions from satellite observations." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1R001/document.

Повний текст джерела
Анотація:
La compréhension du rôle des aérosols atmosphériques dans le fonctionnement du système terre-atmosphère est limitée par les incertitudes sur leur répartition spatiale, leur composition et leurs sources. Si leurs impacts sur le changement climatique et l’environnement peuvent être évalués grâce aux modèles de chimie-transport, ces incertitudes en limitent la précision. Les observations satellitaires ont la capacité de fournir à l’échelle globale des informations précises sur un certain nombre de paramètres « aérosols » mais elles sont limitées par les conditions nuageuses, la périodicité des orbites et par le contenu en information, c’est-à-dire le type de paramètres que l’on peut retrouver suivant la nature de ces observations. Une approche prometteuse consiste à améliorer les champs d’émission des modèles en utilisant le principe de la modélisation inverse. Dans cette étude, nous avons conçu une méthode de restitution simultanée des sources d’émission de poussières désertiques, de carbone suie et de carbone organique à partir des produits satellitaires (POLDER/PARASOL) dérivés en utilisant l’algorithme GRASP, conjointement à une modélisation inverse du modèle GEOS-Chem. Cela nous a permis de créer une base de données d’émissions globales d’aérosols sur la période 2006 – 2011. Des simulations réalisées avec les modèles directs GEOS-Chem et GEOS-5/GOCART utilisant cette base de données montrent bien entendu un bon accord avec des observations POLDER mais aussi une nette amélioration de la modélisation de l’aérosol à l’échelle globale lorsque l’on compare les sorties à des mesures indépendantes du réseau AERONET ou à d’autres mesures spatiales (MODIS, MISR, OMI)
Understanding of the role that atmospheric aerosol play in the Earth-atmosphere system is limited by uncertainties in aerosol distribution, composition and sources. Thus, accurate chemical transport model simulation systems are crucial needed to analyse and predict atmospheric aerosols and their impacts on climate change and environment. Satellite observations have ability to provide an extensive spatial coverage and accurate aerosol products, however, are constrained by clear-sky condition, global coverage orbit cycle and information content. One of the most promising approaches is to reduce model uncertainty by improving the aerosol emission fields (i.e., model input) by means of inverse modeling relying on satellite observations as a constrain. In this study, we designed a method of simultaneous retrievals of desert dust, black carbon and organic carbon aerosol emission sources using aerosol data obtained from GRASP algorithm applied to POLDER/PARASOL satellite observations, and relying on the GEOS-Chem inverse modeling framework. Then, a satellite-based global aerosol emission database (2006-2011) has been developed. This aerosol emission database has been further evaluated by utilization in GEOS-Chem and GEOS-5/GOCART models. The model posterior simulation of aerosol properties employing the retrieved emissions shows a better agreement than the model prior simulation; it is true for not only fitted PARASOL products, but also for completely independent measurements from ground-based AERONET and satellites aerosol products (e.g., MODIS, MISR, OMI). The results suggest that the satellite-based aerosol emission database improves overall global aerosol modeling
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ordou, Niloofar. "Investigation of Physiochemical Properties of Size-resolved Biomass Burning/Local Wildfire Aerosols." Thesis, Griffith University, 2021. http://hdl.handle.net/10072/410471.

Повний текст джерела
Анотація:
Overall, particulate matter (PM) and household air pollution are at the root of 2.9 million deaths annually. One of the sources of particulate matter is biomass burning (BB) smoke. These particles can be formed by natural fires, prescribe agriculture fires, and as a result of burning fuel for cooking and heating houses. BB smoke particles can have various health effect and environmental impacts depending on a number of factors. Altering ozone refraction, they can act as cloud condensation nuclei. Health risks associated with these particle have been studied for long. Pulmonary, heart, carcinogen (especially due to compounds like Poly Aromatic Hydrocarbons (PAH). First and foremost, the nature of the fuel has a direct impact on the composition of the particulate matter and gaseous particles formed as the combustion products. Woody, Grass, or leafy fuels have been found to be composed of different compounds with different mass fractions. For example, cellulose content in wood is higher than other types of biomass fuel. As a results, it is logical to seek similar compound ending up in the particulate matter. The scale and intensity of the fire is the other influential factor. Although the effect of natural wildfire (bushfire) smoke particles would not be as direct and immediate as those evolving from the fuel burnt in household uses, long term effect of exposure to these particles spreading within the atmosphere month and even years after the fire has happened should not be overlooked. Besides, in very close vicinities to the fires, in fresh smoke less than minutes old, there always exist high number of finer particles which are health-wise of more concern compared to larger particle (as these finer particles penetrate into lower parts of the respiratory system through diffusion). Weather conditions, like elevation, wind speed, humidity, and sunlight are also influential factors in the formation of these particles. The other crucial factor is the phase of burning, i.e. Ignition, flaming, mixed state, and smouldering. Numerous studies have investigated the effect of these conditions on the size distribution, number concentration and physiochemical properties of smoke particles. PM properties of BB smoke have been investigated all around the globe for different biomass types and different burning conditions. Black carbon (BC) and organic carbon (OC) content of the PM are the most documented investigated items as they contributes to the high mass percentage of the PM. Other ubiquitous PM components include anhydrosugars, alcohols, PAHs, acids, water soluble ions, and trace elements. Gaseous particles resulted from BB carry with them sulphur oxides (SOx) and nitrogen oxides (NOx), volatile and semi volatile organic compounds. Each of these compounds and materials are known to have serious health and climate impacts. Numerous studies have used different devices and technologies to investigate the effect of fuel type and amount, and phase of burning and operational mode on different properties of fresh and aged smokes in case of small scale controlled or laboratory burns, massive natural wildfires, or air-forced cook stove gasifiers. In Australia, despite contributing to more than 7% of biomass burning emissions annually, there are quite a few exhaustive studies on the properties of bushfire particles. The importance of research redoubles considering the mega-fires taking place in Australia 2019-2020 which ravaged an estimate of 19 million hectares. This study is aimed to make a contribution in filling this gap and finding novel ideas in order to investigate different factors influencing Australian local vegetation fires which could potentially effect the environment and human health. Three journal articles are published based on this study, parts of which are used in different sections throughout this report. Citations are made in the beginning of the main relevant chapters. Abstract summaries are presented briefly here: First paper: Under controlled laboratory settings and small scale fires of vegetation collected from Toohey forest, it was found that leaves classification burn with flaming dominant phases producing intense black smoke which is consisted of larger particles as opposed to more smouldering-dominant burning of the branch and grass classifications releasing white smoke emissions which contain finer particles. Elemental analysis detected nine main elements in all three classifications and in three size fractions of smoke particulate matter samples (from 14.1μm to below 2.5μm). Potassium, a biomarker, was the most prevalent element among the samples followed by sulphur. Less abundant elements were found to be Na, Al, Mg, Zn, Si, Ca, and Fe. Second paper: Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common South Queensland Australian vegetation representatives. Smoke particles generated during smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring every second data for all nine species. Particles were separately characterised in two categories: fine particles (diameter below 200nm), and course particles with the diameter larger than 200nm. It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species. Third paper: smoke samples were collected during prescribed fire burns conducted between May 2018 and August 2019across different regions in Toohey forest, Queensland, Australia. Particle size/mass distribution as well as size-segregated elemental content were measured and the results were compared against the values obtained from the combustion of similar vegetation mixture under controlled laboratory settings. It was found that the concentration levels of coarse particles (sizes above 1 μm) were higher during field burn events, whereas the contributions of PM1 (smaller than 1 μm) was higher in case of laboratory burns. Following elemental analysis of different size classes of smoke particles (<0.96μm, 0.96-2.5μm, and >2.5μm) confirmed the presence of eight elements in both laboratory and field cases (Na, K, Mg, Ca, Zn, Al, Fe, S), however, levels of Ca, Mg, Al, and S were noticeably higher in prescribed fire results. Observed discrepancies between field and laboratory data could be attributed to the effect of top soil and duff layers present in prescribed fires/natural wildfires and absence thereof in the laboratory burns, which reveals the influential role of the aforementioned layers on the overall air quality status across bushfires-affected areas.
Thesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Carbon particulate emission"

1

White, Jerry D. Emission rates of carbon monoxide, particulate matter, and benzo(a)pyrene from prescribed burning of fine southern fuels. [Asheville, N.C.]: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Office, General Accounting. Air pollution: EPA's actions to resolve concerns with the fine particulate monitoring program : report to the Chairman, Subcommittee on VA, HUD, and Independent Agencies, Committee on Appropriations, House of Representatives. [Washington, D.C.]: The Office, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Munro, James. Carbon Units and Emissions Trading Schemes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198828709.003.0003.

Повний текст джерела
Анотація:
Before being able to correctly classify carbon units (the object of trade in emissions trading schemes) under international economic law, their inherent qualities and characteristics need to be understood. This requires a factual assessment of their qualities and characteristics, which will provide the evidence necessary to determine their proper legal classification under international economic law. In particular, Chapter 3 considers the historical and policy origins of emissions trading schemes and the key attributes and nature of carbon units, such as how they are created, what they represent, how they may be used, and how they derive value. The legal classification of carbon units under the different domestic jurisdictions is also surveyed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Munro, James. A Taxonomy of Prima Facie Violations of International Economic Law. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198828709.003.0008.

Повний текст джерела
Анотація:
Having determined that carbon units are, to varying extents, subject to international economic law, Chapter 8 assesses the consistency of emissions trading schemes and their rules affecting carbon units with that body of law. In particular, Chapter 8 identifies and evaluates the rules in emissions trading schemes affecting the trade, use, and value of carbon units that constitute prima facie violations of that body of law. It considers: (i) the differential treatment of carbon units that engages disciplines on non-discrimination; (ii) the quantitative restrictions on external carbon units that engage disciplines on market access; and (iii) the kinds of governmental interference in carbon markets that engage disciplines on investment. Chapter 8 thereby identifies and catalogues numerous prima facie breaches embedded in the rules of most emissions trading schemes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Munro, James. Emissions Trading Schemes under International Economic Law. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198828709.001.0001.

Повний текст джерела
Анотація:
This book assesses whether—and how—emissions trading schemes are subject to international economic law. Through an analysis of trade and investment treaties and related jurisprudence, it argues that the objects of trade in these schemes, namely carbon units (also known as emissions permits or carbon credits), are capable of being legally characterized as ‘goods’, ‘services’, ‘financial services’, and ‘investments’ under international economic law. The sui generis properties of carbon units—such as their intangibility, their degree of permanence, their relationship to an economic activity performed, and their use as a regulatory instrument—make this a particularly complex question. Having ascertained whether and how carbon units are regulated in this regard, this book undertakes a comparative analysis of numerous emissions trading schemes and uncovers a raft of design elements affecting trade and investment in carbon units that could be impugned under international economic law. In particular, it demonstrates how all of the major schemes—from the nascent schemes in China, South Korea, and Ontario to the more established schemes in the European Union, Switzerland, New Zealand, Norway, California, and Quebec—engage in violations of international economic law that are, in many cases, unlikely to be justified under environmental or other exceptions or exemptions. Not only do these conclusions have implications for the relationship between the international economic and international climate regimes but, more broadly, these conclusions interrogate the efficacy of international economic law for covering market-based mechanisms designed to manage environmental problems. They also provide guidance to policy-makers seeking to inoculate their emissions trading schemes from legal challenges under international trade and investment treaties.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dube, Opha Pauline. Climate Policy and Governance across Africa. Oxford University Press, 2016. http://dx.doi.org/10.1093/acrefore/9780190228620.013.605.

Повний текст джерела
Анотація:
This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Climate Science. Please check back later for the full article.Africa, a continent with the largest number of countries falling under the category of Least Developed Countries (LDCs), remains highly dependent on rain-fed agriculture that suffers from low intake of water, exacerbating the vulnerability to climate variability and anthropogenic climate change. The increasing frequency and severity of climate extremes impose major strains on the economies of these countries. The loss of livelihoods due to interaction of climate change with existing stressors is elevating internal and cross-border migration. The continent is experiencing rapid urbanization, and its cities represent the most vulnerable locations to climate change due in part to incapacitated local governance. Overall, the institutional capacity to coordinate, regulate, and facilitate development in Africa is weak. The general public is less empowered to hold government accountable. The rule of law, media, and other watchdog organizations, and systems of checks and balances are constrained in different ways, contributing to poor governance and resulting in low capacity to respond to climate risks.As a result, climate policy and governance are inseparable in Africa, and capacitating the government is as essential as establishing climate policy. With the highest level of vulnerability to climate change compared with the rest of the world, governance in Africa is pivotal in crafting and implementing viable climate policies.It is indisputable that African climate policy should focus first and foremost on adaptation to climate change. It is pertinent, therefore, to assess Africa’s governance ability to identify and address the continent’s needs for adaptation. One key aspect of effective climate policy is access to up-to-date and contextually relevant information that encompasses indigenous knowledge. African countries have endeavored to meet international requirements for reports such as the National Communications on Climate Change Impacts and Vulnerabilities and the National Adaptation Programmes of Action (NAPAs). However, the capacity to deliver on-time quality reports is lacking; also the implementation, in particular integration of adaptation plans into the overall development agenda, remains a challenge. There are a few successes, but overall adaptation operates mainly at project level. Furthermore, the capacity to access and effectively utilize availed international resources, such as extra funding or technology transfer, is limited in Africa.While the continent is an insignificant source of emissions on a global scale, a more forward looking climate policy would require integrating adaptation with mitigation to put in place a foundation for transformation of the development agenda, towards a low carbon driven economy. Such a futuristic approach calls for a comprehensive and robust climate policy governance that goes beyond climate to embrace the Sustainable Development Goals Agenda 2030. Both governance and climate policy in Africa will need to be viewed broadly, encompassing the process of globalization, which has paved the way to a new geological epoch, the Anthropocene. The question is, what should be the focus of climate policy and governance across Africa under the Anthropocene era?
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Carbon particulate emission"

1

Bikam, Peter Bitta. "Vehicle Management and Emission Control and Maintenance." In Green Economy in the Transport Sector, 51–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86178-0_5.

Повний текст джерела
Анотація:
AbstractSouth Africa range 15th as the world largest CO2 emitter contributing to 1.2% of global emission. During the Kyoto Protocol of 2014, South Africa pledged to reduce its emission by 34% and 42% in 2020 and 2025 respectively. This study is a combination of literature review from South Africa with particular emphasis on road transport. The focus was on vehicle emission with reference to Limpopo Province to demonstrate how emissions from primarily the use of diesel and petrol as one of the major contributors to CO2 emission in the province are vital for the sustainability debate. The methodology used to illustrate the dangers of vehicular emissions were based on statistical estimates from the Department of Environmental Affairs (DEA) inventory report from 2000 to 2010. The information used in assessing the vehicle emission standards in Limpopo were obtained from DEA. The findings from literature reviews in general and the results from the field survey from Limpopo Province shed some light on South Africa's vehicle emissions policy issues and standards. Also the analysis focused on the impact of vehicular fleet management and carbon emissions. The article concludes by drilling down to vehicle users, motor vehicle repairs, engine over haulers, used engine collection and disposal with respect to their roles in vehicle emission and control in South Africa.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Hsing-Hao. "Moving Toward Net-Zero Emission Society: With Special Reference to the Recent Law and Policy Development in Some Selected Countries." In Springer Climate, 151–69. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-24545-9_10.

Повний текст джерела
Анотація:
AbstractBy the Sixth IPPC Report issued in August 2021, man-made greenhouse gases emission is responsible for approximately 1.1 °C of warming between 1850 and 1900, and the global temperature is expected to reach or exceed 1.5 °C by 2041. The IPPC thus urges world leaders to adopt substantial and sustained reductions to reduce carbon dioxide (CO2) and other greenhouse gas emissions to stabilize global temperature by the next 20–30 years. In East Asia, the Former Prime Minister of Japan, Yoshihide Suga, declared that Japan will become carbon–neutral by 2050. The commitment has been further endorsed by his successor Prime Minister Kishida Fumio. Korea enacted the Carbon Neutrality Act, which requires the government to cut greenhouse gas emissions in 2030 by 35% or more from the 2018 levels in August 2021. In China, President Xi Jinping committed to achieving carbon neutrality by 2060 at the U.N. General Assembly in September 2020. In Taiwan, President Tsai Ing-wen announced on April 22, 2021, that Taiwan will achieve carbon neutrality by 2050. The road to achieving net-zero emissions is an ambitious but challenging goal for each significant GHGs emitter in the Asia–Pacific region. Each country has its own economic, social, and technological foundation and capabilities and thus requires different approaches to achieve the same goal. This chapter explores the recent global trends with particular references to EU, U.S., and Japan’s law and policy development aiming to achieve carbon neutrality goals by 2050.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Knox-Hayes, Janelle, Jarrod Hayes, and Erik-Logan Hughes. "Carbon Markets, Values, and Modes of Governance." In Knowledge for Governance, 193–224. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47150-7_9.

Повний текст джерела
Анотація:
AbstractMarket governance of climate change is situated at the interface of two competing logics: universalistic governance predicated on technocratic norms and the particularities of politics embedded in local cultures. Actors implementing technocratic prescriptions for resolving climate change that rely on metrics to measure the effects of climate change, establish quantitative baselines and price emissions often miss the cultural values and social norms that shape markets. These logics of governance represent important axes along which climate policy can be mapped and assessed. This chapter assesses how policy intersects with these axes and in the process provides a broad-based qualitative and quantitative assessment of how geographically specific socio-cultural factors shape intersubjective understandings of carbon markets in particular. The authors of this chapter adopt a cross-national perspective, examining and evaluating the intersubjective meanings of carbon-market formation drawn from interview data of market makers across the United States, Australia, China, the EU, Japan, and South Korea.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wendt, Jonas, Astrid Weyand, Boris Barmbold, and Matthias Weigold. "Approach for Design of Low Carbon Footprint Paint Shops in the Automotive Industry." In Lecture Notes in Mechanical Engineering, 490–98. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_55.

Повний текст джерела
Анотація:
AbstractTo mitigate the ongoing progress of climate change, the European Commission announced in the European Green Deal to reduce greenhouse gas emissions by 55% until 2030 compared to the reference year 1990 and to achieve climate neutrality by 2050 [1]. In this context, the industry in particular faces environmental challenges due to its high energy demand. To achieve the objective of becoming climate-neutral, increasing the energy and resource efficiency in the industry is crucial, because a large proportion of the greenhouse gases released are emitted during the provision of energy. In the automotive industry, paint shops are among the most energy-intensive processes and have great potentials for efficiency measures. These potentials can be identified with the assistance of energy or CO2 balancing methods. This publication presents a tool to analyse the energy efficiency potentials of automotive paint shops. The approach offers the possibility to parameterize different painting processes and their sub-processes. After defining the process requirements, a thermodynamic and process engineering simulation of the individual process steps enables the identification of potentials for energy and resource savings and CO2 reduction in existing or planned painting processes. In a validation on a real reference scenario, the simulated CO2 emissions of a paint shop were reduced by up to 24%.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dalla Valle, Anna. "Life Cycle Assessment at the Early Stage of Building Design." In The Urban Book Series, 461–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_42.

Повний текст джерела
Анотація:
AbstractIn view of the urgent need to construct informed and advanced vision of the built environment in terms of environmental impacts, Life Cycle Assessment (LCA) is even more emerging as the most recognized supporting tool for Architectural, Engineering and Construction (AEC) practices. This is proved by Level(s), a voluntary framework established in Europe that is fully life cycle-based, looking buildings beyond energy performance to the whole life cycle, while fostering the implementation of circular economy strategies. To face buildings complexity, it recommends applying life cycle approach with an increasing level of detail and accuracy, shifting from the assessment of carbon emissions to complete cradle to grave LCA. In this context, many calls for competitions at the reach of environmentally sustainability include Level(s) measures as reference frame to deal with. The paper provides insights of building LCA application performed during the preliminary design phases, since crucial for the decision-making process especially if operating into competition aimed at minimizing environmental impacts. In particular, a sample of building projects developed to address an international architecture competition specifically committed to decarbonization issues in compliance with Level(s) is discussed. Starting from a concrete in situ scenario, the attention is on integrating dry assembled solutions composed of environmental-friendly materials. Results show range of carbon footprint of low-carbon buildings in relation to building shape and volume, outlining building parts that generally contribute to highest release of CO2 and providing effective technological solutions. The aim is to support AEC practitioners in the design and implementation of buildings embracing a life cycle approach starting from the early design process.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dajuma, Alima, Siélé Silué, Kehinde O. Ogunjobi, Heike Vogel, Evelyne Touré N’Datchoh, Véronique Yoboué, Arona Diedhiou, and Bernhard Vogel. "Biomass Burning Effects on the Climate over Southern West Africa During the Summer Monsoon." In African Handbook of Climate Change Adaptation, 1515–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_86.

Повний текст джерела
Анотація:
AbstractBiomass Burning (BB) aerosol has attracted considerable attention due to its detrimental effects on climate through its radiative properties. In Africa, fire patterns are anticorrelated with the southward-northward movement of the intertropical convergence zone (ITCZ). Each year between June and September, BB occurs in the southern hemisphere of Africa, and aerosols are carried westward by the African Easterly Jet (AEJ) and advected at an altitude of between 2 and 4 km. Observations made during a field campaign of Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) (Knippertz et al., Bull Am Meteorol Soc 96:1451–1460, 2015) during the West African Monsoon (WAM) of June–July 2016 have revealed large quantities of BB aerosols in the Planetary Boundary Layer (PBL) over southern West Africa (SWA).This chapter examines the effects of the long-range transport of BB aerosols on the climate over SWA by means of a modeling study, and proposes several adaptation and mitigation strategies for policy makers regarding this phenomenon. A high-resolution regional climate model, known as the Consortium for Small-scale Modelling – Aerosols and Reactive Traces (COSMO-ART) gases, was used to conduct two set of experiments, with and without BB emissions, to quantify their impacts on the SWA atmosphere. Results revealed a reduction in surface shortwave (SW) radiation of up to about 6.5 W m−2 and an 11% increase of Cloud Droplets Number Concentration (CDNC) over the SWA domain. Also, an increase of 12.45% in Particulate Matter (PM25) surface concentration was observed in Abidjan (9.75 μg m−3), Accra (10.7 μg m−3), Cotonou (10.7 μg m−3), and Lagos (8 μg m−3), while the carbon monoxide (CO) mixing ratio increased by 90 ppb in Abidjan and Accra due to BB. Moreover, BB aerosols were found to contribute to a 70% increase of organic carbon (OC) below 1 km in the PBL, followed by black carbon (BC) with 24.5%. This work highlights the contribution of the long-range transport of BB pollutants to pollution levels in SWA and their effects on the climate. It focuses on a case study of 3 days (5–7 July 2016). However, more research on a longer time period is necessary to inform decision making properly.This study emphasizes the need to implement a long-term air quality monitoring system in SWA as a method of climate change mitigation and adaptation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Korsnes, Marius. "Sufficiency in China’s Energy Provision: A Service Understanding of Sustainable Consumption and Production." In Consumption, Sustainability and Everyday Life, 111–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-11069-6_5.

Повний текст джерела
Анотація:
AbstractChina’s power sector has contributed to more than 45 per cent of China’s total historical carbon emissions. The economic turnaround experienced in China since 1978 has increased incomes and the national gross domestic product, in part through actively embracing consumerism. Environmental exploitation and widespread pollution of air, soil and water have accompanied the development process. This chapter qualitatively explores China’s current development path by presenting a social science analysis of electricity consumption and energy services. The analysis will not encompass the whole energy sector but looks mainly at the services that electricity provides domestically in an urban Chinese context. Seeing needs and demand as socially constructed and developed over time through a variety of influences, the chapter analyses and assesses the services provided by electricity. The working hypothesis of this chapter is that we need to change from efficiency thinking to sufficiency thinking, i.e., the possibility of having enough of something for a particular purpose, and the onus should still be on the affluent population of the world. Nevertheless, China organises its economy according to market-based and government-guided principles and acts as a growth engine for global capitalist endeavours. To make headway, the chapter discusses two points: First, is energy growth in China mainly about developing basic services and infrastructures? Second, is it ethical or practical to argue for restrictions on energy growth in China?
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Takeda, Shiro. "The Competitiveness Issue of the Japanese Economy Under Carbon Pricing: A Computable General Equilibrium Analysis of 2050." In Economics, Law, and Institutions in Asia Pacific, 181–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6964-7_10.

Повний текст джерела
Анотація:
Abstract Using a computable general equilibrium (CGE) model, this paper investigates the impact of carbon regulations on the Japanese economy. We use an 11-sector, 15-region global dynamic CGE model with a time span from 2011 to 2050. We assume that Japan (along with other developed regions) reduces CO2 emissions by 80% by 2050 and analyze the impact on the Japanese economy. In particular, we consider multiple scenarios of CO2 reduction rates in less developed regions and analyze how changes in CO2 reduction in these regions affect Japan. In addition, we also consider multiple scenarios of the use of a border adjustment policy and analyze its impact. Our simulation results are summarized as follows. First, an 80% CO2 reduction in Japan generates large negative impacts on the Japanese economy in terms of both the macroeconomy and individual sectors. Second, changes in the reduction rates in less developed regions have only a small impact on Japan. Third, the use of border adjustment in Japan has a small impact on the GDP and welfare of Japan overall but a large impact on output in the energy intensive sectors. When future climate change policies in Japan are discussed, much attention is usually paid to climate policy in less developed regions. However, the second result of our analysis suggests that climate change policy in less developed regions has only a small impact on Japan. In addition, the third result indicates that the effectiveness of border adjustment is limited.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Law, D. W., C. Gunasekara, and S. Setunge. "Use of Brown Coal Ash as a Replacement of Cement in Concrete Masonry Bricks." In Lecture Notes in Civil Engineering, 23–25. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_4.

Повний текст джерела
Анотація:
AbstractPortland cement production is not regarded as environmentally friendly, because of its associated high carbon emissions, which are responsible for 5% of global emissions. An alternative is to substitute fly ash for Portland cement. Australia has an abundance of brown coal fly ash, as it is the main source of primary energy in the State of Victoria. Currently, the majority of this material is stored in landfills and currently there is no commercial use for it in the cement industry because brown coal fly ash cannot be used as a direct replacement material for Portland cement due to the high sulfur and calcium content and low aluminosilicate content. However, the potential exists to use brown coal fly ash as a geopolymeric material, but there remains a significant amount of research needed to be conducted. One possible application is the production of geopolymer concrete bricks. A research project was undertaken to investigate the use of brown coal fly ash from Latrobe Valley power stations in the manufacture of geopolymer masonry bricks. The research developed a detailed understanding of the fundamental chemistry behind the activation of the brown coal fly ash and the reaction mechanisms involved to enable the development of brown coal fly ash geopolymer concrete bricks. The research identified suitable manufacturing techniques to investigate relationships between compressive strength and processing parameters and to understand the reaction kinetics and microstructural developments. The first phase of the research determined the physical, chemical, and mineralogical properties of the Loy Yang and Yallourn fly ash samples to produce a 100% fly ash-based geopolymer mortar. Optimization of the Loy Yang and Yallourn geopolymer mortars was conducted to identify the chemical properties that were influential in the production of satisfactory geopolymer strength. The Loy Yang mortars were able to produce characteristic compressive strengths acceptable in load-bearing bricks (15 MPa), whereas the Yallourn mortars produced characteristic compressive strengths only acceptable as non-load-bearing bricks (5 MPa). The second phase of the research transposed the optimal geopolymer mortar mix designs into optimal geopolymer concrete mix designs while merging the mix design with the optimal Adbri Masonry (commercial partner) concrete brick mix design. The reference mix designs allowed for optimization of both the Loy Yang and Yallourn geopolymer concrete mix designs, with the Loy Yang mix requiring increased water content because the original mix design was deemed to be too dry. The key factors that influenced the compressive strength of the geopolymer mortars and concrete were identified. The amorphous content was considered a vital aspect during the initial reaction process of the fly ash geopolymers. The amount of unburnt carbon content contained in the fly ash can hinder the reactive process, and ultimately, the compressive strength because unburnt carbon can absorb the activating solution, thus reducing the particle to liquid interaction ratio in conjunction with lowering workability. Also, fly ash with a higher surface area showed lower flowability than fly ash with a smaller surface area. It was identified that higher quantity of fly ash particles <45 microns increased reactivity whereas primarily angular-shaped fly ash suffered from reduced workability. The optimal range of workability lay between the 110–150 mm slump, which corresponded with higher strength displayed for each respective precursor fly ash. Higher quantities of aluminum incorporated into the silicate matrix during the reaction process led to improved compressive strengths, illustrated by the formation of reactive aluminosilicate bonds in the range of 800–1000 cm–1 after geopolymerization, which is evidence of a high degree of reaction. In addition, a more negative fly ash zeta potential of the ash was identified as improving the initial deprotonation and overall reactivity of the geopolymer, whereas a less negative zeta potential of the mortar led to increased agglomeration and improved gel development. Following geopolymerization, increases in the quantity of quartz and decreases in moganite correlated with improved compressive strength of the geopolymers. Overall, Loy Yang geopolymers performed better, primarily due to the higher aluminosilicate content than its Yallourn counterpart. The final step was to transition the optimal geopolymer concrete mix designs to producing commercially acceptable bricks. The results showed that the structural integrity of the specimens was reduced in larger batches, indicating that reactivity was reduced, as was compressive strength. It was identified that there was a relationship between heat transfer, curing regimen and structural integrity in a large-volume geopolymer brick application. Geopolymer bricks were successfully produced from the Loy Yang fly ash, which achieved 15 MPa, suitable for application as a structural brick. Further research is required to understand the relationship between the properties of the fly ash, mixing parameters, curing procedures and the overall process of brown coal geopolymer concrete brick application. In particular, optimizing the production process with regard to reducing the curing temperature to ≤80 °C from the current 120 °C and the use of a one-part solid activator to replace the current liquid activator combination of sodium hydroxide and sodium silicate.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arif, Mohammad, Ramesh Kumar, Rajesh Kumar, and Eric Zusman. "Emission of black carbon and other particulate matter from transportation sector." In Asian Atmospheric Pollution, 393–408. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-816693-2.00006-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Carbon particulate emission"

1

Tan, Pi-Qiang, Jia-Xiang Lu, and Kang-Yao Deng. "CO-PM Modeling for Particulate Matter Emission of Diesel Engines." In ASME 2003 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ices2003-0648.

Повний текст джерела
Анотація:
In this study, a phenomenological model, that predicts the particulate matter emission (PM) of diesel engines, has been formulated. The CO-PM model is based on the formation mechanisms of PM and carbon monoxide (CO) of diesel engines. It can predict the emission concentration of PM via the emission concentration of CO. The calculation method of the model is simple and quick. To validate the model, experiments were carried out in two research diesel engines. Comparisons of the model results with the experimental data show good agreement. The model is useful for computer simulations of electronically controlled diesel engines, as well as electronic control unit (ECU) designs for diesel engines.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gupta, Jai Gopal, Avinash Kumar Agarwal, and Suresh K. Aggarwal. "Particulate Emissions From Karanja Biodiesel Fuelled Turbocharged CRDI SUV Engine." In ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5653.

Повний текст джерела
Анотація:
The use of biodiesel substantially reduces particulate matter (PM), hydrocarbon (HC) and carbon monoxide (CO) emissions, slightly reduces power output; increases fuel consumption and marginally increases oxides of nitrogen (NOx) emission in an unmodified common rail direct injection (CRDI) diesel engine. Lower blends of biodiesel demonstrated lower emissions, while easing pressure on scarce petroleum resources, without significantly sacrificing engine power output and fuel economy. However due to adverse health effects of smaller size particulate matter (PM) emitted by internal combustion (IC) engines, most recent emission legislations restrict the PM mass emissions in addition to total particle numbers emitted. It is an overwhelming argument that usage of biodiesel leads to reduction in PM mass emissions. In this paper, experimental results of PM emissions using Karanja biodiesel blends (KB20 and KB40) in a modern CRDI transportation engine (maximum fuel injection pressure of 1600 bar) have been reported. This study also explores comparative effect of varying engine speed and load on PM emissions for biodiesel blends vis-à-vis baseline mineral diesel. Particulate size-number distribution, particle size-surface area distribution and total particulate number concentrations were experimentally determined under varying engine operating conditions and compared with baseline mineral diesel. KB20 showed highest particulate number concentration upto 80% rated engine loads, however at rated load, KB40 emitted highest number of particulates.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Spang, Brent, Sayaka Yoshimura, Richard Hack, Vincent McDonell, and Scott Samuelsen. "Evaluation of the Level of Gaseous Fuel-Bound Sulfur on Fine Particulate Emission From a Low Emission Gas Turbine Engine." In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gt2012-69352.

Повний текст джерела
Анотація:
The present work investigates the effect of natural gas fuel sulfur on particulate emissions from stationary gas turbine engines used for electricity generation. Fuel sulfur from standard line gas was scrubbed using a system of fluidized reactor beds containing a specially designed activated carbon purposely built for sulfur absorption. A sulfur injection system using sonic orifices was designed and constructed to inject methyl mercaptan into the scrubbed gas stream at varying concentrations. Using these systems, particulate emissions created by various fuel sulfur levels between 0 and 15 ppmv were investigated. Particulate samples were collected from a Capstone C65 microturbine generator system using a Horiba MDLT-1302TA micro dilution tunnel and analyzed using a Horiba MEXA-1370PM particulate analyzer. In addition, ambient air samples were collected to determine incoming particulate levels in the combustion air. The Capstone C65 engine air filter was also tested for particulate removal efficiency by sampling downstream of the filter. To further differentiate the particulate entering the engine in the combustion air from particulate being emitted from the exhaust stack, two high efficiency HEPA filters were installed to eliminate a large portion of incoming particulate. Variable fuel sulfur testing showed that there was a strong correlation between total particulate emission factor and fuel sulfur concentration. Using eleven variable sulfur tests, it was determined that an increase of 1 ppmv fuel sulfur will produce an increase of approximately 2.8 μg/m3 total particulate. Also, the correlation predicted that, for this particular engine, the total particulate emission factor for zero fuel sulfur was approximately 19.1 μg/m3. With the EC and OC data removed, the correlation became 2.5 μg/m3 of sulfur particulate produced for each ppmv of fuel sulfur. The correlation also predicted that with no fuel sulfur present, 7.8 μg/m3 of particulate will be produced by sulfur passing through the engine air filter.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakamura, Mayuko, Atsuto Ohashi, Yoichi Niki, Akiko Masuda, and Chiori Takahashi. "Effects of Injection Pressure on Emission and Components of Particulate Matter From Marine Diesel Engine." In ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9644.

Повний текст джерела
Анотація:
Reduction of particulate matter (PM) is important issues even for shipping industry since PM harms the environment and human health. In order to reduce PM from marine diesel engines, we focused on components forming PM, elemental carbon (EC), organic carbon (OC), sulfate, and “others” (nitrate, bound water associated with sulfate, metal, ash and hydrogen associated with OC), and investigated the reduction effect of each component by changing fuel injection pressure of a four-stroke marine diesel engine at the two engine load points of 25% and 50%. At 50% load, the PM emissions decreased with increasing the fuel injection pressure, the reduction in the PM emissions which reflected the decrease in EC. At 25% load, the PM emissions did not decrease simply with the injection pressure since OC, sulfate, “others” components in addition to EC contributed to the injection pressure dependence of PM. The results suggest that behaviors of each component of PM should be grasped to achieve the appropriate reduction method of PM.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Asai, Tomohiro, Hiromi Koizumi, Shohei Yoshida, and Hiroshi Inoue. "Effects of Fuel-Nozzle Configurations on Particulate-Matter Emissions From a Model Gas Turbine Combustor." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50351.

Повний текст джерела
Анотація:
The present paper describes particulate-matter (PM) emissions from a model gas turbine combustor at atmospheric pressure, focusing on the effects fuel-nozzle configurations have on PM emissions. In this experiment, three types of fuel nozzles were employed: standard, annular, and multi-type. The annular and multi-type were designed as low-PM-emission fuel nozzles, based on our preliminary experimental results using the standard nozzle. Gas oil and fuel oil containing 0.2 wt% of carbon residue were used as the test fuels. The PM concentrations and particle-size distributions were measured with an electrical low-pressure impactor. The experimental results revealed that the PM concentrations for the annular and multi-type were dramatically reduced compared with that for the standard nozzle, demonstrating their PM-reducing effect. We found that the high-concentration regions seemed to be formed by soot aggregation, from the spatial-profile measurements of PM emissions from gas oil combustion. The high-concentration regions for the low-PM-emission fuel nozzles were located further upstream and they were on a smaller scale than that for the standard nozzle. This suggests that their PM-reducing effect may be due to their upstream location and the smaller-scale of their high-concentration regions.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Myung Yoon, Seung Hyun Yoon, Jin Woo Hwang, and Chang Sik Lee. "Characteristics of Particulate Emissions of Compression Ignition Engine Fueled With Biodiesel Derived From Soybean." In ASME 2007 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/icef2007-1715.

Повний текст джерела
Анотація:
An experimental investigation was performed on the effect of engine speed and EGR (exhaust gas recirculation) on the particle size distribution and exhaust gas emissions in a compression ignition engine fueled with biodiesel derived from soybean. The results obtained by biodiesel fuel were compared to those obtained by petroleum diesel fuel with sulfur contents of 16.3 ppm. The scanning mobility particle sizer (SMPS) was used for size distribution analysis and it measured mobility equivalent particle diameter in the range of 10.4 to 392.4 nm. In addition to the size distribution of the particles, exhaust emissions such as oxides of nitrogen (NOx), hydrocarbon (HC), and carbon monoxide (CO) emissions and combustion characteristics under different engine operating parameters were investigated. The engine operating parameters in terms of engine speed, EGR, injection pressure, and intake pressure were varied to investigate the individual impact of the operating parameters. As the engine speed was increased for the both fuels, the larger size particles which dominantly contributes particle mass was increased, however total numbers of particle were reduced. Comparing to petroleum diesel fuel, the combustion of biodiesel fuel in the engine reduced particle concentration of relatively larger size where most of the particle mass is found. Moreover, dramatically lower hydrocarbon and carbon monoxide emissions were found at the biodiesel fueled engine. However, the NOx emission of biodiesel fueled diesel engine shows slightly higher concentration compared to diesel fuel at the same injection timing.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Stoos, Christopher R., and Alexander Guliaeff. "Low Emissions Kit Development for a 1.5MW EMD GP20D Locomotive." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1133.

Повний текст джерела
Анотація:
This paper describes the development, testing, and application of a low emissions upgrade kit for 1.5 MW EMD GP20D locomotives. Low emissions development focused on changes to fuel injection timing combined with the application of crank case ventilation system (CCV) and catalyzed diesel particulate filters (DPF). Composed of a porous cordierite ceramic material, the diesel particulate filters are specifically designed for entrapment of diesel particulates while allowing exhaust gases to flow through. Furthermore, the filters are coated with a proprietary catalyzed washcoat that promotes the oxidation of soot within the exhaust gas temperature range observed under normal engine operation. In addition to the low temperature oxidation of soot, the catalyzed filter also reduces carbon monoxide and unburned hydrocarbons. The test locomotive used for this development, which is owned by CIT Rail, was powered by a recently rebuilt Caterpillar 3516B engine with a rated power of 1.5 MW (2,000 HP). Baseline exhaust emission testing was performed, followed by low emissions retrofit development. In combination with the CCV and new fuel injection calibrations, the DPF system netted significant emissions reductions. The result of the final low emissions upgrade kit was an EPA Tier 1+ certification, with emissions levels that were below EPA Tier 3 locomotive switch cycle standards for oxides of nitrogen (NOx) and below EPA Tier 4 switch cycle standards for hydrocarbons (HC), carbon monoxide (CO), particulate matter (PM), and smoke.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bari, Saiful, Asif Iqbal, Md Mizanur Rahman, and Amit Jat. "Probabilistic Analysis of Transport Induced Emissions in Melbourne City Roads." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0890.

Повний текст джерела
Анотація:
<div class="section abstract"><div class="htmlview paragraph">Because of the negative impacts of pollutions on us and our surroundings, it is important to measure the magnitude of emissions in metropolitan areas where the emission concentrations are highest. The Mesoscale approach was used for probabilistic emission inventory. The traffic volume data for each road link were required and collected from the Victoria state road traffic authority for further calculation for different Euro standards in different vehicle categories. The pollutants studied in this paper are nitrogen oxides (NO<sub>X</sub>), carbon monoxide (CO), and particulate matter (PM), as transportation-induced emissions constitute the principal source of city pollution. This paper examined the deterministic modelling and stochastic modelling approaches for estimating on-road emissions. The Monte Carlo simulation approach was applied for stochastic modelling. Estimated emissions were calculated using a deterministic approach for various road links, which were 79,000 g/km Carbon Monoxide (CO) for light private vehicles for a particular road link, but when the emissions for the same link were calculated using stochastic modelling, the emission estimated were around 82,000 g/km Carbon Monoxide (CO). This paper also analyzed different scenarios and future scenarios. When a 21% growth (in the year 2030) in vehicle registration is expected, considering the current growth trend, a 17% increase in CO emission is estimated in all vehicle categories. Different scenarios were analyzed assuming 50% of euro 3 vehicles were replaced by euro 5 (by the year 2020), then there would be a 34% reduction in CO emission for the same road link, which is 31,191 g/km less.</div></div>
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Allen, J. W., K. R. Parker, and A. Sanyal. "Coal Quality and Its Impact on Power Stations Emissions Control." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50196.

Повний текст джерела
Анотація:
Although coal fired power generation plant was originally designed to operate on a particular coal, increasingly stringent emissions regulations have led to modifications to both the coal type and firing mode. Low sulphur (S) coals minimize the requirement for sulphur dioxide (SO2) scrubbing plant combustion modifications are used as the primary measure to reduce the emission of nitrogen oxides (NOx) and these changes in the firing regime and/or the coal type can also impact on the in boiler ash deposition, particulate collection and the overall efficiency of the boiler operation. Emission regulations requiring maximum NOx levels of 0.15lbs./MM.Btu. are at, or just below, the limit of NOx reduction achievable by primary measures and at this limit significant increases in unburnt carbon (UBC) in ash levels can be expected, which affect boiler efficiency and also the operation of any SO2 and particulate collection plant. Coals are usually purchased, in addition to price, on quality based on the well established proximate and ultimate analyses, whereas parameters derived from these basic analyses may be more effective in defining the behaviour of a coal, substituted for the original design coal, in order to meet current emissions regulations whilst still maintaining an acceptable operating efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eldabbagh, Fadi, Appadurai Ramesh, Karl K. Rink, and Janusz A. Kozinski. "Biomass Combustion With Emphasis on Interactions Between Metals and Inorganic Particulate." In 18th International Conference on Fluidized Bed Combustion. ASMEDC, 2005. http://dx.doi.org/10.1115/fbc2005-78090.

Повний текст джерела
Анотація:
Biomass is clean, stored solar energy. Not only is it a plentiful fuel, but its use also reestablishes the natural carbon cycle helping mitigate greenhouse gas emissions. This renewable energy source is nearly CO2 neutral. Overall, it is possible to achieve a 93% reduction in net CO2 emissions per unit heating value by switching from coal to biomass and a 84% reduction by switching from natural gas-fired cogeneration to biomass. Due to inherent advantages of the biomass in substituting fossil fuels, and increasing legislative pressures against CO2 emissions (Kyoto Protocol), biomass-based power is genuinely considered. It seems practically impossible to meet Kyoto requirements by replacing fossil fuels combustion with nuclear energy, hydropower or fuel cells. Simply, there is not enough time. In this context, there exists a niche for the biomass-based power generation. This paper compares interactions between metals and solid particles evolving from biomass during the classical Fluidized Bed Combustion (FBC) and a new Low-High-Low temperature (LHL) combustion. Experiments, conducted at a pilot-scale, reveal a clear pattern of surface predominance of light metals (Ca, K) and core predominance of heavy metals (Cd, Cr) within the LHL-generated particles. No such behavior was induced by the classical FBC approach. Metals migration is linked to the evolution of inorganic particles. A composite picture of the metals rearrangements in the particles was obtained by the combination of independent analytical techniques including electron probe microanalysis, field emission scanning electron microscopy, inductively-coupled plasma spectrometry and X-ray diffractometry. It is suggested that the combination of (i) the high-temperature region in the LHL and (ii) changes in the surface free energy of the particles is the driving force for the metal-particle behavior. Important practical implications of the observed phenomena are proposed including removal of hazardous submicron particulate and reduction in fouling/slagging during biomass combustion. These findings may contribute to redesigning currently operating FBC units in order to generate non-hazardous, non-leachable, re-usable particles where heavy metals are immobilized while environmental and technological problems reduced.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Carbon particulate emission"

1

Chepeliev, Maksym. Development of the Air Pollution Database for the GTAP 10A Data Base. GTAP Research Memoranda, June 2020. http://dx.doi.org/10.21642/gtap.rm33.

Повний текст джерела
Анотація:
The purpose of this note is to document data sources and steps used to develop the air pollution database for the GTAP Data Base Version 10A. Emissions for nine substances are reported in the database: black carbon (BC), carbon monoxide (CO), ammonia (NH3), non-methane volatile organic compounds (NMVOC), nitrogen oxides (NOx), organic carbon (OC), particulate matter 10 (PM10), particulate matter 2.5 (PM2.5) and sulfur dioxide (SO2). The dataset covers four reference years – 2004, 2007, 2011 and 2014. EDGAR Version 5.0 database is used as the main data source. To assist with emissions redistribution across consumption-based sources, IIASA GAINS-based model and IPCC-derived emission factors are applied. Each emission flow is associated with one of the four sets of emission drivers: output by industries, endowment by industries, input use by industries and household consumption. In addition, emissions from land use activities (biomass burning) are estimated by land cover types. These emissions are reported separately without association with emission drivers.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cai, H., and M. Wang. Estimation of Emission Factors and Particulate Black Carbon and Organic Carbon from Stationary, Mobile, and Non-point Sources in the United States for Incorporation into GREET. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1155133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hu, Tao, Xianqiang Mao, Xuedu Lu, and Gloria P. Gerilla-Teknomo. Air Pollutants and Greenhouse Gas Emissions Co-control Evaluation in the People’s Republic of China. Asian Development Bank, December 2020. http://dx.doi.org/10.22617/wps200387-2.

Повний текст джерела
Анотація:
Local air pollutants (LAPs), such as carbon monoxide, hydrocarbon, sulfur oxide, nitrogen oxide, ozone, and particulate matter, as well as greenhouse gas (GHG) emissions from the transport sector are rapidly increasing in the People’s Republic of China. Various measures to control LAPs have been implemented in the country, along with the adoption of strategies to mitigate GHG emissions. The connection between LAP and GHG emission control and reduction offers an opportunity to address both problems simultaneously. This paper presents a methodology that measures the benefits of co-control evaluation on mitigating LAP and GHG emissions. It highlights the methodology’s potential to help maximize measures and strategies that have significant co-control effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kashyap, Varsha, Jill Hooks, Asheq Rahman, and Md Borhan Uddin Bhuiyan. Institutional Determinants of Carbon Financial Accounting Practices. Unitec ePress, 2020. http://dx.doi.org/10.34074/ocds.084.

Повний текст джерела
Анотація:
This paper investigates how and why firms affected by Emissions Trading Schemes (ETSs) are financially accounting for carbon in a voluntary setting. Using institutional theory, the authors seek to identify the determinants of a firm’s decision to adopt a particular carbon financial accounting practice. We identify the recognition and measurement practices for carbon-emission allowances using data gathered from the annual reports of ETS-affected firms in Australia. These practices are identified in the five stages of carbon-emission allowance transactions, namely, when these are: (1) received for free, (2) purchased, (3) used, (4) sold, and (5) surrendered. Inconsistencies in carbon financial accounting practices are observed. The findings reveal that carbon-emission allowances are recorded as intangible assets, but most firms provide incomplete information on their carbon financial accounting practices. Firms also exhibit inconsistencies in specifying how they are ‘recognising’ and ‘measuring’ carbon-emission allowances. The results provide evidence of coercive (regulation) and mimetic (size, leverage, and listing status) pressures being the main determinants of carbon financial accounting practice.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Corporation, Advanced Engine Technologies. PR-260-9726-R01 Carbon Pollutant Emissions and Performance Trade-Offs vs NOx for RICE. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 1998. http://dx.doi.org/10.55274/r0011035.

Повний текст джерела
Анотація:
This work evaluates the effect of emission and performance trade-offs of reduction technologies for reciprocating engine-compressors. Of specific interest are the trade-offs between emissions of NOx versus CO, THCs and in particular HAPS. This work includes accumulated engine performance and emissions data from eight industry and client funded projects encompassing 24 engines of 18 different models typifying two (2SC) and four stroke cycle (4SC) open (OCC) and pre-combustion chamber (PCC) engines in gas transmission service.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Avis, William. Emission Reductions and Health Impacts of LEVs. Institute of Development Studies (IDS), July 2021. http://dx.doi.org/10.19088/k4d.2022.033.

Повний текст джерела
Анотація:
This rapid literature review summarises evidence on Emission reductions and health impacts of Low and Zero Emission Vehicles (LEVs and ZEVs). The review found a disparate but emerging evidence base derived from studies exploring the issue in a range of settings (predominantly high and middle income countries). The evidence base provides a mixed and complex picture given the heterogeneity of methodological approaches and contextual analyses to assessing reductions and health impacts. The report found a focus on carbon emission reduction and less evidence on other emissions. Given the above, evidence has been collected and presented in an annotated bibliography. A note of caution should be raised when drawing lessons from particular studies, with findings influenced by a range of contextual factors.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ahumada, Hildegart, Santos Espina-Mairal, Fernando Navajas, and Alejandro Rasteletti. Effective Carbon Rates on Energy Use in Latin America and the Caribbean: Estimates and Directions of Reform. Inter-American Development Bank, March 2023. http://dx.doi.org/10.18235/0004778.

Повний текст джерела
Анотація:
This paper estimates effective carbon rates (ECRs) on carbon dioxide (CO2) emissions from energy use for 18 Latin American and Caribbean (LAC) countries. We follow a methodology developed by the Organization for Economic Co-operation and Development (OECD) as this allows us to compare ECR estimates for LAC countries with those for other countries in other regions. We also adapt the OECD methodology to assess the effect of energy subsidies on ECRs. The results obtained indicate that ECRs were low in LAC countries in 2018. On average, LAC countries priced carbon emissions from energy use at 24 euros per ton of CO2 equivalent (EUR/tCO2e) emissions, while the average pricing in OECD countries was 41 EUR/tCO2e. When considering energy subsidies, the average ECR in LAC falls to 17 EUR/tCO2e. The difference in average carbon pricing observed between LAC and the OECD is, for the most part, explained by lower excise taxes in LAC and, to a lesser extent, to few LAC countries having carbon taxes and the lack of tradable carbon emission permit mechanisms. We also find a large heterogeneity of ECRs across LAC countries as well as across sectors within countries. ECRs are the highest in Costa Rica and the lowest in Ecuador. At the sector level, ECRs are on average the highest in the road transport sector and the lowest in the electricity sector and in the residential and commercial energy use sector. These differences stem mostly from the different taxation of the different energy products. The ECR estimates suggest that countries willing to introduce carbon pricing reforms must pay particular attention to reducing fuel energy subsidies and to increasing ECRs in sectors other than road transport, as these sectors constitute a large share of carbon emissions and are virtually untaxed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Felix, Meier, Wilfried Rickels, Christian Traeger, and Martin Quaas. Working paper published on NETs in strategically interacting regions based on simulation and analysis in an extended ACE model. OceanNets, 2022. http://dx.doi.org/10.3289/oceannets_d1.5.

Повний текст джерела
Анотація:
Net-zero climate policies foresee deployment of atmospheric carbon dioxide removal wit geological, terrestrial, or marine carbon storage. While terrestrial and geological storage would be governed under the framework of national property rights, marine storage implies that carbon is transferred from one global common, the atmosphere, to another global common, the ocean, in particular if storage exceeds beyond coastal applications. This paper investigates the option of carbon dioxide removal (CDR) and storage in different (marine) reservoir types in an analytic climate-economy model, and derives implications for optimal mitigation efforts and CDR deployment. We show that the introduction of CDR lowers net energy input and net emissions over the entire time path. Furthermore, CDR affects the Social Cost of Carbon (SCC) via changes in total economic output but leaves the analytic structure of the SCC unchanged. In the first years after CDR becomes available the SCC is lower and in later years it is higher compared to a standard climate-economy model. Carbon dioxide emissions are first higher and then lower relative to a world without CDR. The paper provides the basis for the analysis of decentralized and potentially non-cooperative CDR policies.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

McHale, Yalin, and Olsen. PR-179-13203-R01 Real Time Laser Sensor for Nitrogen Oxides and Carbon Monoxide. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2014. http://dx.doi.org/10.55274/r0010020.

Повний текст джерела
Анотація:
Performance of current NOx sensors is problematic, in particular drift and cross-sensitivity to other species. Many lean burn engines are operated based on earlier calibrations. Operators must allow for drift and use large margins to meet emissions. Laser sensors (based on absorption at target wavelengths) are self-calibrating and immune to interferences. In particular, recently developed Quantum Cascade Lasers (QCLs) allow measurements at mid-infrared (MIR) wavelengths thereby allowing stronger signals, better schemes to mitigate interferences, and fast time response. This project evaluated a commercial QCL-based NOx (NO, NO2) and CO sensor for use in gas engine applications. The project also developed and performed bench top testing of a custom sensor which uses a �pitch and catch� design.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Jeong Won, and Sungjin Kim. International Agreements and Global Initiatives for Low-Carbon Cooling. Asian Development Bank Institute, October 2022. http://dx.doi.org/10.56506/rpae4386.

Повний текст джерела
Анотація:
Since the mid-1980s, the international community has controlled refrigerants that may damage the ozone layer and cause climate change based on several international agreements. In particular, the Montreal Protocol contributed to not only solving the ozone layer depletion problem but also limiting global warming. Given that the global demand for cooling would triple by 2050 and this rise would increase global greenhouse gas emissions significantly, the Montreal Protocol has expanded its regulatory scope to decarbonize the cooling sector through the adoption of the Kigali Amendment. Also, increasing interest in low-carbon cooling has driven the launch of various global initiatives to complement the international agreements and accelerate low-carbon cooling in developing countries. The experience of implementing the Montreal Protocol and its amendments suggests some lessons and insights for making the Kigali Amendment work well. First, each country should develop and enforce national policies aligned with international agreements. Second, financial and technical support mechanisms should be strengthened to facilitate developing countries’ compliance with the Kigali Amendment. Third, along with the improving energy efficiency of cooling, the substances that neither harm the ozone layer nor exacerbate climate change should be used as substitutes for hydrofluorocarbons. Last, the monitoring, reporting, and verification of controlled substances need to be strengthened.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії