Добірка наукової літератури з теми "Carbon encapsulated"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Carbon encapsulated".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Carbon encapsulated"

1

Katar, Sri Lakshmi, Azlin Biaggi Labiosa, Amairy E. Plaud, Edgar Mosquera-Vargas, Luis Fonseca, Brad R. Weiner, and Gerardo Morell. "Silicon Encapsulated Carbon Nanotubes." Nanoscale Research Letters 5, no. 1 (October 9, 2009): 74–80. http://dx.doi.org/10.1007/s11671-009-9446-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chan, H. B. S., B. L. Ellis, H. L. Sharma, W. Frost, V. Caps, R. A. Shields, and S. C. Tsang. "Carbon-Encapsulated Radioactive99mTc Nanoparticles." Advanced Materials 16, no. 2 (January 16, 2004): 144–49. http://dx.doi.org/10.1002/adma.200305407.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Fu Qiang, Sheng Liang Hu, and Pei Kang Bai. "Size Prediction of Carbon-Encapsulated Nickel Nanoparticles." Advanced Materials Research 531 (June 2012): 207–10. http://dx.doi.org/10.4028/www.scientific.net/amr.531.207.

Повний текст джерела
Анотація:
A simple theoretical model to predict the size control of carbon-encapsulated metal nanoparticles is developed using heat transfer and carbon diffusion theories. Taking carbon-encapsulated nickel nanoparticles as an example, the minimum size of carbon-encapsulated structure that can be formed as a function of the ambient temperature is calculated and the effect of activation energies for carbon diffusion on the size of carbon-encapsulated nickel nanoparticles is examined. The theoretical results are in good agreement with the experiment, suggesting that our model can be used to guide the size-controlled synthesis of carbon-encapsulated metal nanoparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sedelnikova, Olga, Olga Gurova, Anna Makarova, Anastasiya Fedorenko, Anton Nikolenko, Pavel Plyusnin, Raul Arenal, Lyubov Bulusheva, and Alexander Okotrub. "Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes." Nanomaterials 10, no. 5 (April 25, 2020): 818. http://dx.doi.org/10.3390/nano10050818.

Повний текст джерела
Анотація:
Filling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor–acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Su, Yi-Chun, and Wen-Kuang Hsu. "Fe-encapsulated carbon nanotubes: Nanoelectromagnets." Applied Physics Letters 87, no. 23 (December 5, 2005): 233112. http://dx.doi.org/10.1063/1.2138674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

BAUM, RUDY. "Metal encapsulated in carbon particles." Chemical & Engineering News 71, no. 3 (January 18, 1993): 34–35. http://dx.doi.org/10.1021/cen-v071n003.p034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, Brian W., Marc Monthioux, and David E. Luzzi. "Encapsulated C60 in carbon nanotubes." Nature 396, no. 6709 (November 1998): 323–24. http://dx.doi.org/10.1038/24521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Huo, Junping, Huaihe Song, Xiaohong Chen, and Bin Cheng. "From Carbon-Encapsulated Iron Nanorods to Carbon Nanotubes." Journal of Physical Chemistry C 112, no. 15 (April 2008): 5835–39. http://dx.doi.org/10.1021/jp711792x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Choi, Won Young, Jeong Won Kang, and Ho Jung Hwang. "Cu Nanowire Structures Inside Carbon Nanotubes." Materials Science Forum 449-452 (March 2004): 1229–32. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.1229.

Повний текст джерела
Анотація:
We have investigated the structures of copper nanowires encapsulated in carbon nanotubes using a structural optimization process applied to a steepest descent method. Results show that the stable morphology of the cylindrical ultra-thin copper nanowires in carbon nanotubes is multi-shell packs consisted of coaxial cylindrical shells. As the diameters of copper nanotubes increases, the encapsulated copper nanowires have the face centered cubic structure as the bulk. The circular rolling of a triangular network can explain the structures of ultra-thin multi-shell copper nanowires encapsulated in carbon nanotubes.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yu, Jun, and Bing She Xu. "Synthesis and Characterization of Carbon-Encapsulated Nickel Nanoparticles from De-Oiled Asphalt." Advanced Materials Research 652-654 (January 2013): 202–5. http://dx.doi.org/10.4028/www.scientific.net/amr.652-654.202.

Повний текст джерела
Анотація:
Carbon-encapsulated Ni nanoparticles with the size of 5 to 30 nm were synthesized from de-oiled asphalt (DOA) by heat-treatment at 1800 °C with nickel powder. The nanoparticles exhibited well-constructed core-shell structures, with Ni cores and graphitic shells. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) examinations confirmed that the carbon-encapsulated Ni nanoparticles were uniformly dispersed in carbon matrix and the Ni nanoparticles were surrounded by several carbon layers with well ordered arrangement. The formation of the core-shell nanoparticles was selectively controlled by adjusting the ratio of de-oiled asphalt to nickel powders. The possible growth model for the carbon-encapsulated Ni nanoparticles was discussed briefly. This result presents a simple and controllable way to synthesize carbon-encapsulated nickel nanoparticles.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Carbon encapsulated"

1

Brown, Samuel F. "Modelling nanowires : crystals encapsulated in carbon nanotubes." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/90152/.

Повний текст джерела
Анотація:
Nanotube-encapsulated ionic materials can be usefully modelled using ab initio methods to inform and validate experiment. This thesis models these materials using density functional theory, explores the specific challenges these materials pose, and presents results only visible once these challenges are addressed. Chemical potentials and ab initio calculations are used to predict tube radii at which filling occurs for a range of filling conditions, which informs our choice of tube. The practice of fitting both ionic core and encapsulating tube into the same unit cell causes artificial strain. A method of quantifying this mismatch is developed and the associated strain energy and distortions predicted. Current methods of approximating the nanotube treat it as a smooth cylinder. We find significant texture which can resist core movement, allow metastable twisted states, and be used to determine which supercells have physically realistic mismatch strain. Cores have previously been relaxed in vacuo with limited justification. We find that, in general, cores are not stable without constraints. We guide three bare silver iodide ansatze to metastable saddle-points by applying artificial symmetry constraints during in vacuo relaxation. An investigation into their unconstrained unstable phonon modes reveals them to be stabilised by an encapsulating tube. Two classes of stabilisation are identified, one due to radial encapsulation and a second due to mismatch-like effects. Charge of a few tenths of e per core ion is seen to transfer from core to tube, with magnitude depending on tube radius. In order to approximate the charge field by atomic charges, four population analysis schemes are investigated. The Bader and Density Derived Electrostatic and Chemical (DDEC) population analyses agree to physically sensible values while using different approaches. A machine-learned model is trained using local chemical-environment descriptors to transferrably predict atomic charges to within 0:004 e of DDEC values with an orders-of-magnitude speedup.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ang, K. H. "Growth and characterization of carbon encapsulated ferromagnetic nanoparticles and nanowires." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.596121.

Повний текст джерела
Анотація:
The report of the presence of LaC2 and YC2 encapsulated in carbon shell layers found in a carbonaceous deposit grown on a cathode surface of a carbon arc has attracted particularly great interest because encapsulating materials in the hollow core of carbon nanostructures (nanocapsules/nanotubes) had changed the physical properties of the encapsulated materials. Not only does the process offer an opportunity to investigate dimensionally confined systems, but also the encapsulated materials are likely to be immune to environmental effects or degradation, because of the protective carbon sheets around them. The formation of carbon encapsulated ferromagnetic nanoparticles and nanowires has been the goal of this research. Three novel techniques for the formation of carbon encapsulated ferromagnetic nanoparticles are introduced in this thesis: Carbon Arc in Localized Gas Pressure (CA), Water Arc Discharge (WA) and Pulsed Laser Deposition (PLD). In addition, a new technique of producing encapsulated ferromagnetic nanowires by nanotube-assisted oriented attachment is also introduced. The resultant materials have had their structural and magnetic properties assessed by High Resolution Transmission Electron Microscopy (HRTEM), X-Ray Diffraction (XRD) and Vibrating Sample Magnetometer (VSM) respectively. A carbon arc technique has been modified by creating a N2 gas jet through the office of the anode, which resulted in a localized gas pressure in the arc region. The second technique successfully implemented has been that of the electric arc submerged in deionised water inside a 2.5 litre breaker. The third technique that has been explored is PLD. In our experiments, a KrF 248 nm Lambda Physique excimer laser was used to ablate two composite targets composed of Co + C (80 wt% Co) and Ni + C (80 wt% Ni) under the pressure of N2 gas jet respectively. Pulsed laser respectively. Pulsed laser deposition coupled with the addition of N2 gas jet has successfully been employed to grow carbon encapsulated Co and Ni nanoparticles with small means particle sizes of 12.4 and 15.5 nm respectively. Finally, a new technique in growing ferromagnetic nanowires encapsulated in carbon tubules through oriented attachment is presented. The process is based on the evaporation of fluorocarbon capsule (PCTFE in this case) over ferromagnetic particles dissolved in toluene onto lacey carbon TEM grids at 375°C for 72 hours.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Taylor, Arthur. "Engineering Carbon Encapsulated Nanomagnets towards Their Use for Magnetic Fluid Hyperthermia." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-63695.

Повний текст джерела
Анотація:
Magnetic fluid hyperthermia is a potential therapy for achieving interstitial hyperthermia and is currently under clinical trials. This approach is based on the instillation of magnetic nanoparticles at the tumour site, which dissipate heat when exposed to an alternating magnetic field. This procedure leads to a local increase of temperature and induction of tumour death or regression. Nanoparticles of metallic iron are potential heating agents for this therapy, but rely on the presence of a protecting coat that avoids reactions with their environment. In this work, iron nanospheres and iron nanowires with a graphite coat are explored for this purpose. From these two nanostructures, the nanospheres are shown to have a greater potential in terms of heat dissipation. The graphite shell is further investigated as an interface for conjugation with other molecules of relevance such as drugs and fluorescent probes. The effect of acidic treatments on the magnetic and surface properties of the nanospheres is systematically studied and a suitable method to generate carboxylic functionalities on the nanoparticle surface alongside with a good preservation of the magnetic properties is developed. These carboxylic groups are shown to work as a bridge for conjugation with a model molecule, methylamine, as well as with a fluorescent dye, allowing the detection of the nanoparticles in cells by means of optical methods. The carboxylic functionalities are further explored for the conjugation with the anti-cancer drug cisplatin, where the amount of drug loaded per particle is found to be dependent on the density of free carboxylic groups. The release of the drug in physiological salt solutions is time and temperature dependent, making them particularly interesting for multi-modal anti-cancer therapies, where concomitant hyperthermia and chemotherapy could be achieved. Their potential for such therapies is shown in vitro by inducing hyperthermia in cell suspensions containing these nanoparticles. These results are finally translated to a three dimensional cell culture model where the in vitro growth of tumour spheroids is inhibited. The developed nanostructures have a great potential for therapeutic approaches based on the synergistic effects of hyperthermia and chemotherapy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Malard, L. M., D. Nishide, L. G. Dias, Rodrigo B. Capaz, A. P. Gomes, A. Jorio, C. A. Achete, et al. "Resonance Raman study of polyynes encapsulated in single-wall carbon nanotubes." American Physical Society, 2007. http://hdl.handle.net/2237/11303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aguiló, Aguayo Noemí. "Production and characterisation of carbon-encapsulated iron nanoparticles by arc-discharge plasma." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/96477.

Повний текст джерела
Анотація:
Carbon-encapsulated iron nanoparticles have being researched heavily, since they present advantageous properties over other protective coatings such as polymer or silica. The carbon coating protects the iron core from oxidation, chemical and thermal degradation and hence, magnetic cores present stable magnetic properties when nanoparticles are exhibited in air or other environments. Several studies about carbon-encapsulated magnetic nanoparticles were already reported. However, nanoparticles are obtained rather polydisperse and not very uniform in composition, making very difficult their use for several applications. The aim of this thesis is the production and characterisation of carbon-encapsulated iron nanoparticles showing very narrow size distributions with well-characterised magnetic properties for several applications, in particular, those related to the biomedical field (hyperthermia, drug delivery or as agents contrast in MRI). However, the systematic study of these applications was not the framework of this thesis. The content of this dissertation comprises the design of two arc-discharge plasma (ADP) reactors (a conventional and a modified one); the experimental study of the different reactor parameters involved; the morphological, structural and magnetic characterisation of the obtained nanoparticles; the comprehension of the mechanisms involve in the formation of this kind of nanoparticles in comparison with nanoparticles obtained by other methods; and finally, a first approach to the functionalisation of the nanoparticles for the biomedical applications. This thesis is structured in four parts: Backgrounds (Chapter 1), Nanotools (Chapter 2 and Chapter 3), Results (from Chapter 4 to Chapter 8) and finally, the Conclusions. Chapter 1 - Basis of carbon-encapsulated iron nanoparticles: A general introduction of the nanoparticle properties derived from their nanometric dimensions is presented in this chapter. The state of the art about the formation mechanisms and techniques used for the generation of carbon-encapsulated iron nanoparticles is described. Several applications of this kind of nanoparticles in fields such as biomedicine, electronics or food and environmental, are also presented. Chapter 2 - Characterisation methods: The most common characterisation techniques used to investigate the morphological, composition, structural and magnetic properties are described within this chapter. Details about the equipments and conditions used during this thesis for the characterisation of the nanoparticles are also reported. Chapter 3 - Experimental set-up: In this chapter, the description of two different arc-discharge reactors used during this thesis is presented. A first reactor (the conventional ADP) was developed by following similar experimental setups described in the literature. Second reactor (a modified ADP) was designed to overcome the disadvantages from the first reactor and to obtain high quality nanoparticles (narrower size distribution, uniform composition). Chapter 4 - Preliminary studies from conventional ADP reactor: This chapter presents a design of experiments (DOE) based on the Plackett-Burman design in order to evaluate the reactor parameters that influence the most the final characteristics of the nanoparticles. The study was performed using the conventional ADP reactor and the preliminary results were very useful for the development of next generation of experiments using the second reactor, the modified ADP. Chapter 5 - Generation of nanoparticles by a modified ADP reactor: Morphological and structural properties of the nanoparticles obtained by the modified ADP reactor are presented. The discussion of the effect of the most relevant parameters on the formation of the nanoparticles was reported. Iron core diameters with corresponding size distribution as well as the carbon shell formation obtained under different parameter conditions were investigated. Chapter 6 - Magnetic properties of the nanoparticles: A systematic study of the magnetic properties of the nanoparticles obtained in Chapter 5 is performed. Size-dependent variables such as magnetic moments, coercivity values, blocking temperature and anisotropy energies were presented. Magnetic properties were in agreement with the morphological characteristics of the nanoparticles. Chapter 7 – Thermally induced structural evolution of the nanoparticles: The comparison of annealed nanoparticles obtained by mADP and chemical vapour deposition (CVD) method is presented in this chapter. Differences on the morphological, structural and magnetic properties were studied. Structural evolution of nanoparticles during annealing under in-situ TEM observations was investigated. Chapter 8 - First approach to biomedical applications: As a first approach to biomedical applications, the stabilisation of the nanoparticles in aqueous solution by using polyvinyl-alcohol was investigated. Results of the internalisation of the nanoparticles into HeLa cells are presented.
Les nanopartícules magnètiques de ferro recobertes de carboni s’estan investigant en gran mesura, ja que presenten avantatjoses propietats sobre d’altres recobriments protectors del nucli magnètic com els polímers o la sílice. El recobriment de carboni protegeix el nucli de ferro de l’oxidació, la degració química i tèrmica, d’aquesta manera els nuclis presenten propietats magnètiques estables quan les nanopartícules s’exhibeixen en aire o en un altre medi. S’han realitzat diversos estudis sobre aquest tipus de nanopartícules, però aquest tipus de nanopartícules s’obtenen amb gran dispersió de grandàries i poca uniformitat en les seves característiques. És encara un repte en aquest camp la producció de nanopartícules de ferro recobertes de carbon amb propietats morfològiques i estructurals, així com l’estudi sistemàtic de les seves propietats magnètiques. Per aquest motiu, l’objectiu d’aquesta tesi es centra en la producció i caracterització de nanopartícules superparamagnètiques de ferro recobertes de carboni amb estreta distribució de mides i amb propietats magnètiques ben caracteritzades per diverses aplicacions, en particular, les relacionades amb el camp de la biomedicina. No obstant això, l’estudi sistemàtic d’aquestes aplicacions es troba fora del marc d’aquesta tesi. El contingut s’estructura en quatre parts: • La primera part d’introducció conté els aspectos bàsics sobre aquest tipus de nanopartícules, així com les propietats derivades de la seva mida nanomètrica, les tecnologies que s’utilitzen per generar aquest tipus de nanopartícules, una explicació sobre els possibles mecanismes responsables de la seva formació i les principals aplicacions d’aquestes nanopartícules. • La segona part descriu les tècniques utilitzades per la seva caracterització que engloben tècniques de microscopia, de difracció de raigs-X, d’espectroscòpia Raman, per la caracterització col•loidal de les nanopartícules fins la seva caracterització magnètica. També inclou la descripció detallada dels equips basats en la descàrrega d’arc utilitzats per la seva producció. El primer equip es va dissenyar seguint les característiques d’un reactor convencional (conventional ADP reactor). El segon equip basat en la mateixa tecnologia de descàrrega d’arc, però modificat (mADP reactor) i dissenyat especialment amb l’objectiu de millorar les característiques del producte final. • La tercera part exposa els resultats obtinguts durant aquesta tesi. L’estudi previ del reactor convencional basat en un disseny d’experiments de Plackett-Burman per avaluar l’efecte dels diferents paràmetres del reactor en la grandària dels nuclis de ferro. A partir d’aquest estudi, es va realitzar un estudi més específic en el nou reactor modificat on es van estudiar l’efecte del corrent d’arc utilizat, la velocitat del flux d’heli i el contigut de ferrocè com a matèria prima del ferro. Després es va realitzar l’estudi sistemàtic de les seves propietats magnètiques observant la dependència d’aquestes propietats amb la grandària dels nuclis de ferro. A continuació, es va presentar la comparació d’aquestes nanopartícules amb d’altres obtingudes mitjantçant el mètode de dipòsit químic en fase vapor (CVD). A partir d’aquesta comparació es va estudiar l’evolució estructural d’aquestes nanopartícules sotmetes a un tractament tèrmic en observació in-situ d’un microscopi de transmissió electrònica. Finalment, es va presentar un primer estudi de les propietats col•loidals en suspensió d’aquestes nanopartícules recobertes amb un polímer d’alcohol de polivinil (PVA). Es presenta un primer estudi de l’internalització d’aquestes nanopartícules en cèl•lules tumorals HeLa. • Per acabar es presenten les conclusions i l’apèndix que conté informació sobre les mostres produïdes i un llistat de publicacions, congressos, patents resultants d’aquest treball.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ibrar, Muhammad. "Microstructure of Fe-based and NiFe nanowires encapsulated by multiwalled carbon nanotube radial structures." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/36222.

Повний текст джерела
Анотація:
The crystalline iron-based nanowires encapsulated by multiwalled carbon nanotubes have been the subject of numerous studies owing to the range of potential applications. The presence of a-Fe (bcc)/y -Fe(fcc) junctions o ers the possibility of exploitation of the exchange bias effect, an interfacial magnetic phenomenon that plays a major role in magnetocaloric cooling, spintronic and high-density magnetic storage devices. This work is concerned with the synthesis and microstructural characterization of Fe-based and NiFe nanowires encapsulated by multiwall carbon nanotube radial structures. The known attributes of these structures are well matched to the magnetocaloric application. The primary aim of this work was to determine the unknown microstructural details of the encapsulated nanowire that are of relevance to the magnetocaloric application (junction types, location and orientation relative to the nanotube axis). The secondary aim was to explore the modi cation of the synthesis route to promote desirable attributes. This is the first report of a-Fe/y -Fe sequential junctions and a-Fe/Fe3C concentric junctions in encapsulated Fe-based nanowires. The presence of a-Fe/y -Fe junctions was inferred from the observation of a-Fe nanowires terminated by a ~100 nm length y-Fe crystallites of larger diameter. The a-Fe/Fe3C junctions exhibit the Bagaryatski orientation relationship: [110 ]bcck[100 ]orth. The degree of substrate roughness was found to be a means of tailoring details of the structure and composition of the encapsulated nanowires. NiFe encapsulated nanowires were found to contain crystallites of a-NiFe, y-NiFe and Ni3Fe and the sequential junctions -NiFe/Ni3Fe and a-NiFe/y-NiFe junctions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kolahi, Zeynab. "C60 Encapsulation inside Nitrogen-Doped and Pristine Multi-walled Carbon Nanotubes (MWCNTs) : Investigation of the Dynamics of Encapsulated C60s inside Thin-Walled MWCNTs." Thesis, Umeå universitet, Institutionen för fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-73131.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Großmann, Dennis [Verfasser], Wolfgang [Gutachter] Grünert, and Martin [Gutachter] Muhler. "Methanol synthesis over Cu/ZnO aggregates encapsulated in carbon nanotubes and mesoporous silica / Dennis Großmann ; Gutachter: Wolfgang Grünert, Martin Muhler ; Fakultät für Chemie und Biochemie." Bochum : Ruhr-Universität Bochum, 2013. http://d-nb.info/1214440746/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Knapp, Amanda R. "Antimicrobial and Antitumor Properties of Free and Poly(Ethylene Glycol)-Poly(Lactic Acid) Encapsulated Silver N-Heterocyclic Carbene Complexes." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1309211795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Su, Yi-Chun, and 蘇亦雋. "Inductance of Encapsulated-Fe Carbon Nanotubes:Nano-electromagnetic Inductors." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/73862347826360383374.

Повний текст джерела
Анотація:
碩士
國立清華大學
材料科學工程學系
93
Carbon nanotubes(CNTs)are graphene sheets rolled up into cylindrical structure and electron transport via tube surface lattice is essentially isotropic. This description is based on a 2D lattice model. In a 3D approach, electron wave function near to the Fermi level is extended by 1 Å along the 2Pz orbit and electron transport thus becomes sensitive to electron field. Reports indicate two possible paths of charge carrier in a small CNT, i.e. along tube axis and circumference. When electric field is applied in parallel with tube axis the electron flux along circumference is diverted into a helix current, similar to nano-coils. This spiral current becomes apparent when angular frequency is smaller than stark frequency in an AC field. To date, explore of magnetic field within a CNT remains as challenge and a straightforward verification is to encapsulate magnetic materials in CNTs so interior magnetic field is enhanced and becomes measurable. In this work, individual Fe-encapsulated CNTs bridging tungsten electrodes are verified and measured by AC impedance technique. Inductance at different frequency is detected and is on the order of mH.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Carbon encapsulated"

1

Shi, Z. J., and Z. N. Gu. New phenomena in the nanospace of single-wall carbon nanotubes. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.12.

Повний текст джерела
Анотація:
This article describes the new phenomena of chemical substances encapsulated in the hollow spaces of carbon nanotubes, with particular emphasis on the nanospace of single-wall carbon nanotubes (SWNTs) that have nanospaces of about 1 nm in diameter. It begins with a brief introduction to the filling methods and the filling of multiwalled carbon nanotubes, followed by a discussion of the structures, phase transitions and chemical reactions of some typical fullerenes, endohedral metallofullerenes, fullerene derivatives, and inorganic and organic compounds, in the nanospace of SWNTs. The electron transfer between dopants and SWNTs is also examined. The article also considers the filling of double-walled carbon nanotubes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Burke, A., D. Carroll, Frank Torti, and S. V. Torti. Bifunctional nanomaterials for the imaging and treatment of cancer. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.013.13.

Повний текст джерела
Анотація:
This article examines the potential of bifunctional nanomaterials for the imaging and treatment of cancer. Several nanomaterials possess properties desirable for a cancer therapy and have been the subject of research as anticancer agents. Those that have received the most attention include encapsulated iron oxides, single- and multiwalled carbon nanotubes, gold nanorods and gold nanoshells. This article first considers thermal ablative therapy incancer, focusing on the mechanisms of thermotoxicity and thermoresistance before discussing a number of nanomaterials with applications for cancer treatment. In particular, it evaluates the use of nanomaterials in thermal therapy. It also looks at gold nanoshells and nanorods, taking into account their physical properties, and concludes with an assessment of iron-oxide nanoparticles and future directions for nanomaterials as multifunctional agents for cancer therapy.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Carbon encapsulated"

1

Ishikawa, Masashi, Yoshifumi Egami, and Tomohiro Shimizu. "S-Encapsulated Micropore Carbon Cathode." In Next Generation Batteries, 357–73. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6668-8_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zolotarenko, Al D., An D. Zolotarenko, V. A. Lavrenko, S. Yu Zaginaichenko, N. A. Shvachko, O. V. Milto, V. B. Molodkin, A. E. Perekos, V. M. Nadutov, and Yu A. Tarasenko. "Encapsulated Ferromagnetic Nanoparticles in Carbon Shells." In Carbon Nanomaterials in Clean Energy Hydrogen Systems - II, 127–35. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0899-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Marquina, Clara, and M. Ricardo Ibarra. "Carbon Encapsulated Functional Magnetic Nanoparticles for Life Sciences." In Pure and Functionalized Carbon Based Nanomaterials, 228–55. Boca Raton : CRC Press, Taylor and Francis Group, [2020] | “CRC Press is an imprint of the Taylor & Francis Group, an informa business.”: CRC Press, 2020. http://dx.doi.org/10.1201/9781351032308-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lee, Mi Young, Ho Jung Hwang, Jun Ha Lee, Hoong Joo Lee, and Jeong Won Kang. "Structural Properties of Potassium Encapsulated in Carbon Nanotubes." In Key Engineering Materials, 919–28. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-958-x.919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Miyazaki, Takafumi, and Shojun Hino. "Electronic and Geometric Structures of Cluster Encapsulated Fullerenes." In Physics and Chemistry of Carbon-Based Materials, 121–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3417-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kim, Il-seok, Prashant N. Kumta, and G. E. Blomgren. "Chemically Derived Nano-Encapsulated Tin-Carbon Composite Anodes for Li-Ion Batteries." In Ceramic Transactions Series, 131–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407189.ch14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pascard, H. "Synthesis of Nanowires Encapsulated in Carbon Nanotubes by the Arc Discharge Method." In Atomic and Molecular Wires, 99–108. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5882-4_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Saito, Yahachi, Jun Ma, Jun Nakashima, and Morio Masuda. "Synthesis, crystal structures and magnetic properties of Co particles encapsulated in carbon nanocapsules." In Small Particles and Inorganic Clusters, 170–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60854-4_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jena, Naresh K., Manoj K. Tripathy, Alok K. Samanta, K. R. S. Chandrakumar, and Swapan K. Ghosh. "Water molecule encapsulated in carbon nanotube model systems: effect of confinement and curvature." In Highlights in Theoretical Chemistry, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31750-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ikeda, Shigeru, and Takashi Harada. "Structural and Catalytic Features of Metal Nanoparticles Encapsulated in a Hollow Carbon Sphere." In Core-Shell and Yolk-Shell Nanocatalysts, 367–78. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0463-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Carbon encapsulated"

1

Lange, H., O. Łabędź, M. Bystrzejewski, Vladimir Yu Nosenko, Padma K. Shukla, Markus H. Thoma, and Hubertus M. Thomas. "Synthesis of Carbon Encapsulated Iron Nanoparticles by Carbon Arc Discharge." In DUSTY∕COMPLEX PLASMAS: BASIC AND INTERDISCIPLINARY RESEARCH: Sixth International Conference on the Physics of Dusty Plasmas. AIP, 2011. http://dx.doi.org/10.1063/1.3659804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xue, Jun, Houkui Xiang, Shuli Pang, Hongqiao Ding, Xuehua Wang, and Hong Cao. "Preparation and mechanism of carbon encapsulated Cu nanoparticles." In 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, edited by Ya-Dong Jiang, Bernard Kippelen, and Junsheng Yu. SPIE, 2010. http://dx.doi.org/10.1117/12.867770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Boddapati, Loukya. "Single-Walled CrI3 Nanotubes Encapsulated within Carbon Nanotubes." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.1330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

ZYSLER, R. D., M. VASQUEZ MANSILLA, and E. PASQUALINI. "SYNTHESIS AND MAGNETIC CHARACTERIZATION OF CARBON-ENCAPSULATED IRON NANOPARTICLES." In Proceedings of the Fifth International Workshop on Non-Crystalline Solids. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789814447225_0073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Prokopyev, D. A., A. Yu Germov, K. N. Mikhalev, B. Yu Goloborodskii, M. A. Uimin, A. E. Yermakov, A. S. Konev, and S. I. Novikov. "NMR study of phase composition of carbon encapsulated Fe@C nanoparticles." In THE 2ND INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0032918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bonard, Jean-Marc. "Giant magnetoresistance from a Co wire incorporating carbon-encapsulated magnetic nanoparticles." In The 14th international winterschool on electronic properties of novel materials - molecular nanostructures. AIP, 2000. http://dx.doi.org/10.1063/1.1342564.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Prokopyev, D. A., A. Yu Germov, K. N. Mikhalev, M. A. Uimin, A. E. Yermakov, and A. S. Konev. "NMR study of phase composition of carbon encapsulated Ni@C nanoparticles." In PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2019): Proceedings of the VI International Young Researchers’ Conference. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5134306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SUGIYAMA, Naota, Tomoaki WATANABE, Yasuaki YAMAKAWA, and Masahiro YOSHIMURA. "Carbon-Encapsulated Magnetic Metal Nanoparticles by Arc-Discharge in Organic Solvent." In Proceedings of the Symposium R. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701718_0053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Y. F., T. Kaneko, and R. Hatakeyama. "Resonance tunneling transistors based on C60 encapsulated double-walled carbon nanotubes." In 2007 7th IEEE Conference on Nanotechnology (IEEE-NANO). IEEE, 2007. http://dx.doi.org/10.1109/nano.2007.4601165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Matsuura, D., K. Miyazawa, and T. Kizuka. "Synthesis of Co-Doped Fullerene Nanowhiskers and Cobalt-Encapsulated Carbon Nanocapsules." In 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.p-13-17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Carbon encapsulated"

1

Brennecke, Joan F., Mark J. McCready, Mark Stadtherr, Thomas F. Degnan, Jr., Congwang Ye, and Joshua K. Stolaroff. Hybrid Encapsulated Ionic Liquids for Post-Combustion Carbon Dioxide (CO2) Capture. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1530159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yau, Waifan. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers. Office of Scientific and Technical Information (OSTI), April 1988. http://dx.doi.org/10.2172/5398032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shpigel, Muki, Allen Place, William Koven, Oded (Odi) Zmora, Sheenan Harpaz, and Mordechai Harel. Development of Sodium Alginate Encapsulation of Diatom Concentrates as a Nutrient Delivery System to Enhance Growth and Survival of Post-Larvae Abalone. United States Department of Agriculture, September 2001. http://dx.doi.org/10.32747/2001.7586480.bard.

Повний текст джерела
Анотація:
The major bottlenecks in rearing the highly priced gastropod abalone (Haliotis spp.) are the slow growth rate and the high mortality during the first 8 to 12 weeks following metamorphosis and settling. The most likely reason flor these problems is related to nutritional deficiencies in the diatom diet on which the post larvae (PL) feed almost exclusively in captivity. Higher survival and improved growth rate will reduce the considerable expense of hatchery-nursery resisdence time and thereflore the production costs. BARD supported our research for one year only and the support was given to us in order to prove that "(1) Abalone PL feed on encapsulated diatoms, and (2) heterotrophic diatoms can be mass produced." In the course of this year we have developed a novel nutrient delivery system specifically designed to enhance growth and survival of post-larval abalone. This approach is based on the sodium-alginate encapsulation of heterotrophically grown diatoms or diatom extracts, including appetite-stimulating factors. Diatom species that attract the PL and promote the highest growth and survival have been identified. These were also tested by incorporating them (either intact cells or as cell extracts) into a sodium-alginate matrix while comparing the growth to that achieved when using diatoms (singel sp. or as a mixture). A number of potential chemoattractants to act as appetite-stimulating factors for abalone PL have been tested. Preliminary results show that the incorporation of the amino acid methionine at a level of 10-3M to the sodim alginate matrix leads to a marked enhancement of growth. The results ol these studies provided basic knowledge on the growth of abalone and showed that it is possible to obtain, on a regular basis, survival rates exceeding 10% for this stage. Prior to this study the survival rates ranged between 2-4%, less than half of the values achieved today. Several diatom species originated from the National Center for Mariculture (Nitzchia laevis, Navicula lenzi, Amphora T3, and Navicula tennerima) and Cylindrotheca fusiformis (2083, 2084, 2085, 2086 and 2087 UTEX strains, Austin TX) were tested for heterotrophic growth. Axenic colonies were initially obtained and following intensive selection cycles and mutagenesis treatments, Amphora T3, Navicula tennerima and Cylindrotheca fusiformis (2083 UTEX strain) were capable of growing under heterotrophic conditions and to sustain highly enriched mediums. A highly efficient selection procedure as well as cost effective matrix of media components were developed and optimized. Glucose was identified as the best carbon source for all diatom strains. Doubling times ranging from 20-40 h were observed, and stable heterotroph cultures at a densities range of 103-104 were achieved. Although current growth rates are not yet sufficient for full economical fermentation, we estimate that further selections and mutagenesis treatments cycles should result in much faster growing colonies suitable for a fermentor scale-up. As rightfully pointed out by one of the reviewers, "There would be no point in assessing the optimum levels of dietary inclusions into micro-capsules, if the post-larvae cannot be induced to consume those capsules in the first place." We believe that the results of the first year of research provide a foundationfor the continuation of this research following the objectives put forth in the original proposal. Future work should concentrate on the optimization of incorporation of intact cells and cell extracts of the developed heterotrophic strains in the alginate matrix, as well as improving this delivery system by including liposomes and chemoattractants to ensure food consumption and enhanced growth.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії