Добірка наукової літератури з теми "Carbon-containing materials"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Carbon-containing materials".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Carbon-containing materials"
Umishita, K., Y. Ochiai, K. Iwasaki, and S. Hino. "Photoelectron spectra of carbon materials containing multiwall carbon nanotubes." Synthetic Metals 121, no. 1-3 (March 2001): 1159–60. http://dx.doi.org/10.1016/s0379-6779(00)01146-2.
Повний текст джерелаNguyen, D. C., A. I. Vezentsev, P. V. Sokolovskiy, and A. A. Greish. "Adsorption of Glyphosate on Carbon-Containing Materials." Russian Journal of Physical Chemistry A 95, no. 6 (June 2021): 1212–15. http://dx.doi.org/10.1134/s0036024421060194.
Повний текст джерелаKapralov, B. K., M. M. Veis, Yu I. kadun, and A. F. Bul'Dyaev. "Brazing carbon‐carbon composite materials with metal‐containing brazing alloys." Welding International 6, no. 7 (January 1992): 562–64. http://dx.doi.org/10.1080/09507119209548240.
Повний текст джерелаBabaritskii, A. I., M. A. Deminskii, S. A. Demkin, I. A. Zaev, A. V. Kleimenov, S. V. Korobtsev, M. F. Krotov, B. V. Potapkin, R. V. Smirnov, and F. N. Cheban’kov. "Plasma–melt processing of carbon-containing raw materials." Solid Fuel Chemistry 50, no. 3 (May 2016): 197–206. http://dx.doi.org/10.3103/s0361521916030022.
Повний текст джерелаCasagrande, T., G. Lawson, H. Li, J. Wei, A. Adronov, and I. Zhitomirsky. "Electrodeposition of composite materials containing functionalized carbon nanotubes." Materials Chemistry and Physics 111, no. 1 (September 2008): 42–49. http://dx.doi.org/10.1016/j.matchemphys.2008.03.010.
Повний текст джерелаAlisin, V. V., and M. N. Roshchin. "Tribology of carbon-containing materials at high temperatures." Journal of Physics: Conference Series 1399 (December 2019): 044034. http://dx.doi.org/10.1088/1742-6596/1399/4/044034.
Повний текст джерелаDobrovol'skaya, I. P., T. Yu Vereshchaka, S. V. Bronnikov, K. E. Perepelkin, and B. M. Tarakanov. "Physicomechanical Properties of Carbon-Containing Film Composite Materials." Fibre Chemistry 37, no. 4 (July 2005): 300–303. http://dx.doi.org/10.1007/s10692-005-0100-y.
Повний текст джерелаVietzke, E., V. Philipps, K. Flaskamp, J. Winter, and S. Veprek. "Radiation enhanced sublimation of boron containing carbon materials." Journal of Nuclear Materials 176-177 (December 1990): 481–85. http://dx.doi.org/10.1016/0022-3115(90)90093-3.
Повний текст джерелаSchliebe, Christian, Julian Noll, Sebastian Scharf, Thomas Gemming, Andreas Seifert, Stefan Spange, Daniel Lehmann, et al. "Nitrogen-containing porous carbon materials by twin polymerization." Colloid and Polymer Science 296, no. 3 (January 14, 2018): 413–26. http://dx.doi.org/10.1007/s00396-017-4254-y.
Повний текст джерелаRoshchin, M. N., A. I. Lukyanov, and A. Yu Krivosheev. "Carbon-containing materials for high-temperature friction units." IOP Conference Series: Materials Science and Engineering 1181, no. 1 (September 1, 2021): 012007. http://dx.doi.org/10.1088/1757-899x/1181/1/012007.
Повний текст джерелаДисертації з теми "Carbon-containing materials"
Hamilton, Clifford G. "Thermo-oxidation of carbon-containing materials in fusion reactors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62890.pdf.
Повний текст джерелаLi, Jing. "Electrical conducting polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LI.
Повний текст джерелаFang, Xiaowen. "NMR studies of complex carbon-containing materials Maillard reaction products, soil, nanodiamond, and carbon modified TiO₂/." [Ames, Iowa : Iowa State University], 2008.
Знайти повний текст джерелаYang, Lei. "New materials for intermediate-temperature solid oxide fuel cells to be powered by carbon- and sulfur-containing fuels." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39575.
Повний текст джерелаDu, Feng. "Hierarchically Structured Carbon Nanotubes for Energy Conversion and Storage." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375459272.
Повний текст джерелаDementev, Nikolay. "Fluorescence Labeling of Surface Species as an Efficient Tool for Detection, Identification and Quantification of Oxygen Containing Functionalities on Carbon Materials." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/113200.
Повний текст джерелаPh.D.
1. Fluorescence labeling and quantification of oxygen-containing functionalities on the surfaces of single walled and multi-walled carbon nanotubes. Nearly all applications of nanotubes (CNTs), from nanoelectronics to composites, require knowledge of the type and concentration of functionalities on the surface of the material. None of the methods conventionally used to characterize CNTs, such as Raman spectroscopy, IR spectroscopy, UV-VIS-NIR spectroscopy, and X-ray photoelectron spectroscopy, provide selectivity in identification together with sensitivity in quantification. Fluorescence labeling of surface species (FLOSS) to identify and quantify oxygen containing functionalities on single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) provides a solution that is reported in this dissertation. The high selectivity of covalent attachment combined with the sensitivity of the fluorescence measurements, allowed us reliably determine concentrations of aldehyde (together with ketone), alcohol, and carboxylic functional groups on as-produced and acid treated SWCNTs. The detection limit is as low as ~ 0.5 % at (1 in every 200 carbon atoms).(You never established the lower limit clearly) 2. Purification of carbon nanotubes by dynamic oxidation in air. The outstanding mechanical and electronic properties of carbon nanotubes make them promising materials for use in different areas of nanotechnology. However, the presence of impurities in as-produced nanotubes has been a major obstacle toward their industrial scale applications. Amorphous and graphitic carbon, and catalytic metal particles are the major impurities in raw carbon nanotubes. Isothermal oxidation of as-produced carbon nanotubes, followed by acid treatment, is the most commonly used purification strategy. The thermal oxidation step eliminates carbonaceous impurities and the acid treatment decreases the metal content. Unfortunately, most of the existing oxidation procedures either do not destroy all carbonaceous impurities or partially destroy carbon nanotubes as well. In the dissertation, a novel purification protocol via dynamic oxidation of as-produced single-walled carbon nanotubes (SWCNT) is reported. In the new procedure, carbon nanotubes are exposed to a wide range of temperatures during the heating ramp. The results of the purification of arc-produced and laser vaporization grown SWCNT using dynamic oxidation are presented. Purity analysis of dynamically oxidized samples by UV-VIS-NIR and Raman spectroscopy, as well as transmission electron microscopy, explicitly demonstrate that dynamic oxidation enables obtaining undamaged carbon nanotubes almost free of carbonaceous impurities. 3. Surfactant- free method of solubilization of non-functionalized single-walled carbon nanotubes in common solvents. One of the major factors that hamper the extensive use of carbon nanotubes (CNTs) in large-scale applications are related to the poor purity of CNTs, and the weak dispersibility of CNTs in the most common solvents. The presence of substantial impurities (sometimes up to 80% wt.) in as-produced CNTs almost obliterates the unique properties of the material. Furthermore, the difficulties with solubilization of CNTs slow down the processability of the material in potential applications. A new one-step method of making pure single-walled carbon nanotubes (SWCNTs) via the sequence of sonication cycles is described in the dissertation. Hours long stable solutions of SWCNTs in acetone, methanol and isopropanol of concentrations as high as ~ 15 mg/L were prepared using the procedure. The results of UV-VIS-NIR, Raman and Transmission Electron Microscopy suggest that SWCNTs were not destroyed or damaged by purification and solubilization processes. A possible physico-chemical explanation of the solublization mechanism is discussed.
Temple University--Theses
Johansson, Ingrid, and Walter Deltin. "Utilization of Pulp and Paper Waste Products in the Metal Industry : Initial testing of carbon-containing waste material briquettes." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231792.
Повний текст джерелаIdag läggs en stor del av restprodukter från pappers och massaindustrin på deponi, vilket innebär såväl ekonomiska som miljömässiga nackdelar. Den här rapporten undersöker möjligheterna att använda dessa restprodukter som slaggskummare och bränsle i de olika ugnarna inom metallindustrin. Restprodukterna innehåller värdefulla ämnen, framförallt kol. Därför finns det ett ökat intresse för att hitta möjliga användningsområden för restprodukterna inom metallindustrin. Denna återanvändning skulle bidra till energibevarande eftersom fossila bränslen kan ersättas. I den här rapporten undersöks två restmaterial, blandat biologiskt slam och fiberavfall. Experimenten utfördes med dessa restprodukter pressade samman med ett basmaterial och cement till en brikett. Kraven som undersöks är styrka för både transport och användning i ugnarna samt förmågan att skumma en slagg. Resultaten för briketternas styrka var tvetydiga, inga av briketterna innehållande restprodukter satisfierade det uppsatta kriteriet. Styrkan är troligtvis för låg för att transport ska vara möjlig. Ingen skumning skedde under experimentet, men endast ett experiment genomfördes. Därför behöver ytterligare experiment genomföras innan några slutsatser kan dras. Men briketterna tros kunna ersätta koks och kol där styrkan inte är viktig. Men det är osäkert om briketterna påverkar stålkvaliteten.
wickramaratne, nilantha P. "Phenolic Resin-Based Porous Carbons for Adsorption and Energy Storage Applications." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1416224723.
Повний текст джерелаKitschke, Philipp. "Experimental and theoretical studies on germanium-containing precursors for twin polymerization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-205443.
Повний текст джерелаМиронов, Антон Миколайович. "Теоретичні та експериментальні дослідження теплообмінних процесів термічного розкладу вуглецевмісної сировини в удосконаленому піролітичному апараті". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32644.
Повний текст джерелаThesis for granting the Degree of Candidate of Technical sciences in specialty 05.17.08 – processes and equipment of chemical technology. – National Technical University "Kharkiv Polytechnic Institute" of Ministry of Education and Science of Ukraine, Kharkiv, 2017. The thesis is dedicated to the study of thermal processes taking place in pyrolysis apparatus of carbon-containing materials, to improve the design of the main and auxiliary equipment for charcoal burning installations. The existing demand for charcoal as one of the alternative energy resources of the present days is considered. The urgency of the subject for the developed countries of the world and Ukraine, in particular, has been explored. A microscopic study of the structure for five woods breeds is conducted. The kinetics of the raw materials drying process with a different level of initial moisture is studied. The energy curves of the drying process are constructed and the possible saving of primary fuel for this stage of production cycle is analytically estimated. An experimental installation for determining the thermal conductivity coefficient of wood, which takes into account not only the nonlinearity of the wood thermal conductivity change with temperature increasing up to 600°C, but also the anisotropy of material thermal conductive properties is developed. The method of wood thermal conductivity coefficient identifying, based on the developed experimental installation, is proposed. For the identification of the wood thermal conductivity coefficient, the inverse heat conduction problem is solved by the results of the thermophysical experiment. The inefficiency of the existing pyrolysis unit thermal insulation is identified. New measures of isolation that helps to reduce heat losses into the environment are proposed. A new methodology for wooden logs loading, taking into account the geometry of raw materials and trolleys, is proposed. The construction of the trolley is modernized in a way to maximize the effect of all heat flows that circulate in the apparatus.
Книги з теми "Carbon-containing materials"
Hamilton, Clifford G. Thermo-oxidation of carbon-containing materials in fusion reactors. Toronto: University of Toronto Institute for Aerospace Studies, 2001.
Знайти повний текст джерелаB, Lease Kevin, and United States. National Aeronautics and Space Administration., eds. Studies of the role of surface treatment and sizing of carbon fiber surfaces on the mechanical properties of composites containing carbon fibers: Final report, Kansas NASA-EPSCoR Program ... [Washington, DC: National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаA working party report on guidelines on materials requirements for carbon and low alloy steels for H2S-containing environments in oil and gas production. London: Published for the European Federation of Corrosion by the Institute of Materials, 1995.
Знайти повний текст джерелаInstitute of Materials, Minerals, and Mining., ed. A working party report on guidelines on materials requirements for carbon and low alloy steels for H₂S-containing environments in oil and gas production. 3rd ed. Leeds, UK: Published for the European Federation of Corrosion by Maney Publishing on behalf of the Institute of Materials, Minerals & Mining, 2009.
Знайти повний текст джерелаA Working Party Report on Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H2S-Containing Environments in Oil & Gas production (European Federation of Corrosion Publications). 2nd ed. Maney Publishing, 2002.
Знайти повний текст джерелаJ, Belliardo J., and Commission of the European Communities. Community Bureau of Reference., eds. Certification of the elemental composition of BCR reference material No.183: Containing carbon, hydrogen, fluorine, sulphur, phosphorus and copper. Luxembourg: Commission of the European Communities, 1985.
Знайти повний текст джерелаKirchman, David L. Introduction to geomicrobiology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0013.
Повний текст джерелаЧастини книг з теми "Carbon-containing materials"
Jelinek, Raz. "Carbon-Dot-Containing Composite Materials." In Carbon Nanostructures, 115–28. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43911-2_8.
Повний текст джерелаShofner, Meisha L. "Hierarchical Composites Containing Carbon Nanotubes." In Hybrid and Hierarchical Composite Materials, 319–56. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12868-9_9.
Повний текст джерелаSasaki, Katsuhiko, Terumitsu Imanishi, Kazuaki Katagiri, Atushi Kakitsuji, Toyohiro Satoh, Akiyuki Shimizu, and Nobuhito Nakama. "Stiffness and Thermal Conductivity of Carbon Nanotube Containing Aluminum." In Key Engineering Materials, 587–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.587.
Повний текст джерелаSasikumar, K., N. R. Manoj, T. Mukundan, Mostafizur Rahaman, and Dipak Khastgir. "Mechanical Properties of Carbon-Containing Polymer Composites." In Springer Series on Polymer and Composite Materials, 125–57. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2688-2_4.
Повний текст джерелаShpilevsky, E. M., S. A. Zhdanok, and D. V. Schur. "Materials Containing Carbon Nanoparticles for Hydrogen Power Engineering." In Carbon Nanomaterials in Clean Energy Hydrogen Systems - II, 23–39. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0899-0_2.
Повний текст джерелаYuryevich, Bazhin Vladimir, and Kuskov Vadim Borisovich. "Production of fuel briquettes from carbon containing materials." In XVIII International Coal Preparation Congress, 701–5. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40943-6_108.
Повний текст джерелаPereloma, Elena V., Azdiar A. Gazder, John J. Jonas, and Chris H. J. Davies. "Texture Evolution during Annealing of Warm Rolled Cr-Containing Low Carbon Steels." In Materials Science Forum, 295–300. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.295.
Повний текст джерелаFelhös, D., and J. Karger-Kocsis. "Friction and Wear of Rubber Nanocomposites Containing Layered Silicates and Carbon Nanotubes." In Advanced Structured Materials, 343–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15787-5_13.
Повний текст джерелаZhang, Xue Xi, Yong Bing Shen, Chun Feng Deng, De Zun Wang, and Lin Geng. "Preparation of Novel Aluminum Hybrid Composite Containing Aluminum Borate Whiskers and Carbon Nanotubes." In Key Engineering Materials, 1414–17. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.1414.
Повний текст джерелаRadić-Perić, J. "Formation of Gas Phase Boron and Carbon-Containing Molecular Species at High Temperatures." In Materials Science Forum, 171–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-441-3.171.
Повний текст джерелаТези доповідей конференцій з теми "Carbon-containing materials"
Ionescu, E., H. J. Kleebe, K. Krause, N. Nicoloso, R. Riedel, and L. Toma. "B4.1 - Carbon-containing High Temperature Piezoresistive Materials." In AMA Conferences 2013. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2013. http://dx.doi.org/10.5162/sensor2013/b4.1.
Повний текст джерелаSlepyan, G. Ya, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia. "Electromagnetic properties of composite materials containing carbon nanotubes." In 2010 URSI International Symposium on Electromagnetic Theory (EMTS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ursi-emts.2010.5637292.
Повний текст джерелаVeena, M. G., N. M. Renukappa, M. Siddaramaiah, and R. D. Sudhakersamuel. "Electrical conducting behavior of hybrid nanocomposites containing polyaniline, carbon nanotube, and carbon black." In Smart Materials, Nano-and Micro-Smart Systems, edited by Nicolas H. Voelcker and Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.816671.
Повний текст джерелаNakajo, Shouta, Takuya Murakami, Haruka Shimada, Kozo Osawa, Masahiko Murata, Tomoyuki Itaya, Kyoichi Oshida, Kenji Takeuchi, and Morinobu Endo. "Characterization of carbon/carbon composites containing cellulose by electrospinning." In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528696.
Повний текст джерелаMa, Peng Cheng, Hao Zhang, Sheng Qi Wang, Yiu Kei Wong, Ben Zhong Tang, Soon Hyung Hong, Kyung-Wook Paik, and Jang-Kyo Kim. "Electrical conducting behavior of hybrid nanocomposites containing carbon nanotubes and carbon black." In 2007 International Conference on Electronic Materials and Packaging (EMAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/emap.2007.4510279.
Повний текст джерелаNagasawa, N. "Polarization characteristics of zeolite single crystals containing carbon nanotubes." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420092.
Повний текст джерелаYin, Wong Wai, Wan Ramli Wan Daud, Abu Bakar Mohamad, Abdul Amir Hassan Kadhum, Edy Herianto Majlan, and Loh Kee Shyuan. "Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode." In 2ND ASEAN - APCTP WORKSHOP ON ADVANCED MATERIALS SCIENCE AND NANOTECHNOLOGY: (AMSN 2010). AIP, 2012. http://dx.doi.org/10.1063/1.4732489.
Повний текст джерелаBorkowski, P., E. Walczuk, D. Wojcik-Grzybek, K. Frydman, and D. Zasada. "Electrical Properties of Ag-C Contact Materials Containing Different Allotropes of Carbon." In 2010 IEEE Holm Conference on Electrical Contacts (Holm 2010). IEEE, 2010. http://dx.doi.org/10.1109/holm.2010.5619544.
Повний текст джерелаDunaevskn, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin, K. V. Dorozhkin, M. A. Kanygin, O. V. Sedelmkova, L. G. Bulusheva, and A. V. Okotrub. "Electromagnetic response of anisotropic polystyrene composite materials containing oriented multiwall carbon nanotubes." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956106.
Повний текст джерелаAikin, N., V. Naumik, V. Shalomeev, and S. Sheyko. "Production of High-Quality Aircraft Magnesium Alloys Castings Using Carbon-Containing Materials." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019mst/2019/mst_2019_1077_1084.
Повний текст джерелаЗвіти організацій з теми "Carbon-containing materials"
Liu, Shih-Yuan, Zachary X. Giustra, Tom Autrey, David A. Dixon, and Paul Osenar. Novel Carbon (C)-Boron (B)-Nitrogen (N)-Containing H2 Storage Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1393260.
Повний текст джерелаKennedy, Alan, Mark Ballentine, Andrew McQueen, Christopher Griggs, Arit Das, and Michael Bortner. Environmental applications of 3D printing polymer composites for dredging operations. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39341.
Повний текст джерела