Добірка наукової літератури з теми "Carbon-containing materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Carbon-containing materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Carbon-containing materials"

1

Umishita, K., Y. Ochiai, K. Iwasaki, and S. Hino. "Photoelectron spectra of carbon materials containing multiwall carbon nanotubes." Synthetic Metals 121, no. 1-3 (March 2001): 1159–60. http://dx.doi.org/10.1016/s0379-6779(00)01146-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nguyen, D. C., A. I. Vezentsev, P. V. Sokolovskiy, and A. A. Greish. "Adsorption of Glyphosate on Carbon-Containing Materials." Russian Journal of Physical Chemistry A 95, no. 6 (June 2021): 1212–15. http://dx.doi.org/10.1134/s0036024421060194.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kapralov, B. K., M. M. Veis, Yu I. kadun, and A. F. Bul'Dyaev. "Brazing carbon‐carbon composite materials with metal‐containing brazing alloys." Welding International 6, no. 7 (January 1992): 562–64. http://dx.doi.org/10.1080/09507119209548240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Babaritskii, A. I., M. A. Deminskii, S. A. Demkin, I. A. Zaev, A. V. Kleimenov, S. V. Korobtsev, M. F. Krotov, B. V. Potapkin, R. V. Smirnov, and F. N. Cheban’kov. "Plasma–melt processing of carbon-containing raw materials." Solid Fuel Chemistry 50, no. 3 (May 2016): 197–206. http://dx.doi.org/10.3103/s0361521916030022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Casagrande, T., G. Lawson, H. Li, J. Wei, A. Adronov, and I. Zhitomirsky. "Electrodeposition of composite materials containing functionalized carbon nanotubes." Materials Chemistry and Physics 111, no. 1 (September 2008): 42–49. http://dx.doi.org/10.1016/j.matchemphys.2008.03.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alisin, V. V., and M. N. Roshchin. "Tribology of carbon-containing materials at high temperatures." Journal of Physics: Conference Series 1399 (December 2019): 044034. http://dx.doi.org/10.1088/1742-6596/1399/4/044034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dobrovol'skaya, I. P., T. Yu Vereshchaka, S. V. Bronnikov, K. E. Perepelkin, and B. M. Tarakanov. "Physicomechanical Properties of Carbon-Containing Film Composite Materials." Fibre Chemistry 37, no. 4 (July 2005): 300–303. http://dx.doi.org/10.1007/s10692-005-0100-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vietzke, E., V. Philipps, K. Flaskamp, J. Winter, and S. Veprek. "Radiation enhanced sublimation of boron containing carbon materials." Journal of Nuclear Materials 176-177 (December 1990): 481–85. http://dx.doi.org/10.1016/0022-3115(90)90093-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schliebe, Christian, Julian Noll, Sebastian Scharf, Thomas Gemming, Andreas Seifert, Stefan Spange, Daniel Lehmann, et al. "Nitrogen-containing porous carbon materials by twin polymerization." Colloid and Polymer Science 296, no. 3 (January 14, 2018): 413–26. http://dx.doi.org/10.1007/s00396-017-4254-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roshchin, M. N., A. I. Lukyanov, and A. Yu Krivosheev. "Carbon-containing materials for high-temperature friction units." IOP Conference Series: Materials Science and Engineering 1181, no. 1 (September 1, 2021): 012007. http://dx.doi.org/10.1088/1757-899x/1181/1/012007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Carbon-containing materials"

1

Hamilton, Clifford G. "Thermo-oxidation of carbon-containing materials in fusion reactors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/MQ62890.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Jing. "Electrical conducting polymer nanocomposites containing graphite nanoplatelets and carbon nanotubes /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LI.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fang, Xiaowen. "NMR studies of complex carbon-containing materials Maillard reaction products, soil, nanodiamond, and carbon modified TiO₂/." [Ames, Iowa : Iowa State University], 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Lei. "New materials for intermediate-temperature solid oxide fuel cells to be powered by carbon- and sulfur-containing fuels." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/39575.

Повний текст джерела
Анотація:
Unlike polymer electrolyte fuel cells, solid-oxide fuel cells (SOFCs) have the potential to use a wide variety of fuels, including hydrocarbons and gasified coal or different types of ample carbonaceous solids. However, the conventional anode for an SOFC, a composite consisting of nickel and yttria-stabilized-zirconia (YSZ), is highly susceptible to carbon buildup (coking) and deactivation (poisoning) by contaminants commonly encountered in readily available fuels. Further, the low ionic conductivity of the electrolyte and the poor performance of the cathode at lower temperatures require SOFCs to operate at high temperatures (>800°C), thereby increasing costs and reduce system operation life. Thus, in order to make SOFCs fully fuel-flexible, cost-effective power systems, the issues of anode tolerance to coking and sulfur poisoning as well as the slow ionic conduction in the electrolyte and the sluggish kinetics at the cathode need to be addressed. In this thesis, a novel electrolyte was shown to have the highest ionic conductivity below 750°C of all known electrolyte materials for SOFCs applications, which allowed for fabrication of a thin-electrolyte cell with high power output at lower temperatures. The detailed electrochemical analyses of BZCYYb conductor revealed that the conductivities were sensitive to doping and partial pressure of oxygen, hydrogen, and water. When used in combination with Ni as a composite anode (Ni-BZCYYb), it was shown to provide excellent tolerance to coking and sulfur poisoning. Extensive investigations on surfaces of BZCYYb and Ni by Raman Spectroscopy and Scanning Auger Nanoprobe disclosed that its unique ability appears linked to the mixed conductor's enhanced catalytic activity for sulfur oxidation and hydrocarbon cracking/reforming, as well as enhanced multilayer water adsorption capability. In addition, the nanostructured oxide layers on Ni from dispersion of BZCYYb traces during high-temperature calcinations may effectively suppress the formation of carbon from dehydrogenation. Based on the fundamental understanding on surface properties, a new and simple modification strategy was developed to hinder the carbon-induced deactivation of the state-of-the-art Ni-YSZ anode. Compared to the complex Ni-BZCYYb anode, this modified Ni-YSZ anode could be readily adopted in the latest fuel cell systems based on YSZ electrolyte. The much-improved power output and tolerance to coking of the modified Ni-YSZ anode were attributed to the nanostructured BaO/Ni interfaces observed by synchrotron-based X-ray and advanced electron microscopy, which readily adsorbed water and facilitated water-mediated carbon removal reactions. Density functional theory (DFT) calculations predicted that the dissociated OH from H₂O on BaO reacted with C on Ni near the BaO/Ni interface to produce CO and H species, which were then electrochemically oxidized at the triple-phase boundaries of the anode. Also, some new insights into the sulfur poisoning behavior of the Ni-YSZ anode have been revealed. The so-called "second-stage poisoning" commonly reported in the literatures can be avoided by using a new sealant, indicating that this poisoning is unlikely the inherent electrochemical behavior of a Ni-YSZ anode but associated with other complications. Furthermore, a new composite cathode with simultaneous transport of proton, oxygen vacancies and electronic defects was developed for low-temperature SOFCs based on oxide proton conductors. Compared to the conventional oxygen ion-electron conducting cathode, this cathode is very active for oxygen reduction, extending the electrochemically active sites and significantly reducing the cathodic polarization resistance. Towards the end, these findings have great potential to dramatically improve the economical competitiveness and commercial viability of SOFCs that are driven by cost-effective and renewable fuels.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Du, Feng. "Hierarchically Structured Carbon Nanotubes for Energy Conversion and Storage." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1375459272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dementev, Nikolay. "Fluorescence Labeling of Surface Species as an Efficient Tool for Detection, Identification and Quantification of Oxygen Containing Functionalities on Carbon Materials." Diss., Temple University Libraries, 2011. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/113200.

Повний текст джерела
Анотація:
Chemistry
Ph.D.
1. Fluorescence labeling and quantification of oxygen-containing functionalities on the surfaces of single walled and multi-walled carbon nanotubes. Nearly all applications of nanotubes (CNTs), from nanoelectronics to composites, require knowledge of the type and concentration of functionalities on the surface of the material. None of the methods conventionally used to characterize CNTs, such as Raman spectroscopy, IR spectroscopy, UV-VIS-NIR spectroscopy, and X-ray photoelectron spectroscopy, provide selectivity in identification together with sensitivity in quantification. Fluorescence labeling of surface species (FLOSS) to identify and quantify oxygen containing functionalities on single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) provides a solution that is reported in this dissertation. The high selectivity of covalent attachment combined with the sensitivity of the fluorescence measurements, allowed us reliably determine concentrations of aldehyde (together with ketone), alcohol, and carboxylic functional groups on as-produced and acid treated SWCNTs. The detection limit is as low as ~ 0.5 % at (1 in every 200 carbon atoms).(You never established the lower limit clearly) 2. Purification of carbon nanotubes by dynamic oxidation in air. The outstanding mechanical and electronic properties of carbon nanotubes make them promising materials for use in different areas of nanotechnology. However, the presence of impurities in as-produced nanotubes has been a major obstacle toward their industrial scale applications. Amorphous and graphitic carbon, and catalytic metal particles are the major impurities in raw carbon nanotubes. Isothermal oxidation of as-produced carbon nanotubes, followed by acid treatment, is the most commonly used purification strategy. The thermal oxidation step eliminates carbonaceous impurities and the acid treatment decreases the metal content. Unfortunately, most of the existing oxidation procedures either do not destroy all carbonaceous impurities or partially destroy carbon nanotubes as well. In the dissertation, a novel purification protocol via dynamic oxidation of as-produced single-walled carbon nanotubes (SWCNT) is reported. In the new procedure, carbon nanotubes are exposed to a wide range of temperatures during the heating ramp. The results of the purification of arc-produced and laser vaporization grown SWCNT using dynamic oxidation are presented. Purity analysis of dynamically oxidized samples by UV-VIS-NIR and Raman spectroscopy, as well as transmission electron microscopy, explicitly demonstrate that dynamic oxidation enables obtaining undamaged carbon nanotubes almost free of carbonaceous impurities. 3. Surfactant- free method of solubilization of non-functionalized single-walled carbon nanotubes in common solvents. One of the major factors that hamper the extensive use of carbon nanotubes (CNTs) in large-scale applications are related to the poor purity of CNTs, and the weak dispersibility of CNTs in the most common solvents. The presence of substantial impurities (sometimes up to 80% wt.) in as-produced CNTs almost obliterates the unique properties of the material. Furthermore, the difficulties with solubilization of CNTs slow down the processability of the material in potential applications. A new one-step method of making pure single-walled carbon nanotubes (SWCNTs) via the sequence of sonication cycles is described in the dissertation. Hours long stable solutions of SWCNTs in acetone, methanol and isopropanol of concentrations as high as ~ 15 mg/L were prepared using the procedure. The results of UV-VIS-NIR, Raman and Transmission Electron Microscopy suggest that SWCNTs were not destroyed or damaged by purification and solubilization processes. A possible physico-chemical explanation of the solublization mechanism is discussed.
Temple University--Theses
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Johansson, Ingrid, and Walter Deltin. "Utilization of Pulp and Paper Waste Products in the Metal Industry : Initial testing of carbon-containing waste material briquettes." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231792.

Повний текст джерела
Анотація:
Today, a huge part of waste products from pulp and paper industries ends up in landfill which is both economically and environmentally adversely. This report examines the possibilities of using those products as a slag foamer and fuel in different furnaces in the metal industry. The waste products contain valuable elements, especially carbon. Therefore, there is an increased interest in finding possible use for the waste products in the metal industry. The reuse would contribute to preservation of energy as fossil fuel can be replaced. In the report, two waste materials called mixed biosludge and fiber reject are examined. The experiments are performed with the waste products pressed together with a base material and cement forming a briquette. The requirements examined are strength needed for both transportation and use in furnaces and ability to create a foaming slag. The results in strength were ambiguous, no waste material based briquettes met the set criteria. As of now, the briquettes are probably not strong enough to be transported. No foaming occurred during the experiment, but only one experiment was performed. Therefore, further experiments are needed before any conclusions can be drawn. The briquettes can possibly replace coke and coal in applications where strength is not as important. Nevertheless, it is uncertain if the briquettes affect the steel quality.
Idag läggs en stor del av restprodukter från pappers och massaindustrin på deponi, vilket innebär såväl ekonomiska som miljömässiga nackdelar. Den här rapporten undersöker möjligheterna att använda dessa restprodukter som slaggskummare och bränsle i de olika ugnarna inom metallindustrin. Restprodukterna innehåller värdefulla ämnen, framförallt kol. Därför finns det ett ökat intresse för att hitta möjliga användningsområden för restprodukterna inom metallindustrin. Denna återanvändning skulle bidra till energibevarande eftersom fossila bränslen kan ersättas. I den här rapporten undersöks två restmaterial, blandat biologiskt slam och fiberavfall. Experimenten utfördes med dessa restprodukter pressade samman med ett basmaterial och cement till en brikett. Kraven som undersöks är styrka för både transport och användning i ugnarna samt förmågan att skumma en slagg. Resultaten för briketternas styrka var tvetydiga, inga av briketterna innehållande restprodukter satisfierade det uppsatta kriteriet. Styrkan är troligtvis för låg för att transport ska vara möjlig. Ingen skumning skedde under experimentet, men endast ett experiment genomfördes. Därför behöver ytterligare experiment genomföras innan några slutsatser kan dras. Men briketterna tros kunna ersätta koks och kol där styrkan inte är viktig. Men det är osäkert om briketterna påverkar stålkvaliteten.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

wickramaratne, nilantha P. "Phenolic Resin-Based Porous Carbons for Adsorption and Energy Storage Applications." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1416224723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kitschke, Philipp. "Experimental and theoretical studies on germanium-containing precursors for twin polymerization." Doctoral thesis, Universitätsbibliothek Chemnitz, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-205443.

Повний текст джерела
Анотація:
Im Fokus dieser Arbeit standen zwei Ziele. Zum einem war es Forschungsgegenstand, dass Konzept der Zwillingspolymerisation auf germaniumhaltige, molekulare Vorstufen wie zum Beispiel Germylene, spirozyklische Germaniumverbindungen und molekulare Germanate zu erweitern und somit organisch-anorganische Komposite beziehungsweise Hybridmaterialien darzustellen. Dazu wurden neuartige Germaniumalkoxide auf der Basis von Benzylalkoholaten, Salicylalkoholaten sowie Benzylthiolaten synthetisiert, charakterisiert und auf ihre Fähigkeit Komposite beziehungsweise Hybridmaterialien über den Prozess der Zwillingspolymerisation zu erhalten studiert. Ein zweites Ziel dieser Arbeit war es, Beziehungen zwischen der Struktur und der Reaktivität dieser molekularen Vorstufen sowie deren Einfluss auf die Eigenschaften der erhaltenen Polymerisationsprodukte zu identifizieren und systematisch zu untersuchen. Hierfür wurden zum einen verschiedene Substituenten, welche unterschiedliche elektronische sowie sterische Eigenschaften aufweisen, an den aromatischen Einheiten der molekularen Vorstufen eingeführt. Die Effekte der Substituenten auf den Prozess der Zwillingspolymerisation und auf die Eigenschaften der Komposite beziehungsweise Hybridmaterialien wurden für die Verbindungsklasse der Germanium(II)salicylalkoholate, der molekularen Germanate sowie der spiro-zyklischen Siliziumsalicylalkoholate untersucht. Spirozyklische Siliziumsalicylalkoholate, wie zum Beispiel 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin], wurden im Rahmen dieser Arbeit mit einbezogen, da sie aufgrund ihres nahezu idealen Zwillingspolymerisationsprozesses geeignete Modelverbindungen für Reaktivitätsstudien darstellen. Zudem wurde der Einfluss der Substituenten auf die Charakteristika der aus den Kompositen beziehungsweise Hybridmaterialien erhaltenen Folgeprodukte (poröse Kohlenstoffmaterialien und oxydische Materialien) studiert. Des Weiteren wurde eine Serie von spirozyklischen Germaniumthiolaten, welche isostrukturell zu 4H,4’H-2,2‘-Spirobi[benzo[d][1,3,2]dioxasilin] sind, synthetisiert, um systematisch den Einfluss der Chalkogenide, Sauerstoff und Schwefel, in benzylständiger sowie phenylständiger Position auf deren Reaktionsvermögen im Polymerisationsprozess zu untersuchen. Die experimentellen Ergebnisse zu den Struktur-Reaktivitätsbeziehungsstudien wurden, soweit es jeweils durchführbar war, mittels quantenchemische Rechnungen validiert und die daraus gezogenen Schlüsse in die Diskussion zur Interpretation der experimentellen Ergebnisse mit einbezogen.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Миронов, Антон Миколайович. "Теоретичні та експериментальні дослідження теплообмінних процесів термічного розкладу вуглецевмісної сировини в удосконаленому піролітичному апараті". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/32644.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.08 – процеси та обладнання хімічної технології. – Національний технічний університет "Харківський політехнічний інститут" Міністерства освіти і науки України, Харків, 2017 р. Дисертацію присвячено вивченню теплових процесів, які відбуваються у апаратах піролізу вуглецевмісної сировини, задля вдосконалення конструкції основного та допоміжного обладнання установок для вуглевипалювання. Розглянуто існуючий попит на деревне вугілля як один з альтернативних енергетичних ресурсів сучасності. Досліджено актуальність тематики для розвинених країн світу та України зокрема. Проведено мікроскопічне дослідження структурної будови деревини п'яти порід. Досліджено кінетику сушки сировини із різним рівнем початкової вологості. Побудовано енергетичні криві сушки і аналітично оцінено можливу економію первинного палива на цій стадії виробничого циклу. Розроблено експериментальну установку для визначення коефіцієнту тепло-провідності деревини, яка враховує не тільки нелінійність зміни коефіцієнта теплопровідності деревини з підвищенням температури до 600°С, а й анізотропію теплопровідних властивостей матеріалу. Запропоновано спосіб ідентифікації коефіцієнта теплопровідності деревини, який базується на розробленій експериментальній установці. Для визначення коефіцієнту теплопровідності деревини за результатами теплофізичного експерименту вирішено зворотну задачу теплопровідності. Виявлено неефективність теплової ізоляції на зовнішніх поверхнях елементів конструкції існуючої установки. Запропоновано нові заходи ізолювання для зменшення теплових втрат до навколишнього середовища. Запропоновано новий принцип закладання дерев'яних полін з урахуваннях геометрії сировини та вагонетки. Вдосконалено конструкцію вагонетки таким чином, що максимізувати корисний вплив усіх теплових потоків, які циркулюють у апараті.
Thesis for granting the Degree of Candidate of Technical sciences in specialty 05.17.08 – processes and equipment of chemical technology. – National Technical University "Kharkiv Polytechnic Institute" of Ministry of Education and Science of Ukraine, Kharkiv, 2017. The thesis is dedicated to the study of thermal processes taking place in pyrolysis apparatus of carbon-containing materials, to improve the design of the main and auxiliary equipment for charcoal burning installations. The existing demand for charcoal as one of the alternative energy resources of the present days is considered. The urgency of the subject for the developed countries of the world and Ukraine, in particular, has been explored. A microscopic study of the structure for five woods breeds is conducted. The kinetics of the raw materials drying process with a different level of initial moisture is studied. The energy curves of the drying process are constructed and the possible saving of primary fuel for this stage of production cycle is analytically estimated. An experimental installation for determining the thermal conductivity coefficient of wood, which takes into account not only the nonlinearity of the wood thermal conductivity change with temperature increasing up to 600°C, but also the anisotropy of material thermal conductive properties is developed. The method of wood thermal conductivity coefficient identifying, based on the developed experimental installation, is proposed. For the identification of the wood thermal conductivity coefficient, the inverse heat conduction problem is solved by the results of the thermophysical experiment. The inefficiency of the existing pyrolysis unit thermal insulation is identified. New measures of isolation that helps to reduce heat losses into the environment are proposed. A new methodology for wooden logs loading, taking into account the geometry of raw materials and trolleys, is proposed. The construction of the trolley is modernized in a way to maximize the effect of all heat flows that circulate in the apparatus.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Carbon-containing materials"

1

Hamilton, Clifford G. Thermo-oxidation of carbon-containing materials in fusion reactors. Toronto: University of Toronto Institute for Aerospace Studies, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

B, Lease Kevin, and United States. National Aeronautics and Space Administration., eds. Studies of the role of surface treatment and sizing of carbon fiber surfaces on the mechanical properties of composites containing carbon fibers: Final report, Kansas NASA-EPSCoR Program ... [Washington, DC: National Aeronautics and Space Administration, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

A working party report on guidelines on materials requirements for carbon and low alloy steels for H2S-containing environments in oil and gas production. London: Published for the European Federation of Corrosion by the Institute of Materials, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Institute of Materials, Minerals, and Mining., ed. A working party report on guidelines on materials requirements for carbon and low alloy steels for H₂S-containing environments in oil and gas production. 3rd ed. Leeds, UK: Published for the European Federation of Corrosion by Maney Publishing on behalf of the Institute of Materials, Minerals & Mining, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

A Working Party Report on Guidelines on Materials Requirements for Carbon and Low Alloy Steels for H2S-Containing Environments in Oil & Gas production (European Federation of Corrosion Publications). 2nd ed. Maney Publishing, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

J, Belliardo J., and Commission of the European Communities. Community Bureau of Reference., eds. Certification of the elemental composition of BCR reference material No.183: Containing carbon, hydrogen, fluorine, sulphur, phosphorus and copper. Luxembourg: Commission of the European Communities, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kirchman, David L. Introduction to geomicrobiology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198789406.003.0013.

Повний текст джерела
Анотація:
Geomicrobiology, the marriage of geology and microbiology, is about the impact of microbes on Earth materials in terrestrial systems and sediments. Many geomicrobiological processes occur over long timescales. Even the slow growth and low activity of microbes, however, have big effects when added up over millennia. After reviewing the basics of bacteria–surface interactions, the chapter moves on to discussing biomineralization, which is the microbially mediated formation of solid minerals from soluble ions. The role of microbes can vary from merely providing passive surfaces for mineral formation, to active control of the entire precipitation process. The formation of carbonate-containing minerals by coccolithophorids and other marine organisms is especially important because of the role of these minerals in the carbon cycle. Iron minerals can be formed by chemolithoautotrophic bacteria, which gain a small amount of energy from iron oxidation. Similarly, manganese-rich minerals are formed during manganese oxidation, although how this reaction benefits microbes is unclear. These minerals and others give geologists and geomicrobiologists clues about early life on Earth. In addition to forming minerals, microbes help to dissolve them, a process called weathering. Microbes contribute to weathering and mineral dissolution through several mechanisms: production of protons (acidity) or hydroxides that dissolve minerals; production of ligands that chelate metals in minerals thereby breaking up the solid phase; and direct reduction of mineral-bound metals to more soluble forms. The chapter ends with some comments about the role of microbes in degrading oil and other fossil fuels.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Carbon-containing materials"

1

Jelinek, Raz. "Carbon-Dot-Containing Composite Materials." In Carbon Nanostructures, 115–28. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43911-2_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shofner, Meisha L. "Hierarchical Composites Containing Carbon Nanotubes." In Hybrid and Hierarchical Composite Materials, 319–56. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12868-9_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sasaki, Katsuhiko, Terumitsu Imanishi, Kazuaki Katagiri, Atushi Kakitsuji, Toyohiro Satoh, Akiyuki Shimizu, and Nobuhito Nakama. "Stiffness and Thermal Conductivity of Carbon Nanotube Containing Aluminum." In Key Engineering Materials, 587–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.587.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sasikumar, K., N. R. Manoj, T. Mukundan, Mostafizur Rahaman, and Dipak Khastgir. "Mechanical Properties of Carbon-Containing Polymer Composites." In Springer Series on Polymer and Composite Materials, 125–57. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2688-2_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shpilevsky, E. M., S. A. Zhdanok, and D. V. Schur. "Materials Containing Carbon Nanoparticles for Hydrogen Power Engineering." In Carbon Nanomaterials in Clean Energy Hydrogen Systems - II, 23–39. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0899-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yuryevich, Bazhin Vladimir, and Kuskov Vadim Borisovich. "Production of fuel briquettes from carbon containing materials." In XVIII International Coal Preparation Congress, 701–5. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40943-6_108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pereloma, Elena V., Azdiar A. Gazder, John J. Jonas, and Chris H. J. Davies. "Texture Evolution during Annealing of Warm Rolled Cr-Containing Low Carbon Steels." In Materials Science Forum, 295–300. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Felhös, D., and J. Karger-Kocsis. "Friction and Wear of Rubber Nanocomposites Containing Layered Silicates and Carbon Nanotubes." In Advanced Structured Materials, 343–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15787-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Xue Xi, Yong Bing Shen, Chun Feng Deng, De Zun Wang, and Lin Geng. "Preparation of Novel Aluminum Hybrid Composite Containing Aluminum Borate Whiskers and Carbon Nanotubes." In Key Engineering Materials, 1414–17. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.1414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Radić-Perić, J. "Formation of Gas Phase Boron and Carbon-Containing Molecular Species at High Temperatures." In Materials Science Forum, 171–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-441-3.171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Carbon-containing materials"

1

Ionescu, E., H. J. Kleebe, K. Krause, N. Nicoloso, R. Riedel, and L. Toma. "B4.1 - Carbon-containing High Temperature Piezoresistive Materials." In AMA Conferences 2013. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2013. http://dx.doi.org/10.5162/sensor2013/b4.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Slepyan, G. Ya, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia. "Electromagnetic properties of composite materials containing carbon nanotubes." In 2010 URSI International Symposium on Electromagnetic Theory (EMTS 2010). IEEE, 2010. http://dx.doi.org/10.1109/ursi-emts.2010.5637292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Veena, M. G., N. M. Renukappa, M. Siddaramaiah, and R. D. Sudhakersamuel. "Electrical conducting behavior of hybrid nanocomposites containing polyaniline, carbon nanotube, and carbon black." In Smart Materials, Nano-and Micro-Smart Systems, edited by Nicolas H. Voelcker and Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.816671.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nakajo, Shouta, Takuya Murakami, Haruka Shimada, Kozo Osawa, Masahiko Murata, Tomoyuki Itaya, Kyoichi Oshida, Kenji Takeuchi, and Morinobu Endo. "Characterization of carbon/carbon composites containing cellulose by electrospinning." In 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ma, Peng Cheng, Hao Zhang, Sheng Qi Wang, Yiu Kei Wong, Ben Zhong Tang, Soon Hyung Hong, Kyung-Wook Paik, and Jang-Kyo Kim. "Electrical conducting behavior of hybrid nanocomposites containing carbon nanotubes and carbon black." In 2007 International Conference on Electronic Materials and Packaging (EMAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/emap.2007.4510279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nagasawa, N. "Polarization characteristics of zeolite single crystals containing carbon nanotubes." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yin, Wong Wai, Wan Ramli Wan Daud, Abu Bakar Mohamad, Abdul Amir Hassan Kadhum, Edy Herianto Majlan, and Loh Kee Shyuan. "Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode." In 2ND ASEAN - APCTP WORKSHOP ON ADVANCED MATERIALS SCIENCE AND NANOTECHNOLOGY: (AMSN 2010). AIP, 2012. http://dx.doi.org/10.1063/1.4732489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Borkowski, P., E. Walczuk, D. Wojcik-Grzybek, K. Frydman, and D. Zasada. "Electrical Properties of Ag-C Contact Materials Containing Different Allotropes of Carbon." In 2010 IEEE Holm Conference on Electrical Contacts (Holm 2010). IEEE, 2010. http://dx.doi.org/10.1109/holm.2010.5619544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dunaevskn, G. E., V. I. Suslyaev, V. A. Zhuravlev, A. V. Badin, K. V. Dorozhkin, M. A. Kanygin, O. V. Sedelmkova, L. G. Bulusheva, and A. V. Okotrub. "Electromagnetic response of anisotropic polystyrene composite materials containing oriented multiwall carbon nanotubes." In 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014. http://dx.doi.org/10.1109/irmmw-thz.2014.6956106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Aikin, N., V. Naumik, V. Shalomeev, and S. Sheyko. "Production of High-Quality Aircraft Magnesium Alloys Castings Using Carbon-Containing Materials." In MS&T19. TMS, 2019. http://dx.doi.org/10.7449/2019mst/2019/mst_2019_1077_1084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Carbon-containing materials"

1

Liu, Shih-Yuan, Zachary X. Giustra, Tom Autrey, David A. Dixon, and Paul Osenar. Novel Carbon (C)-Boron (B)-Nitrogen (N)-Containing H2 Storage Materials. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1393260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kennedy, Alan, Mark Ballentine, Andrew McQueen, Christopher Griggs, Arit Das, and Michael Bortner. Environmental applications of 3D printing polymer composites for dredging operations. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39341.

Повний текст джерела
Анотація:
This Dredging Operations Environmental Research (DOER) technical note disseminates novel methods to monitor and reduce contaminant mobility and bioavailability in water, sediments, and soils. These method advancements are enabled by additive manufacturing (i.e., three-dimensional [3D] printing) to deploy and retrieve materials that adsorb contaminants that are traditionally applied as unbound powders. Examples of sorbents added as amendments for remediation of contaminated sediments include activated carbon, biochar, biopolymers, zeolite, and sand caps. Figure 1 provides examples of sorbent and photocatalytic particles successfully compounded and 3D printed using polylactic acid as a binder. Additional adsorptive materials may be applicable and photocatalytic materials (Friedmann et al. 2019) may be applied to degrade contaminants of concern into less hazardous forms. This technical note further describes opportunities for U.S. Army Corps of Engineers (USACE) project managers and the water and sediment resource management community to apply 3D printing of polymers containing adsorptive filler materials as a prototyping tool and as an on-site, on-demand manufacturing capability to remediate and monitor contaminants in the environment. This research was funded by DOER project 19-13, titled “3D Printed Design for Remediation and Monitoring of Dredged Material.”
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії