Добірка наукової літератури з теми "Calmodulin mediated activation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Calmodulin mediated activation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Calmodulin mediated activation"

1

Moretó, Jemina, Anna Lladó, Maite Vidal-Quadras, Maria Calvo, Albert Pol, Carlos Enrich, and Francesc Tebar. "Calmodulin modulates H-Ras mediated Raf-1 activation." Cellular Signalling 20, no. 6 (June 2008): 1092–103. http://dx.doi.org/10.1016/j.cellsig.2008.01.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schmitt, John M., Gary A. Wayman, Naohito Nozaki, and Thomas R. Soderling. "Calcium Activation of ERK Mediated by Calmodulin Kinase I." Journal of Biological Chemistry 279, no. 23 (March 29, 2004): 24064–72. http://dx.doi.org/10.1074/jbc.m401501200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Miao, Bei, Xiao-Hui Yin, Dong-Sheng Pei, Quan-Guang Zhang, and Guang-Yi Zhang. "Neuroprotective Effects of Preconditioning Ischemia on Ischemic Brain Injury through Down-regulating Activation of JNK1/2 via N-Methyl-D-aspartate Receptor-mediated Akt1 Activation." Journal of Biological Chemistry 280, no. 23 (March 29, 2005): 21693–99. http://dx.doi.org/10.1074/jbc.m500003200.

Повний текст джерела
Анотація:
Our previous studies have demonstrated that the JNK signaling pathway plays an important role in ischemic brain injury and is mediated via glutamate receptor 6. Others studies have shown that N-methyl-d-aspartate (NMDA) receptor is involved in the neuroprotection of ischemic preconditioning. Here we examined whether ischemic preconditioning down-regulates activation of the mixed lineage kinase-JNK signaling pathway via NMDA receptor-mediated Akt1 activation. In our present results, ischemic preconditioning could not only inhibit activations of mixed lineage kinase 3, JNK1/2, and c-Jun but also enhanced activation of Akt1. In addition, both NMDA (an agonist of NMDA receptor) and preconditioning showed neuroprotective effects. In contrast, ketamine, an antagonist of NMDA receptor, prevented the above effects of preconditioning. Further studies indicated that LY294002, an inhibitor of phosphoinositide 3-kinase that is an upstream signaling protein of Akt1, could block neuroprotection of preconditioning, and KN62, an inhibitor of calmodulin-dependent protein kinase, also achieved the same effects as LY294002. Therefore, both phosphoinositide 3-kinase and calmodulin-dependent protein kinase are involved in the activation of Akt1 in ischemic tolerance. Taken together, our results indicate that preconditioning can inhibit activation of JNK signaling pathway via NMDA receptor-mediated Akt1 activation and induce neuroprotection in hippocampal CA1 region.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Matthews, R. P., C. R. Guthrie, L. M. Wailes, X. Zhao, A. R. Means, and G. S. McKnight. "Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression." Molecular and Cellular Biology 14, no. 9 (September 1994): 6107–16. http://dx.doi.org/10.1128/mcb.14.9.6107-6116.1994.

Повний текст джерела
Анотація:
Phosphorylation of CREB (cyclic AMP [cAMP]- response element [CRE]-binding protein) by cAMP-dependent protein kinase (PKA) leads to the activation of many promoters containing CREs. In neurons and other cell types, CREB phosphorylation and activation of CRE-containing promoters can occur in response to elevated intracellular Ca2+. In cultured cells that normally lack this Ca2+ responsiveness, we confer Ca(2+)-mediated activation of a CRE-containing promoter by introducing an expression vector for Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV). Activation could also be mediated directly by a constitutively active form of CaMKIV which is Ca2+ independent. The CaMKIV-mediated gene induction requires the activity of CREB/ATF family members but is independent of PKA activity. In contrast, transient expression of either a constitutively active or wild-type Ca2+/calmodulin-dependent protein kinase type II (CaMKII) fails to mediate the transactivation of the same CRE-containing reporter gene. Examination of the subcellular distribution of transiently expressed CaMKIV and CaMKII reveals that only CaMKIV enters the nucleus. Our results demonstrate that CaMKIV, which is expressed in neuronal, reproductive, and lymphoid tissues, may act as a mediator of Ca(2+)-dependent gene induction.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Matthews, R. P., C. R. Guthrie, L. M. Wailes, X. Zhao, A. R. Means, and G. S. McKnight. "Calcium/calmodulin-dependent protein kinase types II and IV differentially regulate CREB-dependent gene expression." Molecular and Cellular Biology 14, no. 9 (September 1994): 6107–16. http://dx.doi.org/10.1128/mcb.14.9.6107.

Повний текст джерела
Анотація:
Phosphorylation of CREB (cyclic AMP [cAMP]- response element [CRE]-binding protein) by cAMP-dependent protein kinase (PKA) leads to the activation of many promoters containing CREs. In neurons and other cell types, CREB phosphorylation and activation of CRE-containing promoters can occur in response to elevated intracellular Ca2+. In cultured cells that normally lack this Ca2+ responsiveness, we confer Ca(2+)-mediated activation of a CRE-containing promoter by introducing an expression vector for Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV). Activation could also be mediated directly by a constitutively active form of CaMKIV which is Ca2+ independent. The CaMKIV-mediated gene induction requires the activity of CREB/ATF family members but is independent of PKA activity. In contrast, transient expression of either a constitutively active or wild-type Ca2+/calmodulin-dependent protein kinase type II (CaMKII) fails to mediate the transactivation of the same CRE-containing reporter gene. Examination of the subcellular distribution of transiently expressed CaMKIV and CaMKII reveals that only CaMKIV enters the nucleus. Our results demonstrate that CaMKIV, which is expressed in neuronal, reproductive, and lymphoid tissues, may act as a mediator of Ca(2+)-dependent gene induction.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ROMERO, Irma, Ana M. MALDONADO, and Pilar ERASO. "Glucose-independent inhibition of yeast plasma-membrane H+-ATPase by calmodulin antagonists." Biochemical Journal 322, no. 3 (March 15, 1997): 823–28. http://dx.doi.org/10.1042/bj3220823.

Повний текст джерела
Анотація:
Glucose metabolism causes activation of the yeast plasma-membrane H+-ATPase. The molecular mechanism of this regulation is not known, but it is probably mediated by phosphorylation of the enzyme. The involvement in this process of several kinases has been suggested but their actual role has not been proved. The physiological role of a calmodulin-dependent protein kinase in glucose-induced activation was investigated by studying the effect of specific calmodulin antagonists on the glucose-induced ATPase kinetic changes in wild-type and two mutant strains affected in the glucose regulation of the enzyme. Preincubation of the cells with calmidazolium or compound 48/80 impeded the increase in ATPase activity by reducing the Vmax of the enzyme without modifying the apparent affinity for ATP in the three strains. In one mutant, pma1-T912A, the putative calmodulin-dependent protein kinase-phosphorylatable Thr-912 was eliminated, and in the other, pma1-P536L, H+-ATPase was constitutively activated, suggesting that the antagonistic effect was not mediated by a calmodulin-dependent protein kinase and not related to glucose regulation. This was corroborated when the in vitroeffect of the calmodulin antagonists on H+-ATPase activity was tested. Purified plasma membranes from glucose-starved or glucose-fermenting cells from both pma1-P890X, another constitutively activated ATPase mutant, and wild-type strains were preincubated with calmidazolium or melittin. In all cases, ATP hydrolysis was inhibited with an IC50 of ≈1 μM. This inhibition was reversed by calmodulin. Analysis of the calmodulin-binding protein pattern in the plasma-membrane fraction eliminates ATPase as the calmodulin target protein. We conclude that H+-ATPase inhibition by calmodulin antagonists is mediated by an as yet unidentified calmodulin-dependent membrane protein.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mangels, L. A., R. R. Neubig, H. E. Hamm та M. E. Gnegy. "Calmodulin binding distinguishes between βγ subunits of activated G proteins and transducin". Biochemical Journal 283, № 3 (1 травня 1992): 683–90. http://dx.doi.org/10.1042/bj2830683.

Повний текст джерела
Анотація:
The interactions between guanine nucleotide regulatory proteins and the Ca(2+)-binding protein calmodulin were studied using calmodulin-Sepharose affinity chromatography. Purified bovine brain beta gamma subunits bound to calmodulin-Sepharose in a Ca(2+)-dependent manner. On the contrary, beta gamma subunits produced in an activated Go/Gi preparation did not bind to calmodulin-Sepharose. The effect was independent of the type of bovine brain G protein (Go/Gi, Gs), method of activation and the presence of magnesium. To distinguish whether the binding of purified beta gamma subunits to calmodulin was unique to brain beta gamma or to the method of purification, similar experiments were performed using transducin. In contrast to bovine brain G proteins, both purified transducin beta gamma subunits and beta gamma released from rhodopsin-activated transducin bound to calmodulin-Sepharose in a Ca(2+)-dependent manner. To assess the functional significance of the binding of bovine brain beta gamma subunits to calmodulin, the ability of purified beta gamma and of beta gamma in unactivated and activated Go/Gi to inhibit partially purified calmodulin-sensitive adenylate cyclase was determined. Purified beta gamma was highly effective in inhibiting calmodulin-stimulated adenylate cyclase activity. However, unactivated Go/Gi and preactivated Go/Gi inhibited calmodulin-stimulated adenylate cyclase activity to the same extent. This Go/Gi-mediated inhibition also occurred in the presence of a 500-fold molar excess of calmodulin over added G protein. These results demonstrate: (1) that beta gamma subunits may not be completely released upon G protein activation, and (2) that inhibition of calmodulin-stimulated adenylate cyclase by beta gamma subunits does not appear to be mediated by a direct beta gamma-calmodulin interaction. Differences in the binding properties of activated bovine brain G proteins versus those of transducin could be explained by differences in the gamma subunit between the proteins, or by differences in affinities of the alpha and beta gamma subunits for each other and for calmodulin. The different functional properties of purified beta gamma subunits and beta gamma subunits produced in situ by activation of G proteins indicates that extrapolation from the effects of purified subunits to events occurring in membranes should be done with caution.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gardiner, Elizabeth E., Denuja Karunakaran, Jane F. Arthur, Fi-Tjen Mu, Maree S. Powell, Ross I. Baker, P. Mark Hogarth, Mark L. Kahn, Robert K. Andrews та Michael C. Berndt. "Dual ITAM-mediated proteolytic pathways for irreversible inactivation of platelet receptors: de-ITAM-izing FcγRIIa". Blood 111, № 1 (1 січня 2008): 165–74. http://dx.doi.org/10.1182/blood-2007-04-086983.

Повний текст джерела
Анотація:
Collagen binding to glycoprotein VI (GPVI) induces signals critical for platelet activation in thrombosis. Both ligand-induced GPVI signaling through its coassociated Fc-receptor γ-chain (FcRγ) immunoreceptor tyrosine-activation motif (ITAM) and the calmodulin inhibitor, W7, dissociate calmodulin from GPVI and induce metalloproteinase-mediated GPVI ectodomain shedding. We investigated whether signaling by another ITAM-bearing receptor on platelets, FcγRIIa, also down-regulates GPVI expression. Agonists that signal through FcγRIIa, the mAbs VM58 or 14A2, potently induced GPVI shedding, inhibitable by the metalloproteinase inhibitor, GM6001. Unexpectedly, FcγRIIa also underwent rapid proteolysis in platelets treated with agonists for FcγRIIa (VM58/14A2) or GPVI/FcRγ (the snake toxin, convulxin), generating an approximate 30-kDa fragment. Immunoprecipitation/pull-down experiments showed that FcγRIIa also bound calmodulin and W7 induced FcγRIIa cleavage. However, unlike GPVI, the approximate 30-kDa FcγRIIa fragment remained platelet associated, and proteolysis was unaffected by GM6001 but was inhibited by a membrane-permeable calpain inhibitor, E64d; consistent with this, μ-calpain cleaved an FcγRIIa tail-fusion protein at 222Lys/223Ala and 230Gly/231Arg, upstream of the ITAM domain. These findings suggest simultaneous activation of distinct extracellular (metalloproteinase-mediated) and intracellular (calpain-mediated) proteolytic pathways irreversibly inactivating platelet GPVI/FcRγ and FcγRIIa, respectively. Activation of both pathways was observed with immunoglobulin from patients with heparin-induced thrombocytopenia (HIT), suggesting novel mechanisms for platelet dysfunction by FcγRIIa after immunologic insult.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gray, Michael, Daniel H. Daudelin, and Jorge Golowasch. "Activation mechanism of a neuromodulator-gated pacemaker ionic current." Journal of Neurophysiology 118, no. 1 (July 1, 2017): 595–609. http://dx.doi.org/10.1152/jn.00743.2016.

Повний текст джерела
Анотація:
The neuromodulator-gated current ( IMI) found in the crab stomatogastric ganglion is activated by neuromodulators that are essential to induce the rhythmic activity of the pyloric network in this system. One of these neuromodulators is also known to control the correlated expression of voltage-gated ionic currents in pyloric neurons, as well as synaptic plasticity and strength. Thus understanding the mechanism by which neuromodulator receptors activate IMI should provide insights not only into how oscillations are initiated but also into how other processes, and currents not directly activated by them, are regulated. To determine what specific signaling molecules are implicated in this process, we used a battery of agonists and antagonists of common signal transduction pathways. We found that the G protein inhibitor GDPβS and the G protein activator GTPγS significantly affect IMI amplitude, suggesting that its activation is mediated by G proteins. Interestingly, when using the more specific G protein blocker pertussis toxin, we observed the expected inhibition of IMI amplitude but, unexpectedly, in a calcium-dependent fashion. We also found that antagonists of calcium- and calmodulin-associated signaling significantly reduce IMI amplitude. In contrast, we found little evidence for the role of cyclic nucleotide signaling, phospholipase C (PLC), or kinases and phosphatases, except two calmodulin-dependent kinases. In sum, these results suggest that proctolin-induced IMI is mediated by a G protein whose pertussis toxin sensitivity is altered by external calcium concentration and appears to depend on intracellular calcium, calmodulin, and calmodulin-activated kinases. In contrast, we found no support for IMI being mediated by PLC signaling or cyclic nucleotides. NEW & NOTEWORTHY Neuronal rhythmic activity is generated by either network-based or cell-autonomous mechanisms. In the pyloric network of decapod crustaceans, the activation of a neuromodulator-gated pacemaker current is crucial for the generation of rhythmic activity. This current is activated by several neuromodulators, including peptides and acetylcholine, presumably via metabotropic receptors. We have previously demonstrated a novel extracellular calcium-sensitive voltage-dependence mechanism of this current. We presently report that the activation mechanism depends on intracellular and extracellular calcium-sensitive components.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tokumitsu, Hiroshi, and Hiroyuki Sakagami. "Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction." International Journal of Molecular Sciences 23, no. 19 (September 20, 2022): 11025. http://dx.doi.org/10.3390/ijms231911025.

Повний текст джерела
Анотація:
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is the activating kinase for multiple downstream kinases, including CaM-kinase I (CaMKI), CaM-kinase IV (CaMKIV), protein kinase B (PKB/Akt), and 5′AMP-kinase (AMPK), through the phosphorylation of their activation-loop Thr residues in response to increasing the intracellular Ca2+ concentration, as CaMKK itself is a Ca2+/CaM-dependent enzyme. The CaMKK-mediated kinase cascade plays important roles in a number of Ca2+-dependent pathways, such as neuronal morphogenesis and plasticity, transcriptional activation, autophagy, and metabolic regulation, as well as in pathophysiological pathways, including cancer progression, metabolic syndrome, and mental disorders. This review focuses on the molecular mechanism underlying CaMKK-mediated signal transduction in normal and pathophysiological conditions. We summarize the current knowledge of the structural, functional, and physiological properties of the regulatory kinase, CaMKK, and the development and application of its pharmacological inhibitors.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Calmodulin mediated activation"

1

Wallace, Robert W., E. Ann Tallant, and Lynn M. Brumley. "POSSIBLE ROLE FOR THE CA2+-DEPENDENT PROTEASE (CALPAIN I) AS AN IRREVERSIBLE ACTIVATOR OF CA2+/CALMODULIN-MEDIATED REACTIONS IN THE HUMAN PLATELET." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644528.

Повний текст джерела
Анотація:
Calmodulin (CaM)-binding proteins have been identified in human platelets using Western blotting techniques and 125I-CaM. Ten proteins of 245, 225. 175, 150, 90. 82(2), 60 and 41(2) kilodaltons (kDa) bind 125I-CaM in a Ca2+-dependent manner; the binding is blocked by both trifluoperazine and nonradiolabeled CaM. The 225 and 90 kDa proteins are labeled by antisera against myosin light chain kinase (MLCK); the 60 kDa and one of the 82 kDa proteins have been identified as the CaM-dependent phosphatase (calcineurin) and caldesmon. The other proteins are presumed to be other Ca2+/CaM regulated enzymes and proteins which may be important in platelet function. Most of the CaM-binding proteins are degraded upon addition of Ca2+ to a platelet homogenate; the degradation may be blocked by either EGTA, leupeptin or N-ethylmaleimide which suggests that the degradation is due to a Ca2+-dependent protease. Activation of intact platelets under conditions which promote platelet aggregation (i.e. stirring with extracellular Ca2+) also results in limited proteolysis of CaM-binding proteins including those labeled with anti sera against MLCK and the phosphatase. In vitro studies utilizing purified phosphatase and calpain I indicate that the phosphatase is irreversibly activated upon Ca2+-dependent proteolysis. The proteolytically-activated enzyme is insensitive to either Ca2+ or Ca2+/CaM; in addition, its activity in the absence of Ca2+ is even greater than the activity of the unproteolyzed enzyme in the presence of Ca2+ and CaM. Proteolytic stimulation of the phosphatase is accompanied by degradation of the 60 kDa subunit of the enzyme (subunit A) to 56, 52 and 45 kDa fragments, sequentially; proteolysis results in the loss of CaM binding to the enzyme. These results suggest that the Ca2+-dependent protease may have a physiological role in platelet activation as an irreversible activator of Ca2+/ CaM-dependent reactions. Supported by NIH grant HL29766.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Calmodulin mediated activation"

1

Urbauer, Jeffrey L., Ramona J. Bieber Urbauer, and Carrie E. Jolly. Mechanistic Basis Of Calmodulin Mediated Estrogen Receptor Alpha Activation and Antiestrogen Resistance. Fort Belvoir, VA: Defense Technical Information Center, June 2010. http://dx.doi.org/10.21236/ada536000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Urbauer, Jeffrey L., Ramona J. Bieber-Urbauer, and Carrie E. Jolly. Mechanistic Basis of Calmodulin Mediated Estrogen Receptor Alpha Activation and Antiestrogen Resistance. Fort Belvoir, VA: Defense Technical Information Center, June 2009. http://dx.doi.org/10.21236/ada510053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Locy, Robert D., Hillel Fromm, Joe H. Cherry, and Narendra K. Singh. Regulation of Arabidopsis Glutamate Decarboxylase in Response to Heat Stress: Modulation of Enzyme Activity and Gene Expression. United States Department of Agriculture, January 2001. http://dx.doi.org/10.32747/2001.7575288.bard.

Повний текст джерела
Анотація:
Most plants accumulate the nonprotein amino acid, g-aminobutyric acid (GABA), in response to heat stress. GABA is made from glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), an enzyme that has been shown by the Israeli PI to be a calmodulin (CaM) binding protein whose activity is regulated in vitro by calcium and CaM. In Arabidopsis there are at least 5 GAD genes, two isoforms of GAD, GAD1 and GAD2, are known to be expressed, both of which appear to be calmodulin-binding proteins. The role of GABA accumulation in stress tolerance remains unclear, and thus the objectives of the proposed work are intended to clarify the possible roles of GABA in stress tolerance by studying the factors which regulate the activity of GAD in vivo. Our intent was to demonstrate the factors that mediate the expression of GAD activity by analyzing the promoters of the GAD1 and GAD2 genes, to determine the role of stress induced calcium signaling in the regulation of GAD activity, to investigate the role of phosphorylation of the CaM-binding domain in the regulation of GAD activity, and to investigate whether ABA signaling could be involved in GAD regulation via the following set of original Project Objectives: 1. Construction of chimeric GAD1 and GAD2 promoter/reporter gene fusions and their utilization for determining cell-specific expression of GAD genes in Arabidopsis. 2. Utilizing transgenic plants harboring chimeric GAD1 promoter-luciferase constructs for isolating mutants in genes controlling GAD1 gene activation in response to heat shock. 3. Assess the role of Ca2+/CaM in the regulation of GAD activity in vivo in Arabidopsis. 4. Study the possible phosphorylation of GAD as a means of regulation of GAD activity. 5. Utilize ABA mutants of Arabidopsis to assess the involvement of this phytohormone in GAD activation by stress stimuli. The major conclusions of Objective 1 was that GAD1 was strongly expressed in the elongating region of the root, while GAD2 was mainly expressed along the phloem in both roots and shoots. In addition, GAD activity was found not to be transcriptionally regulated in response to heat stress. Subsequently, The Israeli side obtained a GAD1 knockout mutation, and in light of the objective 1 results it was determined that characterization of this knockout mutation would contribute more to the project than the proposed Objective 2. The major conclusion of Objective 3 is that heat-stress-induced changes in GAD activity can be explained by heat-stress-induced changes in cytosolic calcium levels. No evidence that GAD activity was transcriptionally or translationally regulated or that protein phosphorylation was involved in GAD regulation (objective 4) was obtained. Previously published data by others showing that in wheat roots ABA regulated GABA accumulation proved not to be the case in Arabidopsis (Objective 5). Consequently, we put the remaining effort in the project into the selection of mutants related to temperature adaptation and GABA utilization and attempting to characterize events resulting from GABA accumulation. A set of 3 heat sensitive mutants that appear to have GABA related mutations have been isolated and partially characterized, and a study linking GABA accumulation to growth stimulation and altered nitrate assimilation were conducted. By providing a better understanding of how GAD activity was and was not regulated in vivo, we have ruled out the use of certain genes for genetically engineering thermotolerance, and suggested other areas of endeavor related to the thrust of the project that may be more likely approaches to genetically engineering thermotolerance.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Philosoph-Hadas, Sonia, Peter Kaufman, Shimon Meir, and Abraham Halevy. Signal Transduction Pathway of Hormonal Action in Control and Regulation of the Gravitropic Response of Cut Flowering Stems during Storage and Transport. United States Department of Agriculture, October 1999. http://dx.doi.org/10.32747/1999.7695838.bard.

Повний текст джерела
Анотація:
Original objectives: The basic goal of the present project was to increase our understanding of the cellular mechanisms operating during the gravitropic response of cut flowers, for solving their bending problem without affecting flower quality. Thus, several elements operating at the 3 levels o the gravity-induced signal transduction pathway, were proposed to be examined in snapdragon stems according to the following research goals: 1) Signaling: characterize the signal transduction pathway leading to the gravitropic response, regarding the involvement of [Ca2+]cyt as a mediator of IAA movement and sensitivity to auxin. 2) Transduction by plant hormones: a) Examine the involvement of auxin in the gravitropic response of flower stems with regard to: possible participation of auxin binding protein (ABP), auxin redistribution, auxin mechanism of action (activation of H+-ATPase) mediation by changes in [Ca2+]cyt and possible regulation of auxin-induced Ca2+ action b: calmodulin-activated or Ca2+-activated protein kinases (PK). b) Examine the involvement of ethylene in the gravitropic response of flower stems with regard to auxin-induced ethylene production and sensitivity of the tissue to ethylene. 3) Response: examine the effect of gravistimulation on invertase (associated with growth and elongation) activity and invertase gene expression. 4) Commercial practice: develop practical and simple treatments to prevent bending of cut flowers grown for export. Revisions: 1) Model systems: in addition to snapdragon (Antirrhinum majus L.), 3 other model shoe systems, consisting of oat (Avena sativa) pulvini, Ornithogalun 'Nova' cut flowers and Arabidopsis thaliana inflorescence, were targeted to confirm a more general mechanism for shoot gravitropism. 2 Research topics: the involvement of ABP, auxin action, PK and invertase in the gravitropic response of snapdragon stems could not be demonstrated. Alternatively, the involvement in the gravity signaling cascade of several other physiological mediators apart of [Ca2+]cyt such as: IP3, protein phosphorylation and actin cytoskeleton, was shown. Additional topics introduced: starch statolith reorientation, differential expression of early auxin responsive genes, and differential shoot growth. Background to the topic: The gravitropic bending response of flowering shoots occurring upon their horizontal placement during shipment exhibits a major horticultural problem. In spite of extensive studies in various aboveground organs, the gravitropic response was hardly investigated in flowering shoots. Being a complex multistep process that requires the participation of various cellular components acting in succession or in parallel, analysis of the negative gravitropic response of shoot includes investigation of signal transduction elements and various regulatory physiological mediators. Major achievements: 1) A correlative role for starch statoliths as gravireceptors in flowering shoot was initially established. 2) Differentially phosphorylated proteins and IP3 levels across the oat shoe pulvini, as well as a differential appearance of 2 early auxin-responsive genes in snapdragon stems were all detected within 5-30 minutes following gravistimulation. 3) Unlike in roots, involvement of actin cytoskeleton in early events of the gravitropic response of snapdragon shoots was established. 4) An asymmetric IAA distribution, followed by an asymmetric ethylene production across snapdragon stems was found following gravistimulation. 5) The gravity-induced differential growth in shoots of snapdragon was derived from initial shrinkage of the upper stem side and a subsequent elongation o the lower stem side. 6) Shoot bending could be successfully inhibited by Ca2+ antagonists (that serve as a basis for practical treatments), kinase and phosphatase inhibitors and actin-cytoskeleton modulators. All these agents did not affect vertical growth. The essential characterization of these key events and their sequence led us to the conclusion that blocking gravity perception may be the most powerful means to inhibit bending without hampering shoot and flower growth after harvest. Implications, scientific and agriculture: The innovative results of this project have provided some new insight in the basic understanding of gravitropism in flower stalks, that partially filled the gap in our knowledge, and established useful means for its control. Additionally, our analysis has advanced the understanding of important and fundamental physiological processes involved, thereby leading to new ideas for agriculture. Gravitropism has an important impact on agriculture, particularly for controlling the bending of various important agricultural products with economic value. So far, no safe control of the undesired bending problem of flower stalks has been established. Our results show for the first time that shoot bending of cut flowers can be inhibited without adverse effects by controlling the gravity perception step with Ca2+ antagonists and cytoskeleton modulators. Such a practical benefit resulting from this project is of great economic value for the floriculture industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії