Дисертації з теми "Calcul de dérivée de formes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Calcul de dérivée de formes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sadik, Azeddine. "Étude théorique et approximation numérique d’une nouvelle formule de dérivée de forme et applications." Thesis, Nantes Université, 2022. http://www.theses.fr/2022NANU4027.
Повний текст джерелаIn this thesis, we are interested in the theoretical and numerical study of a formula of shape derivative which uses a Minkowski type deformation. We propose a generalization of a formula of shape derivative of a volume cost functional with respect to a family of non-convex domains. We start by proposing a first approach which consists in extending the results of previous works to a family of star-shaped domains, based on their characterizations via gauge functions. Then, we establish a result on the existence of the shape derivative of a surface cost functional, by using once again a Minkowski deformation of star-shaped domains by convex sets and expressing its derivative by means of the support functions. We end the theoretical part of this thesis by studying the existence of the shape derivative of solutions of boundary value problems using the Minkowski deformation of convex domains. This will allow us to deal with shape optimization problems whose cost functional depends on the solution of a boundary value problem of the Dirichlet or Neumann type. The second part of this thesis aims at concretising the results obtained in the framework of the new shape derivative formula in the convex case, by applying them to shape optimization models. We first focus on the numerical solution of a Bernoulli free boundary inverse problem, reformulated as a shape optimization one. In the last work of this thesis, we study a class of boundary problems coupled via an appropriate Neumann transmission condition, while suggesting a solution algorithm that shows the practical interest of the new shape derivative formula based on a discretization by the boundary element method and dual reciprocity
Briançon, Tanguy. "Problème de régularité en optimisation de formes." Rennes 1, 2002. http://www.theses.fr/2002REN10047.
Повний текст джерелаBriançon, Tanguy. "Problemes de régularité en optimisation de formes." Phd thesis, Université Rennes 1, 2002. http://tel.archives-ouvertes.fr/tel-00002013.
Повний текст джерелаSzeftel, Jérémie. "Calcul pseudodifférentiel et paradifférentiel pour l'étude de conditions aux limites absorbantes et de propriétés qualitatives d'équations aux dérivées partielles non linéaires." Paris 13, 2004. http://www.theses.fr/2004PA132001.
Повний текст джерелаIn this work, we design absorbing boundary conditions for nonlinear partial differential equations. The aim consists in approximating the solutions of such equations set on unbounded domains. The relevance of this work is justified by the practical interest of such methods and by the lack of results for nonlinear problems in the literature until now. First, we design absorbing boundary conditions for the Schrödinger equation. Then, we deal with nonlinear problems using two methods. The first strategy relies on linearization and on the use of the pseudodifferential calculus. The second strategy is purely nonlinear and relies on the use of the paradifferential calculus. The strength of these methods is to yield well-posed problems which are easy to implement for a low numerical cost
Belhadef, Abdessamad. "Factorisation des polynômes à plusieurs variables." Littoral, 2007. http://www.theses.fr/2007DUNK0184.
Повний текст джерелаIn this thesis, we develop a method for the factorization of multivariate polynomials over an any field. First, we establish a relationship between the dimension of a space of closed differentials forms and the number of absolutely irreducible factors of a bivariate polynomial. Next we generalize a result of Ruppert and Gao which characterizes the number of absolutely irreducible factors of multivariate polynomials and which gives a test for their absolute irreducibility. This generalization is based on the use of a system of partial differential equations. This brings us to devise a new method obtain the absolutely irreducible factors of a multivariate polynomials using the resultant and some computations with gcds. As a consequence of this method we deduce an algorithm for the factorization of a multivariate polynomial. Last, in two-variable case, we relate the previous differential equation to the notion of derivation and study some properties of related spaces of derivations
Giacomini, Matteo. "Quantitative a posteriori error estimators in Finite Element-based shape optimization." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX070/document.
Повний текст джерелаGradient-based shape optimization strategies rely on the computation of the so-called shape gradient. In many applications, the objective functional depends both on the shape of the domain and on the solution of a PDE which can only be solved approximately (e.g. via the Finite Element Method). Hence, the direction computed using the discretized shape gradient may not be a genuine descent direction for the objective functional. This Ph.D. thesis is devoted to the construction of a certification procedure to validate the descent direction in gradient-based shape optimization methods using a posteriori estimators of the error due to the Finite Element approximation of the shape gradient.By means of a goal-oriented procedure, we derive a fully computable certified upper bound of the aforementioned error. The resulting Certified Descent Algorithm (CDA) for shape optimization is able to identify a genuine descent direction at each iteration and features a reliable stopping criterion basedon the norm of the shape gradient.Two main applications are tackled in the thesis. First, we consider the scalar inverse identification problem of Electrical Impedance Tomography and we investigate several a posteriori estimators. A first procedure is inspired by the complementary energy principle and involves the solution of additionalglobal problems. In order to reduce the computational cost of the certification step, an estimator which depends solely on local quantities is derived via an equilibrated fluxes approach. The estimators are validated for a two-dimensional case and some numerical simulations are presented to test the discussed methods. A second application focuses on the vectorial problem of optimal design of elastic structures. Within this framework, we derive the volumetric expression of the shape gradient of the compliance using both H 1 -based and dual mixed variational formulations of the linear elasticity equation. Some preliminary numerical tests are performed to minimize the compliance under a volume constraint in 2D using the Boundary Variation Algorithm and an a posteriori estimator of the error in the shape gradient is obtained via the complementary energy principle
Scotti, Simone. "Applications of the error theory using Dirichlet forms." Phd thesis, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00349241.
Повний текст джерелаSHIH, JIRUNG-ALBERT. "Sur la saturation, la stabilité des systèmes d'équations aux dérivées partielles et le calcul formel." Paris 7, 1994. http://www.theses.fr/1994PA077091.
Повний текст джерелаBach, Samuel. "Formes quadratiques décalées et déformations." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS013/document.
Повний текст джерелаThe classical L-theory of a commutative ring is built from the quadratic forms over this ring modulo a lagrangian equivalence relation.We build the derived L-theory from the n-shifted quadratic forms on a derived commutative ring. We show that forms which admit a lagrangian have a standard form. We prove surgery results for this derived L-theory, which allows to reduce shifted quadratic forms to equivalent simpler forms. We compare classical and derived L-theory.We define a derived stack of shifted quadratic forms and a derived stack of lagrangians in a form, which are locally algebraic of finite presentation. We compute tangent complexes and find smooth points. We prove a rigidity result for L-theory : the L-theory of a commutative ring is isomorphic to that of any henselian neighbourhood of this ring.Finally, we define the Clifford algebra of a n-shifted quadratic form, which is a deformation as E_k-algebra of a symmetric algebra. We prove a weakening of the Azumaya property for these algebras, in the case n=0, which we call semi-Azumaya. This property expresses the triviality of the Hochschild homology of the Serre bimodule
Szulc, Katarzyna. "Quelques méthodes numériques en optimisation de formes." Thesis, Nancy 1, 2010. http://www.theses.fr/2010NAN10031/document.
Повний текст джерелаThe dissertation concerns numerical methods of shape optimization for nonlinear elliptic boundary value problems. Two classes of equations are considered. The first class are semilinear elliptic equations. The second class are elasticity problems in domains weakened by nonlinear cracks. The method proposed in the dissertation is known for linear problems. The framework includes the topological derivatives [2]-[5], and the levelset method [1]. It is shown, that the method can be applied in order to find numerical solutions for the shape optimization problems in the case of nonlinear elliptic equations. There are three parts of the dissertation. In the first part the topological derivatives for semilinear elliptic equation are determined by the compound asymptotic expansions. The expansion of solutions with respect to the small parameter which describes the size of the hole or cavity created in the domain of integration is established and justified. There are two problems considered in details. The first problem in three spatial dimensions with the Dirichlet boundary conditions on the hole. The complete proof of asymptotic expansion of the solution in the weighted Holder spaces is given. The order of the remainder is established by the Banach fixed point theorem in the weighted Holder spaces. The expansion of the solution is plug into the shape functional, and the first order term with respect to small parameter, is obtained. The second boundary value problem in two spatial dimensions enjoys the Neumann boundary conditions on the hole. The numerical results for the topological derivatives are given in twwo spatial dimensions by the finite element method combined with the Newton method for the nonlinear problems. The error estimates for the finite element method are also established. In the second part numerical method of shape optimization is proposed , justified and tested for a semilinear elliptic problem in two spatial dimensions. The forms of the shape gradient and of the topological derivative for the tracking type shape functional are given. The existence of an optimal domain under standard assumptions on the family of admissible domains is shown. Finally, numerical results are presented, which confirm the efficiency of the proposed method. In the third part of dissertation the elasticity boundary value problems in a body weakened by cracks is introduced. The variational formulations of the problem are recalled, including the smooth domain formulation. The domain decomposition method with the Steklov-Poincaré operator is analysed, with respect to the singular perturbation by creation of a small opening. The difficulty of the analysis is due to the fact that there are nonpenetration conditions prescribed on the crack lips, which make the problem nonlinear. The asymptotics of the energy functional are introduced and justified. As a result, the form of the topological derivative of the energy functional is obtained
Le, Roux Nicolas. "Solutions formelles d'équations aux dérivées partielles." Limoges, 2006. http://aurore.unilim.fr/theses/nxfile/default/08f78789-a341-49a2-8977-56724f3c63d0/blobholder:0/2006LIMO0058.pdf.
Повний текст джерелаIn this thesis, we build algorithms for computing formal solutions of systems of nonlinear partial differential equations (PDE). It is divided in two parts. In a first part, we give a new method of Newton type for computing formal power series solutions at a regular point for a large class of non linear systems of PDE introduced by F. Boulier and al. These systems appear when applying differential elimination tools. The Newton method given here is an alternative to the method by derivation-evaluation proposed by F. Boulier and al. We sketch a first comparison between the two methods by means of complexity, restricting ourself to the case of a first order ODE. Furthermore, we give a modular Newton method in the case of a first order ODE in order to take coefficients growth into account. In a second part, we are studying completely integrable Pfaffian systems with normal crossing at the origin. First, we give two methods for computing solutions of Pfaffian systems of the first kind at the origin. The two methods are based on works by R. Gérard and A. H. M. Levelt and T. Takano and M. Yoshida. Furthermore we give a constructive proof of a theorem By R. Gérard and A. H. M. Levelt under a generic asumption. This proof gives a method for computing solutions of a Pfaffian system of first kind satisfying this asumption. Next, we give an answer to the rank reduction problem for Pfaffian systems of the second kind and give a rank reduction algorithm in the two variables case. This problem is linked with the computation of its solutions. We recall well known algorithms for rank reduction of linear ordinary differential systems : Moser algorithm and Levelt algorithm. We show a duality property between increasing and decreasing versions of Levelt algorithm. This property turns out to be very important. Furthermore we study complexity between Moser algorithm and Levelt algorithm. Thanks to the duality property, we obtain a new criterium about regularity of Pfaffian system of the second kind in the case of n variables, n arbitrary. This can be viewed as the dual criterium of a criterium by A. Van den Essen. Then, we build a rank reduction algorithm for Pfaffian systems of the second kind in two variables by adapting the decreasing version of Levelt algorithm
Doyen, Luc. "Évolution, contrôle et optimisation de formes." Paris 9, 1993. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1993PA090025.
Повний текст джерелаThevenon, Frédéric. "Application de la méthode des dérivées d'ordre élevé à la résolution de problèmes linéaires ou non linéaires." Toulouse, INSA, 2000. http://www.theses.fr/2000ISAT0046.
Повний текст джерелаThe use of high order derivatives for digital simulation is fairly recent. By considering as variables the definition parameters of the phenomenon being studied, they can facilitate the construction of an approximation function for the solution to the initial problem. This paper explains how the method has been implemented in different contexts, mainly that of simulation in electromagnetism. This implementation has been explored in partnership with several industrial research centres. We are particularly concerned with studying the accuracy of the approximations used, their interest in terms of capabilities, and any reduction in calculation times. The first section is devoted to the study of linear problems. Two formulations are envisaged for the approximation function, using Taylor expansion or Pade approximation. We compare their respective performances. The second section concerns non linear problems. After describing a straightforward example of how this method is implemented, we present the results obtained for an industrial case
Morin, Guillaume. "Calcul moulien et théorie des formes normales classiques et renormalisées." Phd thesis, Observatoire de Paris, 2010. http://tel.archives-ouvertes.fr/tel-00521709.
Повний текст джерелаJeannerod, Claude-Pierre. "Formes normales de perturbations de matrices : étude et calcul exact." Phd thesis, Grenoble INPG, 2000. http://tel.archives-ouvertes.fr/tel-00006747.
Повний текст джерелаGabet, Lionel. "Modélisation de la diffusion de médicaments à travers les capillaires et dans les tissus à la suite d'une injection et esquisse d'une théorie décompositionnelle et application aux équations aux dérivées partielles." Châtenay-Malabry, Ecole centrale de Paris, 1992. http://www.theses.fr/1992ECAP0252.
Повний текст джерелаMazure, Marie-Laurence. "Analyse varationnelle des formes quadratiques convexes." Toulouse 3, 1986. http://www.theses.fr/1986TOU30109.
Повний текст джерелаOzello, Patrick. "Calcul exact des formes de Jordan et de Frobenius d'une matrice." Phd thesis, Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376086557.
Повний текст джерелаOzello, Patrick Della Dora Jean. "Calcul exact des formes de Jordan et de Frobenius d'une matrice." S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00323705.
Повний текст джерелаPican, Nathalie. "Problèmes statistiques dans le calcul en fiabilité des plates-formes pétrolières." Paris 11, 1989. http://www.theses.fr/1989PA112261.
Повний текст джерелаThis work is devoted to the improvement of statistical models in the reliability analysis of technical systems. In particular we evaluate the probability of failure of a steel-Jacket platform under extreme environmental (wave, currents, wind) loading conditions. It is based on a search for the most probable component failure sequences leading to the structure collapse. The reliability analysis requires as inputs the random internal forces and moments in every structural member (e. G. Beam element). We propose a stochastic second order characterization of the loadings, within some simulations performed through a computer program (Jackload). Sensibility studies due to random basic variables, and the possibility of model reduction are therefore investigated. Safety indices are basic tools in order to provide relations among systems and components (more or less reliable). In this way, we first discuss the merits and the limitations of usual Béta-indices. We propose a constructive method for a new Gamma-index, which is proved to be more coherent in term of probability measure of reliability
Simon, Bertrand. "Ordonnancement de graphes de tâches sur des plates-formes de calcul modernes." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN022/document.
Повний текст джерелаThis thesis deals with three main themes linked to task graph scheduling on modern computing platforms. A graph of tasks is a classical model of a program to be executed, for instance a scientific application. The decomposition of an application into several tasks allows to exploit the potential parallelism of this application without adaptating the program to the computing platform. The graph describes the tasks as well as their dependences, some tasks cannot be initiated before others are completed. The execution of an application is then determined by a schedule of the graph, computed by a dedicated software, which in particular describes which resources should be allocated to each task at which time. The three studied themes are the following: exploit inner task parallelism, use accelerators such as GPUs, and cope with a limited memory.For some applications, two types of parallelism can be exploited: several tasks can be executed concurrently, and each task may be executed on several processors, which reduces its processing time. We propose and study two models allowing to describe this processing time acceleration, in order to efficiently exploit both types of parallelism.We then study how to efficiently use accelerators such as GPUs, in a dynamic context in which the future tasks to schedule are unknown. The main difficulty consists in deciding whether a task should be executed on one of the rare available accelerators or on one of the many classical processors. The last theme covered in this thesis deals with a available main memory of limited size, and the resort to expensive data transfers. We focused on two scenarios. If it is possible to avoid such transfers, we propose to modify the graph in order to guarantee that any execution fits in memory, which allows to dynamically schedule the graph at runtime. If every schedule needs transfers, we studied how to minimize their quantity.The work on these three themes has led to a better understanding of the underlying complexities. The proposed theoretical solutions will influence future software implementations
Pénet, Ludovic. "Développement d'un logiciel de calcul par éléments finis fondé sur les formes différentielles." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ57422.pdf.
Повний текст джерелаLaporte, Emmanuel. "Optimisation de formes pour ecoulements instationnaires." Palaiseau, Ecole polytechnique, 1998. http://www.theses.fr/1998EPXX0046.
Повний текст джерелаDe, angelis cordeiro Daniel. "Impact de la coopération dans les nouvelles plates-formes de calcul à hautes performances." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00767078.
Повний текст джерелаAngelis, Cordeiro Daniel de. "Impact de la coopération dans les nouvelles plates-formes de calcul à hautes performances." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENM007/document.
Повний текст джерелаComputer science is deeply changing methodological aspects of the discovery process in different areas of knowledge. Researchers have at their disposal new capabilities that can create novel research opportunities. Parallel and distributed platforms composed of resources shared between different participants can make these new capabilities accessible to every researcher at every level, delivering computational power that was restricted before to bigger (and wealthy) scientific projects. This work explores four different facets of the rules that govern how organizations engage in collaboration on modern parallel and distributed platforms. Using classical combinatorial tools, multi-objective scheduling and game-theory, we showed how to compute schedules with good trade-offs between the results got by the participants and the global performance of the platform. By ensuring fair results and guaranteeing performance improvements for the participants, we can create an efficient platform where everyone always feels encouraged to collaborate and to share its resources. First, we study the collaboration between selfish organizations. We show how the selfish behavior between the participants imposes a lower bound on the global makespan. We present algorithms that cope with the selfishness of the organizations and that achieve good fairness in practice. The second study is about collaboration between organizations that can tolerate a limited degradation on their performance if this can help ameliorate the global makespan. We improve the existing inapproximation bounds for this problem and present new algorithms whose guarantees are close to the Pareto set. The third form of collaboration studied is between rational participants that can independently choose the best strategy for their jobs. We present a non-cooperative game-theoretic model for the problem and show how coordination mechanisms allow the creation of approximate pure equilibria with bounded price of anarchy. Finally, we study collaboration between users sharing a set of common resources. We present a method that enumerates the frontier of best compromise solutions for the users and selects the solution that brings the best value for the global performance function
Salque, Bruno. "Décomposition de domaines pour le calcul de la radiosité en simulation d'éclairage." Nancy 1, 1998. http://www.theses.fr/1998NAN10305.
Повний текст джерелаNovruzi, Arian. "Contribution en optimisation de formes et applications." Nancy 1, 1997. http://docnum.univ-lorraine.fr/public/SCD_T_1997_0224_NOVRUZI.pdf.
Повний текст джерелаMascot, Nicolas. "Calcul de représentations galoisiennes modulaires." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0108/document.
Повний текст джерелаIt was conjectured in the late 60's by J.-P. Serre and proved in the early 70's by P.Deligne that to each newform f = q +Σn ⩾2 anqn 2 Sk(N; "), k ⩾2, and each primel of the number field Kf = Q(an; n ⩾ 2), is attached an l-adic Galois representationPf;l : Gal(Q=Q) ! GL2(ZKf;l ), which is unrami fied outside ℓN and such the characteristicpolynomial of the Frobenius element at p ∤ ℓN is X2 apX +"(p)pk1. Reducing modulo land semi-simplifying, one gets a mod l Galois representation Pf;l : Gal(Q=Q) ! GL2(Fl),which is unrami filed outside ℓN and such that the characteristic polynomial of the Frobeniuselement at p ℓN is X2 apX +"(p)pk1 mod l. In particular, its trace is ap mod l, whichgives a quick way to compute ap mod l for huge p.The goal of this thesis is to study and implement an algorithm based on this idea(originally due to J.-M. Couveignes and B. Edixhoven) which computes the coefficients apmodulo l by computing the mod l Galois representation first, relying on the fact that ifk < ℓ, this representation shows up in the ℓ-torsion of the jacobian of the modular curveX1(ℓN).Thanks to several improvements, such as the use of K. Khuri-Makdisi's methods tocompute in the modular Jacobian J1(ℓN) or the construction of an arithmetically well-behaved function alph 2 Q(J1(ℓN)), this algorithm performs very well, as illustrated bytables of coefficients. This thesis ends by the presentation of a method to formally provethat the output of the algorithm is correct
Lu, Yi. "Calcul fonctionnel non-anticipatif et applications aux processus stochastiques." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066418/document.
Повний текст джерелаThis thesis focuses on various mathematical questions arising in the non-anticipative functional calculus, which is based on a notion of pathwise directional derivatives for functionals. We extend the scope and results of this calculus to functionals which may not admit such derivatives, either through approximations (Part I) or by defining a notion of weak vertical derivative (Part II). In the first part, we consider the representation of conditional expectations as non-anticipative functionals. We show that it is possible under very general conditions to approximate such functionals by a sequence of smooth functionals in an appropriate sense. This approach provides a systematic method for computing explicit approximations to martingale representations for a large class of Brownian functionals. We also derive explicit convergence rates of the approximations. These results are then applied to the problem of sensitivity analysis and dynamic hedging of (path-dependent) contingent claims. In the second part, we propose a concept of weak vertical derivative for non-anticipative functionals which may fail to possess directional derivatives. The definition of the weak vertical derivative is based on the notion of pathwise quadratic variation and makes use of the duality associated to the associated bilinear form. We show that the notion of weak vertical derivative leads to a functional characterization of local martingales with respect to a reference process, and allows to define a concept of pathwise weak solution for path-dependent partial differential equations
Gil, Isabelle Della Dora Jean. "Contribution à l'algèbre linéaire formelle formes normales de matrices et applications /." S.l. : Université Grenoble 1, 2008. http://tel.archives-ouvertes.fr/tel-00343648.
Повний текст джерелаCoquide, Jean-Luc. "Contrôles et preuves dans les systèmes clos : automates à piles d'arbres et calcul de formes normales." Lille 1, 1990. http://www.theses.fr/1990LIL10122.
Повний текст джерелаGil, Isabelle. "Contribution à l'algèbre linéaire formelle : formes normales de matrices et applications." Phd thesis, Grenoble INPG, 1993. http://tel.archives-ouvertes.fr/tel-00343648.
Повний текст джерелаBogosel, Beniamin. "Optimisation de formes et problèmes spectraux." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM066/document.
Повний текст джерелаWe study some shape optimization problems associated to spectral and geometric functionals from both theoretical and numerical points of view. One of the main ideas is to provide Gamma-convergence frameworks allowing the construction of numerical approximation methods for the quantities we wish to optimize. In particular, these numerical methods are applied to the study of the Dirichlet-Laplace eigenvalues under perimeter constraint in two and three dimensions and to optimization problems concerning multiphase configurations and partitions in the plane and on three dimensional surfaces.As well, we focus on the analysis of the Steklov spectrum in different geometric classes of domains. Together with the study of existence of extremal domains and the spectral stability under geometric perturbations, we develop methods based on fundamental solutions in order to compute numerically the spectrum. A detailed analysis of the numerical method shows that we get an important precision, while the computation time is significantly decreased compared to mesh-based methods. This approach is extended to the computation of Wentzell and Laplace-Beltrami eigenvalues
Quintin, Jean-noël. "Equilibrage de charge dynamique sur plates-formes hiérarchiques." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00661447.
Повний текст джерелаPrivat, Yannick. "Quelques problèmes d'optimisation de formes en sciences du vivant." Phd thesis, Université Henri Poincaré - Nancy I, 2008. http://tel.archives-ouvertes.fr/tel-00331243.
Повний текст джерелаDans la première partie de cette thèse, nous considérons l'exemple d'une fibre nerveuse de type axone ou dendrite. Nous proposons deux critères pour expliquer sa forme. Le premier traduit l'atténuation dans le temps du message électrique traversant la fibre et le second l'atténuation dans l'espace de ce message. Dans notre choix de modélisation, nous distinguons deux types de fibres nerveuses : celles qui sont connectées au noyau de la cellule et celles qui sont connectées entre elles. Les problèmes correspondants se ramènent à la minimisation par rapport au domaine des valeurs propres d'un opérateur elliptique et d'une fonction de transfert faisant intervenir la trace sur le bord du domaine du potentiel électrique au sein de la fibre.
La seconde partie de cette thèse est dédiée à l'optimisation de la forme d'un arbre bronchique ou d'une partie de cet arbre. Nous considérons un critère de type "énergie dissipée". Dans une étude théorique, nous prouvons tout d'abord que le cylindre n'est pas une conduite optimale pour minimiser l'énergie dissipée par un fluide newtonien incompressible satisfaisant aux équations de Navier-Stokes.
Nous effectuons ensuite des simulations en deux et trois dimensions afin de tester numériquement si l'arbre bronchique est ou non optimal.
Poly, Guillaume. "Formes de Dirichlet et applications en théorie ergodique des chaînes de Markov." Phd thesis, Université Paris-Est, 2011. http://tel.archives-ouvertes.fr/tel-00690724.
Повний текст джерелаAhamadi, Malidi. "Méthode numérique pour le calcul des variétés centrales et des formes normales appliquée à des équations de réaction-diffusion." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ52232.pdf.
Повний текст джерелаPilla, Laércio L. "Équilibrage de charge prenant en compte la topologie des plates-formes de calcul parallèle pour la portabilité des performances." Phd thesis, Université de Grenoble, 2014. http://tel.archives-ouvertes.fr/tel-00981136.
Повний текст джерелаWazner, Alain. "Formes canoniques invariantes d'un système linéaire différentiel homogène, polygone de Newton, calcul de la partie exponentielle des solutions formelles." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10233.
Повний текст джерелаMartinez-Rodriguez, Fernando. "Mmt : un système de stéréovision anthropomorphe pour le calcul de cartes denses de profondeurs." Toulouse, INPT, 1993. http://www.theses.fr/1993INPT115H.
Повний текст джерелаBayen, Térence. "Optimisation de formes dans la classe des corps de largeur constante et des rotors." Paris 6, 2007. http://www.theses.fr/2007PA066010.
Повний текст джерелаMercuriali, Pierre. "Sur les systèmes de formes normales pour représenter efficacement des fonctions multivaluées." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0241.
Повний текст джерелаIn this document, we study efficient representations, in term of size, of a given semantic content. We first extend an equational specification of median forms from the domain of Boolean functions to that of lattice polynomials over distributive lattices, both domains that are crucial in artificial intelligence. This specification is sound and complete: it allows us to algebraically simplify median forms into median normal forms (MNF), that we define as minimal median formulas with respect to a structural ordering of expressions. We investigate related complexity issues and show that the problem of deciding if a formula is in MNF, that is, minimizing the median form of a monotone Boolean function, is in sigmaP, at the second level of the polynomial hierarchy; we show that this result holds for arbitrary Boolean functions as well. We then study other normal form systems (NFSs), thought of, more generally, as a set of stratified terms over a fixed sequence of connectives, such as (m, NOT) in the case of the MNF. For a fixed NFS A, the complexity of a Boolean function f with respect to A is the minimum of the sizes of terms in A that represent f. This induces a preordering of NFSs: an NFS A is polynomially as efficient as an NFS B if there is a polynomial P with nonnegative integer coefficients such that the complexity of any Boolean function f with respect to A is at most the value of P in the complexity of f with respect to B. We study monotonic NFSs, i.e., NFSs whose connectives are increasing or decreasing in each argument. We describe optimal monotonic NFSs, that are minimal with respect to the latter preorder. We show that they are all equivalent. We show that optimal monotonic NFSs are exactly those that use a single connective or one connective and the negation. Finally, we show that optimality does not depend on the arity of the connective
Privat, Yannick. "Quelques problèmes d’optimisation de formes en sciences du vivant." Thesis, Nancy 1, 2008. http://www.theses.fr/2008NAN10045/document.
Повний текст джерелаIn this Ph.D thesis, we wonder whether some shapes observed in Nature could follow from the optimization of a criterion. More precisely, we consider an organ or a part of the human body and we try to guess a criterion that Nature could have tried to optimize. Then, we solve the resulting shape optimization problem in order to compare the shape obtained by a theoretical or a numerical way with the real shape of the organ. If these two shapes are similar, it may be deduced that the criterion is relevant. In the first part of this thesis, we consider the example of a nerve fiber of an axon or a dendrite kind. We propose two criterions to explain its shape. The first one stands for the attenuation throughout the time of the electrical message and the second one stands for the attenuation throughout the space of that message. In our choice of modeling, we distinguish two sorts of nerve fibers: these connected to the nucleus of the cell and these connected with two other fibers. The corresponding problems boil down to the minimization with respect to the domain of the eigenvalues of an elliptic operator and of a transfer function expressed with the trace of the electrical potential in the fiber on the boundary of the domain. The second part of this thesis is devoted to optimization of the shape of a bronchial tree or a part of that tree. We consider as a criterion the ``dissipated energy''. In a theoretical study, we foremost prove that the cylinder is not an optimal pipe to minimize energy dissipated by a newtonian incompressible fluid driven by a Navier Stokes system. Afterwards, we propose two and three dimensional simulations to verify numericaly if the bronchial tree is or not optimal
Giersch, Arnaud. "Ordonnancement sur plates-formes hétérogènes de tâches partageant des données." Phd thesis, Université Louis Pasteur - Strasbourg I, 2004. http://tel.archives-ouvertes.fr/tel-00008222.
Повний текст джерелаYousfi, Nabil. "Contribution à l'optimisation aérodynamique des formes des véhicules de tourisme et utilitaires à l'aide des critères d'angles privilégiés entre arêtes." Valenciennes, 2000. https://ged.uphf.fr/nuxeo/site/esupversions/d3a343b6-be81-4c58-a9bf-d13019371942.
Повний текст джерелаRiteau, Pierre. "Plates-formes d'exécution dynamiques sur des fédérations de nuages informatiques." Phd thesis, Université Rennes 1, 2011. http://tel.archives-ouvertes.fr/tel-00651258.
Повний текст джерелаBalat, Vincent. "Une étude des sommes fortes : isomorphismes et formes normales." Phd thesis, Université Paris-Diderot - Paris VII, 2002. http://tel.archives-ouvertes.fr/tel-00007880.
Повний текст джерелаLodygensky, Oleg. "Contribution aux infrastructures de calcul global : délégation inter plates-formes, intégration de services standards et application à la physique des hautes énergies." Phd thesis, Université Paris Sud - Paris XI, 2006. http://tel.archives-ouvertes.fr/tel-00147815.
Повний текст джерелаLes mondes du commerce, de l'industrie et de la recherche, ont bien compris les avantages et les enjeux de cette révolution et investissent massivement dans la recherche et le développement autour de ces nouvelles technologies, que l'on appelle les "grilles", qui désignent des ressources informatiques globales et qui ouvrent une nouvelle approche. Une des disciplines autour des grilles concerne le calcul. Elle est l'objet des travaux présentés ici.
Sur le campus de l'Université Paris-Sud, à Orsay, une synergie est née entre le Laboratoire de Recherche en Informatique (LRI) d'une part, et le Laboratoire de l'Accélérateur Linéaire (LAL), d'autre part, afin de mener à bien, ensemble, des travaux sur les infrastructures de grille qui ouvrent de nouvelles voies d'investigation pour le premier et de nouvelles méthodes de travail pour le second.
Les travaux présentés dans ce manuscrit sont le résultat de cette collaboration pluridisciplinaire. Ils se sont basés sur XtremWeb, la plate-forme de recherche et de production de calcul global développée au LRI. Nous commençons par présenter un état de l'art des systèmes distribués à grande Èchelle, ses principes fondamentaux, son architecture basée sur les services.
Puis nous introduisons XtremWeb et détaillons les modifications que nous avons dû apporter, tant au niveau de son architecture que de son implémentation, afin de mieux répondre aux exigences et aux besoins de ce type de plate-forme. Nous présentons ensuite deux études autour de cette plate-forme permettant de généraliser l'utilisation de ressources inter grilles, d'une part, et d'utiliser sur une grille des services qui n'ont pas été prévus à cette fin, d'autre part. Enfin, nous présentons l'utilisation, les problèmes à résoudre et les avantages à tirer de notre plate-forme par la communauté de recherche en physique des hautes énergies, grande consommatrice de ressources informatiques.
Cerda, Mauricio. "Calcul neuronal distribué pour la perception visuelle du mouvement." Phd thesis, Université Nancy II, 2011. http://tel.archives-ouvertes.fr/tel-00642818.
Повний текст джерелаBasson, Romain. "Arithmétique des espaces de modules des courbes hyperelliptiques de genre 3 en caractéristique positive." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S019/document.
Повний текст джерелаThe aim of this thesis is to provide an explicite description of the moduli spaces of genus 3 hyperelliptic curves in positive characteristic. Over a field of characteristic zero or odd, a parame- terization of these moduli spaces is given via the algebra of invariants of binary forms of degree 8 under the action of the special linear group. After the work of Lercier and Ritzenthaler, the case of fields of characteristic 3, 5 and 7 are still open. However, in these remaining case, the classical methods in characteristic zero do not work in order to provide generators for these algebra of invariants. Hence we provide only separating invariants in characteristic 3 and 7. Furthermore our results in characteristic 5 show this approach is not suitable. From these results, we describe the stratification of the moduli spaces of genus 3 hyperelliptic curves in characteristic 3 and 7 according to the automorphism groups of the curves and imple- ment algorithms to reconstruct a curve from its invariants. For this reconstruction stage, we paid attention to arithmetic issues, like the obstruction to be a field of definition for the field of moduli. Finally, in the characteristic 2 case, we use a different approach, given that the curves are defined by their Artin-Schreier models. The arithmetic structure of the ramification points of these curves stratify the moduli space in 5 cases and we define in each case invariants that characterize the isomorphism class of hyperelliptic curves