Дисертації з теми "Cag Type IV Secretion System"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Cag Type IV Secretion System.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-35 дисертацій для дослідження на тему "Cag Type IV Secretion System".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Pham, Kieu Thuy [Verfasser], and Wolfgang [Akademischer Betreuer] Fischer. "Functional characterization of the Helicobacter pylori Cag Type IV secretion system components CagH, CagI and CagL / Kieu Thuy Pham ; Betreuer: Wolfgang Fischer." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1124780033/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jiménez, Soto Luisa Fernanda. "Studies on the function of the Cag Type IV Secretion System of Helicobacter pylori with integrin Beta1." kostenfrei, 2009. http://edoc.ub.uni-muenchen.de/10659/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jimenez, Soto Luisa Fernanda. "Studies on the function of the Cag Type IV Secretion System of Helicobacter pylori with integrin Beta1." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-106597.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeitler, Anna Friederike [Verfasser], and Rainer [Akademischer Betreuer] Haas. "Identification of cellular mechanisms interfering with the Helicobacter pylori cag type IV secretion system / Anna Friederike Zeitler ; Betreuer: Rainer Haas." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2021. http://d-nb.info/1230754679/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lopez-Lozano, Nina. "Caractérisation structurale de nanomachines bactériennes impliquées dans l'adaptabilité et la virulence." Electronic Thesis or Diss., Bordeaux, 2023. http://www.theses.fr/2023BORD0482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse est divisée en deux thématiques.La première porte sur le système de Sécrétion de TypeIV cag (cag-SST4) d’Helicobacter pylori. Il s’agit d’une machinerie de sécrétion complexe enchâssée dans l’enveloppe cellulaire de la bactérie, lui permettant d’injecter l’oncoprotéine CagA dans les cellules épithéliales gastriques humaines. Cette toxine est considérée comme un facteur de virulence majeur d’H. pylori. Elle interagit avec des protéines de l’hôte, perturbant la signalisation cellulaire et entraînant des modifications pouvant favoriser le développement de maladies gastrointestinales, y compris des ulcères et des cancers gastriques. Le cag-SST4 est subdivisé en trois parties : (i) un complexe de membrane interne, composé essentiellement d’ATPases fournissant l’énergie nécessaire à son assemblage et/ ou son fonctionnement ; (ii) un complexe de membrane externe, ou complexe core, formant un canal qui relie les membranes interne et externe et (iii) un pilus extracellulaire, dont l’existence est toujours controversée, et qui permettrait d’établir un contact entre la bactérie et sa cible, et éventuellement de transférer les substrats à travers la membrane de l’hôte.Un premier projet porte sur le pilus extracellulaire. L’objectif est d’obtenir des données concernant une interaction supposée entre les protéines CagI et CagL, essentielles à la sécrétion et pressenties pour entrer dans la composition du pilus. Nous avons surexprimé des versions recombinantes de ces protéines chez Escherichia coli et nous les avons co-purifiées par chromatographie d’affinité, démontrant ainsi une interaction directe entre elles. La capacité de DARPins et Nanobodies de lier ce complexe a été testée. L’analyse de ces complexes a également été entreprise par cryo-microscopie électronique (cryoME).Le second projet porte sur le complexe core avec pour objectif d’obtenir sa structure à haute résolution afin d’éclaircir les zones d’ombre qui persistent concernant cet imposant assemblage. Différentes techniques ont été mises en œuvre afin de pouvoir solubiliser ce complexe. Sa purification reste à optimiser afin de pouvoir envisager une analyse en cryoME. L’obtention de telles structures pourrait permettre de mieux comprendre le fonctionnement du cag-SST4 et d’envisager des stratégies permettant d’inhiber son assemblage et/ ou son fonctionnement, privant ainsi H. pylori d’un facteur de virulence majeur.La seconde thématique porte sur les spirosomes bactériens. L’enzyme AdhE est très conservée dans le règne bactérien et chez certains organismes eucaryotes. Il s’agit d’une enzyme bifonctionnelle alcool/ aldéhyde déshydrogénase, responsable de la conversion de l’acétyl-CoA en acétaldéhyde puis en éthanol au cours de la fermentation alcoolique en anaérobie. Cette enzyme est communément retrouvée sous sa forme oligomérique, appelée spirosome. En fonction des ligands présents dans le milieu, les spirosomes d’E. coli peuvent se présenter dans une conformation compacte ou étendue, cette dernière constituant la forme active de l’enzyme. Contrairement aux spirosomes d’E. coli, ceux de Streptococcus pneumoniae sont naturellement stabilisés dans leur conformation étendue.L’objectif de ce projet est de comprendre quels sont les mécanismes à l’origine de cette différence de conformation. La cryoME nous a permis d’obtenir une structure à haute résolution du spirosome de S. pneumoniae et ainsi de pouvoir la comparer à celle du spirosome étendu d’E. coli. Des expériences de mutagenèse fonctionnelle avec complémentation nous ont permis de déterminer quels sont les résidus impliqués dans l’extension de ces spirosomes. Etant impliqués dans la pathogénicité et révélés indispensables à la physiologie bactérienne en l’absence d’oxygène, l’étude approfondie de leur conformation pourrait donc mener à la découverte de molécules capables de réguler leur activité, ce qui pourrait présenter un intérêt majeur dans les domaines des biotechnologies et de la santé
This thesis is divided into two themes.The first theme focuses on the cag Type IV secretion system (cag-T4SS) of the bacterium Helicobacter pylori. This is a complex secretion machinery embedded in the bacterium's cellular envelope, enabling it to inject the CagA oncoprotein into human gastric epithelial cells. This toxin is considered a major virulence factor of H. pylori. It interacts with host proteins, disrupting cell signaling and leading to changes that can promote the development of gastrointestinal diseases, including gastric ulcers and cancers. The cag-T4SS is subdivided into three parts: (i) an inner membrane complex, composed essentially of ATPases providing the energy required for its assembly and/or its function; (ii) an outer membrane complex, or core complex, forming a channel that connects the inner and outer membranes; and (iii) an extracellular pilus, the existence of which is still controversial, and which would establish contact between the bacterium and its target, and possibly transfer substrates across the host membrane.The first project focuses on the extracellular pilus. The aim is to obtain data concerning a putative interaction between the CagI and CagL proteins, which are essential for secretion and are thought to be involved in the composition of the cag-T4SS pilus. We overexpressed recombinant versions of these proteins in Escherichia coli and co-purified them by affinity chromatography, demonstrating a direct interaction between them. The ability of DARPins and Nanobodies to bind this complex was tested. Analysis of these complexes was also undertaken by cryo-electron microscopy (cryoEM).The second project focuses on the core complex, with the aim of obtaining its structure at high resolution in order to shed light on the remaining grey areas concerning this imposing assembly. Various techniques have been used to solubilize this complex. Its purification remains to be optimized before it can be analyzed by cryoEM. Obtaining such structures could lead to a better understanding of how cag-T4SS functions, and to consider strategies to inhibit its assembly and/or function, thus depriving H. pylori of a major virulence factor.The second theme concerns bacterial spirosomes. The AdhE enzyme is highly conserved in the bacterial kingdom and in certain eukaryotic organisms. It is a bifunctional alcohol/aldehyde dehydrogenase enzyme, responsible for the conversion of acetyl-CoA to acetaldehyde and then to ethanol during anaerobic alcoholic fermentation. This enzyme is commonly found in its oligomeric form, known as spirosome. Depending on the ligands present in the medium, E. coli spirosomes can have a compact or extended conformation, the latter constituting the active form of the enzyme. Unlike E. coli spirosomes, Streptococcus pneumoniae ones are naturally stabilized in their extended conformation.The aim of this project is to understand the mechanisms behind this conformational difference. CryoEM enabled us to obtain a high-resolution structure of the S. pneumoniae spirosome and thus comparing it with the extended E. coli spirosome. Functional mutagenesis experiments with complementation enabled us to determine which residues are involved in the extension of these spirosomes. As they are involved in pathogenicity and have been shown to be essential to bacterial physiology in the absence of oxygen, in-depth study of their conformation could lead to the discovery of molecules capable of regulating their activity, which could be of major interest in the fields of biotechnology and healthcare
6

Bauer, Bianca. "Molekulare Charakterisierung von Typ IV Sekretionssytem-spezifischen Wirtszellantworten und bakteriellen Virulenzfaktoren des humanen Magenpathogens Helicobacter pylori." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Das humane Magenpathogen Helicobacter pylori (H. pylori) besiedelt den menschlichen Magen und kann zu der Entstehung schwerwiegender Krankheiten wie Magenkrebs und Magengeschwüren führen. Die Pathogenese ist eng mit dem bakteriellen Typ IV Sekretionssystems (T4SS) assoziiert, das die Translokation des Effektorproteins CagA in die Wirtszelle vermittelt. Bisher ist noch unbekannt, in welchem Ausmaß wirtszellspezifische Faktoren die T4SS induzierte Pathogenese beeinflussen. Dieser Aspekt wurde in dieser Arbeit durch die Analyse verschiedenster Zelllinien das erste Mal systematisch untersucht. Interessanterweise unterschied sich die zelluläre Antwort auf die T4SS spezifische Infektion erheblich in Abhängigkeit der verwendeten Zelllinie. Die Ergebnisse beweisen, dass Wirtszellfaktoren eine ebenso große Rolle in der H. pylori induzierten Pathogenese spielen wie bakterielle Effektoren. Zusätzlich wurde in dieser Arbeit eine genomweite Screening-Methode etabliert, die es ermöglicht, neue Komponenten des T4SSs, translozierte NF-B Effektoren und bakterielle Adhäsine zu identifizieren. Auch der Einfluss von CagA auf den EGF-Rezeptor wurde hier näher untersucht. Der Rezeptor steht ebenfalls eng mit der Entstehung von Krebs in Verbindung. Hierbei stellte sich heraus, dass CagA die Endozytose des EGF-Rezeptors durch die Aktivierung der Nicht-Rezeptor Tyrosinkinase c-Abl hemmt und dadurch die Rezeptorpopulation auf der Wirtszelloberfläche erhöht. Interessanterweise führt dieser Effekt jedoch nicht zu einer Verstärkung der EGF-Rezeptor Signaltransduktion. Vielmehr kommt es zu einer Hemmung der EGF-Rezeptor Transaktivierung und zu einer Blockade der EGF vermittelten Wundheilung. Die Daten weisen auf eine Rolle des EGF-Rezeptors in der H. pylori induzierten Geschwürbildung hin. Auch der zu Grunde liegende molekulare Mechanismus der Rezeptor-Inhibierung konnte hier entschlüsselt werden, der sowohl von CagA als auch von der Phosphatase SHP-2 gesteuert wird.
The human gastric pathogen Helicobacter pylori (H. pylori) elicits a tremendous medical burden because of its causative association with peptic ulcer disease and gastric cancer. The pathogenic potential of H. pylori is intricately linked to the expression of a pathogenicity island encoded type IV secretion system (T4SS), which translocates the bacterial effector protein CagA into the eukaryotic host cell. The role of host cell determinants in T4SS mediated pathogenesis has not yet been systematically examined. To elucidate the role of host cell factors within T4SS induced host cell responses, different eukaryotic cell lines were analyzed systematically for respective phenotypes. Remarkably, T4SS mediated host responses among these cell lines varied considerably, thereby demonstrating the importance of host cell components in H. pylori induced pathogenesis. In addition, a H. pylori genome wide bacterial screen for factors important in pathogenesis, such as unknown T4SS components or novel NF-kappaB effector molecules, was developed and optimized. The precise function of the prominent effector protein CagA remains unclear. To functionally characterize the role of CagA, its impact on the epidermal growth factor (EGF)-receptor pathway was analyzed. The results suggest a mechanism where EGF-receptor endocytosis is completely blocked by a CagA induced activation of c-Abl, leading to an elevated receptor surface exposition. Surprisingly, EGF-receptor transactivation and EGF-dependent wound healing are selectively blocked during prolonged infections as well, indicating that an increased receptor-population on the cell surface does not necessarily promote signaling. This data suggests a role for the EGF-receptor in H. pylori- induced ulcer disease. The underlying molecular mechanism was identified as being SHP-2 and CagA dependent.
7

Connery, Sarah. "Reconstitution and localisation studies of a type IV secretion system." Thesis, Birkbeck (University of London), 2014. http://bbktheses.da.ulcc.ac.uk/75/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bacterial conjugation is the transport of a DNA molecule from a donor cell to a recipient. Since bacteria do not reproduce sexually, conjugation is a major contributor to prokaryotic genome plasticity and the spread of antibiotic resistance genes. A Type IV Secretion System (T4SS) mediates the DNA transport during conjugation. T4SSs are large macromolecular assemblies embedded in the membrane of bacteria, and are associated with pathogenesis, bacterial conjugation and natural transformation. They are a versatile family of secretion systems, who transport a wide variety of substrates, such as virulence proteins, DNA––protein complexes as well as only DNA. Here, we investigate the minimal requirements for conjugation, and the T4SS’s localisation within the cell. We show that the conjugative T4SS of the plasmid pR388 requires a total of 14 genes to efficiently mobilise DNA from a donor cell to a recipient cell and is arranged around the cell circumfence in a helical array. Our study of two reconstituted and fully functional conjugative T4SSs opens doors for further structural and functional analysis.
8

Sutten, Eric Lynn. "The immunogenicity of the type IV secretion system in Anaplasma marginale." Pullman, Wash. : Washington State University, 2009. http://www.dissertations.wsu.edu/Thesis/Summer2009/e_sutten_072409.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S. in veterinary science)--Washington State University, August 2009.
Title from PDF title page (viewed on Aug. 7, 2009). "Department of Veterinary Microbiology and Pathology." Includes bibliographical references.
9

Schindele, Franziska Maria [Verfasser], and Rainer [Akademischer Betreuer] Haas. "Development and application of a novel Cag type IV secretion reporter assay in Helicobacter pylori / Franziska Maria Schindele ; Betreuer: Rainer Haas." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2017. http://d-nb.info/1156173116/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Engledow, Amanda Suzanne. "Role of type IV secretion systems in trafficking of virulence determinants of Burkholderia cenocepacia." Thesis, [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nikraftar, Sarah. "Localization of Type IV Pilin Polymerization Proteins in Clostridium perfringens." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/71742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Clostridium perfringens is a spore-forming anaerobic Gram-positive rod which has gliding motility through type IV Pili (TFP). Since the discovery of TFP in Gram-positive bacteria is relatively new, more studies are required to understand the mechanism and interaction of the proteins of this machinery. Moreover, the similarities between TFP and type 2 secretion system (T2SS) suggest that C. perfringens has also a T2SS. We studied the localization of TFP ATPases, PilB1, PilB2 and PilT in Bacillus subtilis to compare the localization in an organism other than C. perfringens and which lacks any known genes similar to TFP. Unlike the case in C. perfringens, PilB1 in B. subtilis localized to the poles in the absence of PilT, with some central foci at the future division sites. Colocalization of PilB1 was also studied with PilT and the results suggested that PilB1 needs PilT to migrate from the poles to the center. Localization of PilB2 in B. subtilis, was similar to the results in C. perfringens and to the localization of PilB1 in B. subtilis. We have not been able to co-express PilB2 with PilT yet. Succeeding in this study will help us better understand the interactions between PilB proteins and PilT. In another project, we studied a von Willebrand factor Type A-Domain Containing protein (vWA) which is secreted from C. perfringens strain 13. We overexpressed and purified this protein and tested the effects on mammalian cells. We found that the vWA is probably not a toxin but since it seems to bind to macrophage membranes, we propose that the vWA could be part of a toxin complex, probably the subunit of the complex that binds to the host cells.
Master of Science
12

Niu, Hua. "The Role of Cellular Autophagy and Type IV Secretion System in Anaplasma phagocytophilum Infection." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211307210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Netto, Diogo dos Santos. "Development of a database for classification and analysis of type IV secretion systems." Laboratório Nacional de Computação Científica, 2008. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The type IV secretion system can be classified as a large family of macromolecule transporters divided in three recognized sub-families involved in different bacterial functions. The major sub-family of T4SS is the conjugation system, which allows transfer of genetic material as a nucleoprotein via cell contact among bacteria. Analogously to bacterial conjugation, the T4SS can transfer genetic material from bacteria to eukaryotic cells; such is the case of T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector proteins transport constitutes the second sub-family, being indispensable for infection processes of several mammalian and plants pathogens. The third sub-family corresponds to the DNA uptake/release system involved in genetic transformation competence, independently of cell contact, as it was described to the systems VirB/D4 from Campylobacter jejuni and ComB form Helicobacter pylori. Several essential features of T4SS are well known, but the knowledge in support of an uncomplicated classification or proper protein annotation of system subunits remains confusing, which in same cases can avoid making inferences about evolution of the system in bacterial species. The purpose of this work was to organize, classify and integrate the knowledge about T4SS through building a database devoted to this bacterial secretion system. The T4SS database was created using the SGBD MySQL and Perl programming language and with a web interface (HTML/CGI) that gives access to the database. Currently, this database hold genomic data from 43 bacteria and 10 plasmids acquired from the GenBank NCBI, these organisms comprise groups from Actionobacteria to Gram-negative Proteobacteria including symbiotic and pathogenic bacteria. By applying Bidirectional Best-Hits method was possible to get a core set of 75 clusters with 974 proteins involved in the T4SS. Also, during this procedure BlastP, Muscle e ClustalW algorithms were applied. The database was manually annotated supported by cross references built-in the T4SS annotation pages, such as the UniProtKB/Swiss-Prot, COG, InterPro and TCDB as well as by the methods for signal peptide and transmembrane regions prediction. All T4SS protein records scattered into 75 ortholog clusters were organized into five different classes of type IV secretion system proteins: (i) Type IVA Mpf/T4CP; (ii) Type IVA Dtr; (iii) F-type plasmid; (iv) IncP-1-type plasmid; (v) Type IVB Icm/Dot. All 974 proteins were annotated into 68 well-known families, which can be involved in conjugation, effector translocator, DNA uptake/release or even can be bifunctional proteins. Also, by using the Maximum Likelihood method were built 70 unrooted phylogenetic trees that represents just 70 clusters instead of 75, this is due to five clusters had only two protein sequences, five unrooted phylogenetic trees were built for each group of first hierarchical classification, one unrooted phylogenetic trees including proteins from archetype systems of all groups, one unrooted phylogenetic trees from 16S sequence of each organism and one rooted tree including a sequence from a Gram-positive bacteria as an external group. The phylogenetic analyses show that some proteins of T4SS are more divergent than others, which indicate that for a particular function few sequence mutations were needed, but other proteins required many sequence mutations to get another functions. Thus, these results proved that proteins belong to the same cluster show different functions: conjugation, DNA uptake/release or effector translocator. Consequently, it was possible verify that similar functions were grouped together within phylogenetic tree, which allowed to annotate a probable function of some uncharacterized proteins, that is possibly due to the sequence similarity may reveal a similar evolution to get the same function. Thus, the phylogenetic trees allowed confirming the protein annotation as well as inferring whether uncharacterized proteins would encompass a known function. The T4SS database will be an open access, given to the users searching and submission sequence tools, which will permit to get insights about classification and phylogeny of T4SS sequence of interest. T4SS Database is accessible at the URL http://www.t4ss.lncc.br.
O T4SS pode ser classificado como uma família de transportadores de macromoléculas envolvidos em diferentes funções bacterianas. A maior subfamília do T4SS é a do sistema de conjugação, o qual permite a transferência de material genético entre bactérias. Analogamente à conjugação, o sistema pode transferir material genético entre bactérias e eucariotos, tal como a transferência de T-DNA de Agrobacterium tumefaciens. O sistema de transporte de proteínas efetoras constitui uma segunda subfamília do T4SS, sendo indispensável nos processos de infecção de vários patógenos de mamíferos e plantas. A última subfamília corresponde ao sistema DNA-uptake/release" que funciona independente de contato com uma célula alvo, representado pelos sistemas VirB/D4 de Campylobacter jejuni e ComB de Helicobacter pylori. Muitas características básicas do T4SS são bem conhecidas, entretanto o conhecimento para a classificação simples e intuitiva ou a anotação apropriada das proteínas ainda não está claro, impedindo em alguns casos estabelecer correlações evolutivas deste sistema em bactérias. O objetivo deste trabalho foi o de organizar, classificar e integrar o conhecimento do T4SS através da construção de um banco de dados especializado para este sistema secretório bacteriano. O banco de dados T4SS foi criado utilizando o SGBD MySQL e a linguagem de programação Perl e com uma interface web (HTML/CGI) que fornece acesso ao banco. Este banco consta atualmente com 43 genomas bacterianos e 10 plasmídeos obtidos do GenBank NCBI, estes organismos vão desde Actinobactérias até Proteobactérias Gram-negativas, incluindo simbiontes e patogênicos. Foi utilizada a metodologia do Bidirectional Best-Hits", com a qual foi possível obter um conjunto mínimo de 75 clusters" com 974 proteínas envolvidas no T4SS. Também, durante este procedimento foram utilizados os algoritmos BlastP, Muscle e ClustalW. O banco foi anotado manualmente utilizando referências cruzadas incluídas nas páginas de anotação do T4SS, tais como UniProtKB/Swiss-Prot, COG, InterPro e TCDB e métodos para predição de regiões de peptídeos sinal e transmembrana. As análises do banco T4SS permitiram criar uma classificação hierárquica e funcional para as proteínas do T4SS, consistindo em cinco grupos: (i) Type IVA Mpf/T4CP; (ii) Type IVA Dtr; (iii) F-type plasmid; (iv) IncP-1-type plasmid; (v) Type IVB Icm/Dot). As 974 proteínas foram anotadas em 68 famílias conhecidas, as quais podem estar envolvidas em conjugação, transferência de T-DNA, transferência de proteínas efetoras, DNA-uptake/release" ou bem serem proteínas bifuncionais. Também, através do método de máxima verossimilhança foram geradas 70 árvores filogenéticas não enraizadas (NR) representando apenas 70 clusters, já que cinco clusters apresentaram apenas duas seqüências de proteínas, cinco árvores filogenéticas NR foram criadas para cada grupo da primeira categoria hierárquica, uma árvore NR com representantes de todos os grupos, uma árvore NR gerada a partir das seqüências 16S de cada organismo e uma árvore de um cluster incluindo uma seqüência de bactéria Gram-positiva como grupo externo. As análises filogenéticas mostram que determinadas proteínas do sistema são mais divergentes que outras, indicando que para uma determinada função poucas mutações de seqüências foram necessárias, já outras proteínas precisaram de maiores mutações para adquirir outras funções. Por isso, verifica-se que proteínas de um mesmo cluster apresentam diferentes funções: conjugação, DNA-uptake/release", traslocadores de proteínas efetoras. Conseqüentemente, foi possível verificar que funções semelhantes se agruparam juntas nas árvores filogenéticas, permitindo anotar uma função provável das proteínas ainda não caracterizadas (unknown"), isto possivelmente devido a que em virtude de sua semelhança de seqüências, possivelmente evoluíram para realizar a mesma função. Assim, as arvores possuíram a finalidade de confirmar a anotação e contribuíram permitindo inferir se os unknown" ou probable" podem ser de uma determinada classificação funcional. O banco T4SS será de uso público, oferecendo ao usuário ferramentas de buscas e submissão de seqüências, as quais permitirão inferir respostas sobre a classificação e filogenia da seqüência T4SS de interesse. O banco de dados T4SS pode ser acessado na URL: http://www.t4ss.lncc.br.
14

Salomonsson, Emelie. "The role of the Type IV pili system in the virulence of Francisella tularensis." Doctoral thesis, Umeå universitet, Molekylärbiologi (Teknisk-naturvetenskaplig fakultet), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Francisella tularensis is a Gram-negative intracellular pathogen causing the zoonotic disease tularemia. F. tularensis can be found almost all over the world and has been recovered from several animal species, even though the natural reservoir of the bacterium and parts of its life cycle are still unknown. Humans usually get infected after handling infected animals or from bites of blood-feeding arthropod vectors. There are four subspecies of F. tularensis: the highly virulent tularensis (Type A) that causes a very aggressive form of the disease, with mortality as high as 60% if untreated, the moderately virulent holarctica (Type B) and mediasiatica, and the essentially avirulent subspecies F. novicida. So far, our knowledge of the molecular mechanisms that would explain these differences in virulence among the subspecies is poor. However, recent developments of genetic tools and access to genomic sequences have laid the ground for progress in this research field. Analysis of genome sequences have identified several regions that differ between F. tularensis subspecies. One of these regions, RD19, encodes proteins postulated to be involved in assembly of type IV pili (Tfp), organelles that have been implicated in processes like twitching motility, biofilm formation and cell-to-cell communication in pathogenic bacteria. While there have been reports of pili-like structures on the surface of F. tularensis, these have not been linked to the Tfp encoding gene clusters until now. Herein, I present evidence that the Francisella pilin, PilA, can complement pilin-like characteristics and promote assembly of fibers in a heterologous system in Neisseria gonorrhoeae. pilA was demonstrated to be required for full virulence of both type A and type B strains in mice when infected via peripheral routes. A second region, RD18, encoding a protein unique to F. tularensis and without any known function, was verified to be essential for virulence in a type A strain. Interestingly, the non-licensed live vaccine strain, LVS (Type B), lacks both RD18 and RD19 (pilA) due to deletion events mediated by flanking direct repeats. The loss of RD18 and RD19 is responsible for the attenuation of LVS, since re-introducing them in cis could restore the virulence to a level similar to a virulent type B strain. Significantly, these deletion events are irreversible, preventing LVS to revert to a more virulent form. Therefore, this important finding could facilitate the licensing of LVS as a vaccine against tularemia.
15

Oliveira, Luciana Coutinho de. "Characterization of structure, dynamics, function and interactions of components from the type IV secretion system of Xanthomonas citri by solution nuclear magnetic resonance." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-15092016-084423/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bacteria use specialized systems, called secretion systems, in order to translocate substrates to the environment or to other cells, or even to uptake molecules from the exterior environment. Six different secretion systems have been described in Gram-negative bacteria. The Type IV Secretion System (T4SS) is involved in translocation of virulence factors, bacterial conjugation, uptake and release of DNA, and in the secretion of antibacterial toxins. The T4SS channel corresponds to a toroidal upramolecular complex consisting of 14 repetitions of the VirB7-VirB9-VirB10 heterotrimer. This channel, also called \"core complex\", is divided in two layers, an outer layer consisting of the VirB7 lipoprotein in complex with the C-terminal domains of VirB9 (VirB9CT) and VirB10 (VirB10CT), and an inner layer composed by the N-terminal domains of VirB9 (VirB9NT) and VirB10 (VirB10NT). Xanthomonas citri pv. citri (Xac) is a gram-negative bacterium that infects citrus plants causing a disease called \"citrus canker\". Although not directly involved in causing the disease, the chromosomally encoded T4SS is responsible for the secretion of toxins, working as a bacterial killing machine (Souza et al., 2015). The three-dimensional structure of Xac\'s VirB7 obtained by Nuclear Magnetic Resonance (NMR) spectroscopy (PDB 2L4W) revealed that, unlike the canonical VirB7, Xac\'s VirB7 consists of a flexible N-terminal domain followed by a C-terminal globular domain. The flexible N-terminal tail is involved in interaction with VirB9CT. In this thesis, the NMR structure of the complex formed between VirB9CT and a peptide derived from the N-terminal tail of Xac-VirB7 (VirB7NT) was solved. This complex is stabilized by hydrophobic interactions involving the side chains of particular amino acid residues such as Phe30, Trp34 and Val37 in VirB7, and Arg250, Tyr167 and Tyr169 in VirB9. Mutations of such amino acids affect not only the stability of the VirB9:VirB7 complex in vitro, but also reduce the T4SS activity and impairs its assembly in vivo. Furthermore, the ability of forming VirB7:VirB7 oligomers is essential for a functional T4SS, although it is not required for assembling the complex. The structural propensity and flexibility of a fragment derived from the proline-rich region (PRR) of the N-terminal tail of VirB10 (VirB10NT - residues 85 to 182) were studied. Measurements of the {1H}-15N heteronuclear NOE showed that VirB10NT is highly flexible on a sub-nanosecond time scale. Analysis of chemical shifts and NOEs showed that the ensemble and time average conformation of VirB10NT consists of a short alpha helix between residues 151-163, and that this helix is involved in interactions with VirB9NT. These findings provide the first compelling evidence for the interaction between the N-terminal domains of VirB9 and VirB10, and for the existence of significant flexibility within Xacs T4SS.
Bactérias usam sistemas especializados, denominados sistemas de secreção, a fim de translocar substratos para o ambiente ou para outras células, ou até mesmo para capturar moléculas do meio externo. Seis diferentes sistemas de secreção foram descritos em bactérias gram-negativas. O Sistema de Secreção do Tipo IV (T4SS) está envolvido na translocação de fatores de virulência, conjugação bacteriana, absorção e liberação de DNA, e secreção de toxinas antibacterianas. O canal do T4SS (core complex) corresponde a um complexo formado por 14 repetições do heterotrimero VirB7-VirB9-VirB10. A camada externa deste canal é constituída por VirB7 em complexo com os domínios C-terminal de VirB9 (VirB9CT) e VirB10 (VirB10CT). Os domínios N-terminal de VirB9 (VirB9NT) e VirB10 (VirB10NT) formam a camada interna do core complex. Xanthomonas citri pv. citri (Xac) é uma bactéria gram-negativa que infecta plantas cítricas causando uma doença chamada \"cancro cítrico\". Embora não esteja diretamente envolvido na infecção, o T4SS cromossomal secreta toxinas capazes de matar outras bactérias gram-negativas. VirB7 de Xac possui uma cauda N-terminal flexível e um domínio globular C-terminal ausente em outras proteínas VirB7. VirB7 interage com VirB9CT através de sua cauda N-terminal. Nesta tese, a estrutura de RMN do complexo formado por VirB9CT e um peptídeo derivado do segmento N-terminal de VirB7 foi resolvida. O complexo é estabilizado, principalmente, por interações hidrofóbicas envolvendo as cadeias laterais de determinados resíduos de aminoácidos, particularmente a Phe30, o Trp34 e a Val37 em VirB7 e a Arg250, a Tyr167 e a Tyr169 em VirB9. A substituição de alguns destes aminoácidos por alanina afeta não só a constante de dissociação do complexo in vitro, como também a atividade e a montagem do T4SS in vivo. Além disso, resíduos específicos envolvidos em oligomerização de VirB7 são essenciais para a manutenção de um T4SS funcional, embora não sejam essenciais para a montagem do sistema. Estudos estruturais, de dinâmica e de interações de um fragmento derivado da região rica em prolinas (proline-rich region - PRR) contida no N-terminal de VirB10 (VirB10NT - resíduos 85-182) também foram realizados. Medidas de {1H}-15N NOE heteronuclear mostraram que VirB10NT é altamente flexível. Análises de deslocamentos químicos e NOEs mostrou que VirB10NT forma uma hélice curta entre os resíduos 151-163. Ensaios de interação por RMN indicaram que esta hélice está envolvida em interações com VirB9NT. Estes resultados são a primeira evidência convincente para a especificidade de interação entre os domínios N-terminal de VirB9 e VirB10. Estes dados apontam também para a existência de flexibilidade dentro do T4SS de Xac.
16

Sundin, Charlotta. "Type III Secretion Mediated Translocation of Effector Exoenzymes by Pseudomonas aeruginosa." Doctoral thesis, Umeå : Univ, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Jacobsen, Theis. "Structure and assembly of bacterial type IV filaments unravelled by an integrative approach." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La superfamille des filaments de type IV (TFF) est un groupe de machines moléculaires localisées dans la membrane des bactéries et des archées. Ces machines associent des polymères protéiques de manière non-covalente appelés des pili, qui s’étendent depuis la cellule pour réaliser plusieurs fonctions qui ont évolué spécifiquement pour s’adapter à des organismes hôtes différents. La superfamille TFF comprend le système de sécrétion de type II (T2SS) et les pili de type IVa (T4aP). Le T2SS induit la sécrétion de substrats chez les bactéries Gram-négatives. Ces substrats sont en général des enzymes qui dégradent les complexes carbohydrates, le peptidoglycane, les lipides, ce qui à terme entraîne la libération de nutriments. Les T4aP sont de longues fibres flexibles qui sont ancrées dans la membrane et permettent de nombreuses fonctions. Le mécanisme par lequel le T2SS et les T4aP remplissent ces différentes fonctions n’est toujours pas entièrement compris. Pour comprendre le mécanisme de sécrétion du T2SS, nous avons étudié par RMN la structure de la pseudopiline OutG, le composant majeur du pseudopilus chez Dickeya dadantii. Dans une seconde partie, nous avions pour objectif d’aborder la structure et l’assemblage des pilines mineures, des protéines qui composent le T4P d’Escherichia coli entérohémorragique. Nous avons optimisé la surexpression, la purification et le marquage de les pilines mineures pour leur étude par RMN. De plus, la modélisation des pilines et le cross-linking ont été réalisés sur les échantillons de pseudopili T4P et T2SS purifiés en tant que méthodologie pour déterminer la structure et les interactions des pilines et pseudopilines au sein du pilus natif
The type IV filament (TFF) superfamily is a group of molecular machineries located in the membrane of bacteria and archaea. These machineries assemble non-covalent protein polymers called pili extending away from the cell to perform multiple functions which have evolved specifically to adapt to different host organisms. The TFF superfamily includes the type II secretion system (T2SS) and the type IVa pili (T4aP). The T2SS promotes the secretion of substrates in Gram-negative bacteria. These substrates are in general enzymes degrading complex carbohydrates, peptidoglycan, and lipids, resulting in the release of nutrients. The T4aP are long flexible fibres anchored in the membrane and enable various functions such as twitching motility, DNA uptake and biofilm formation. The mechanism by which the T2SS and T4aP pilus fulfil their different functions is still not completely understood. To understand the mechanism of secretion by T2SS, we studied the structure of the pseudopilin OutG, the major component of the pseudopilus in Dickeya dadantii by Nuclear Magnetic Resonance (NMR). In a second part, we aimed to address the structure and the assembly of minor pilins, protein components of Enterohemorrhagic Escherichia coli T4aP. We optimised the overexpression, purification and labelling of the minor pilins for their structural study by NMR. Furthermore, molecular modelling of the minor pilins and crosslinking mass spectrometry were performed on whole T4aP and T2SS pseudopili purified samples as a methodology to determine the structure and the interactions of pilins and pseudopilins within the native pilus
18

Cheng, Zhihui. "Transcriptional regulators of Ehrlichia chaffeensis during intracellular development and the roles of OmpA in the bacterial infection and survival." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1227561447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lautner, Monika. "Untersuchungen zum Aufbau, zur Funktion und zur Verbreitung von genomischen Inseln in der Gattung Legionella." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Der Austausch von genetischem Material über horizontalen Gentransfer, stellt einen wichtigen Mechanismus in der bakteriellen Evolution dar. Legionella pneumophila Stämme codieren für verschiedene Typ IV Sekretionssysteme (T4SS) und integrative konjugative Elemente, die zur genomischen Variabilität der intrazellulären Erreger beitragen. L. pneumophila Corby codiert auf der genomischen Insel Trb-1 für ein funktionelles Konjugations- und T4ASS. Trb-1 ist innerhalb des tRNAPro Gens integriert und kann in einer chromosomalen oder zirkulären episomalen Form existieren. Zusätzlich zu den trb/tra Genen sind auf der Insel eine Integrase (int-1) und die Gene lvrRABC der Legionella vir Region (lvr) lokalisiert. Durch die Deletion von int-1 konnte gezeigt werden, dass die Exzision von Trb-1 unter Beteiligung der Integrase erfolgt. Zudem wurde in dieser Arbeit zum ersten Mal demonstriert, dass die lvr-Region, vor allem der putative Phagen-Repressor LvrR an der Regulation der Exzision von Trb-1 beteiligt ist. Die Konjugation von Trb-1 in L. oakridgensis, hatte keinen Effekt auf die in vivo Fitness der Transkonjuganten in humanen Makrophagen. Die genomischen Inseln LpcGI-1 und LpcGI-2 codieren für ein neues putatives GI-T4SS. Für LpcGI-2 konnte erstmals gezeigt werden, dass das T4SS funktionell ist und die Konjugation der genomischen Insel in einen anderen L. pneumophila Stamm vermitteln kann. LpcGI-2 kann anschließend ortsspezifisch in das Genom der Transkonjuganten integriert werden. LpcGI-1 und LpcGI-2 werden vom tRNAThr bzw. tRNAMet Gen flankiert und können in verschiedenen chromosomalen und zirkulären, episomalen Formen existieren. Die Exzision von LpcGI-2 erfolgt ähnlich zu Trb-1, in Abhängigkeit einer ortsspezifischen Integrase. Im Genom von Lp Corby wurden zwei weitere genomische Inseln (LpcGI-Asn und LpcGI-Phe) identifiziert. In silico Analysen zeigten zudem, dass genomische Inseln mit einer Ähnlichkeit zu Trb-1, LpcGI-2 bzw. LpcGI-1 im Genus Legionella verbreitet sind.
Exchange of genetic information by horizontal gene transfer is an important mechanism for the evolution of bacterial genomes. Legionella pneumophila strains encode different type IV secretion systems and integrative conjugative elements contribute to the variability of the intracellular pathogen. The genomic island Trb-1 of L. pneumophila Corby encodes a functional conjugation and T4ASS. Trb-1 is integrated within the tRNAPro gene and can exist in a chromosomal or an episomal circular form. In addition to the trb/tra genes, a site-specific integrase (int-1) and a Legionella vir region (lvrRABC) are also localized on the genomic island. By deleting the int-1 gene, it could be demonstrated that the excision and of Trb-1 is integrase dependent. Furthermore, in this work it was shown for the first time that the lvr region and especially the putative phage repressor LvrR, is involved in the regulation of Trb-1 excision. Conjugation of Trb-1 in L. oakridgensis does not influence the in vivo fitness of the transconjugants in human macrophages. The genomic islands LpcGI-1 and LpcGI-2 encode a new putative T4SS. For the first time it could be demonstrated, that the T4SS localized on LpcGI-2 is functional. Although LpcGI-2 could be mobilized and transferred via conjugation to another L. pneumophila strain, followed by the site-specific integration into the genome of the transconjugants. LpcGI-1 and LpcGI-2 are flanked by the tRNAThr or tRNAMet gene respectively. Both islands can exist in different chromosomal and episomal forms. The excision of LpcGI-2 occurs similar to Trb-1 in an integrase dependent manner. Two additional genomic islands (LpcGI-Asn and LpcGI-Phe) could be identified in the genome of Lp Corby. Moreover, data of the in silico analysis demonstrated, that genomic islands similar to Trb-1, LpcGI-2 and LpcGI-1 are distributed within the genus Legionella.
20

Heller, Eva Maria [Verfasser], and Lotte [Akademischer Betreuer] Sogaard-Andersen. "Biochemical characterization of the relaxase TraI, the coupling protein TraD and the hypothetical protein Yaf of the novel Type IV Secretion System from the human pathogen Neisseria gonorrhoeae / Eva-Maria Heller. Betreuer: Lotte Sogaard-Andersen." Marburg : Philipps-Universität Marburg, 2014. http://d-nb.info/105193463X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Borin, Paula Fernanda Lacarini. "Caracterização estrutural da proteína hipotética XACb0033 da bactéria Xanthomonas axonopodis pv. citri." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/248423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orientador: Ljubica Tasic
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-16T13:55:17Z (GMT). No. of bitstreams: 1 Borin_PaulaFernandaLacarini_M.pdf: 1689128 bytes, checksum: c3f8712ed17691069b7fabb711257101 (MD5) Previous issue date: 2010
Resumo: A Xanthomonas axonopodis pv. citri (Xac) é uma bactéria Gram-negativa que parasita plantas cítricas e é responsável pela doença conhecida como cancro cítrico, que apresenta grande importância econômica em todo mundo. Acredita-se que a infecção da célula hospedeira ocorre com atuação dos sistemas de secreção, onde fatores macromoleculares de virulência, normalmente proteínas ou complexos de ácidos nucléicos com proteínas, são excretados para o citosol da célula no caso dos sistemas do tipo III e IV, onde irão interferir no processo celular do hospedeiro. O alvo do estudo é a proteína hipotética XACb0033, codificada pelo locus virB do plasmídio pXac64. Ela foi identificada como possível chaperona secretória do sistema de secreção tipo IV, por apresentar diversas características destas proteínas, como baixo peso molecular, pI ácido e propensão a formação de dímeros, entre outras. A XACb0033 foi clonada no vetor de expressão pET23a(+) e expressa na bactéria Escherichia coli utilizando técnicas de biologia molecular de clonagem e expressão. Os resultados da expressão foram satisfatórios, obtendo-se a proteína em quantidade suficiente para sua purificação seguida pela caracterização estrutural. A XACb0033 foi analisada por Espectrometria de Massas (MALDI-Tof MS), Dicroísmo Circular (CD), fluorescência de emissão estática e dinâmica, Ressonância Magnética Nuclear de Hidrogênio-1 (RMN de H) e Espalhamento de raios-X a baixo ângulo (SAXS). Todos os dados indicam que a XACb0033 apresenta estrutura enovelada, não interage com os nucleotídeos (ATP e ADP) e tende em agir em forma dimerica seguindo o modelo de uma chaperona secretória, e, por fim, a estrutura do seu envelope molecular foi obtida.
Abstract: Xanthomonas axonopodis pv. citri (Xac) is a Gram-negative bacterium that parasites citric plants all over the world and is responsible for causing the citrus canker with significant economic importance. It is believed that infection of the host cell occurs with activity of Xac¿s secretion systems, where macromolecular virulence factors, usually proteins or nucleic acid complexes with proteins, are excreted into the cytosol of the host cells as in the case of type III and IV systems, where they will interfere with the key cell processes. The aim of our study was structural characterization of the XACb0033, Xac¿s hypothetical protein, encoded by the locus virB of pXac64 plasmid. This protein was identified as a possible type IV secretion system chaperona because it presents many features of these proteins, such as low molecular weight, acidic pI, and propensity to form dimers, among others. The XACb0033 was cloned at expression vector pET23a (+) and expressed in Escherichia coli using molecular biology techniques for cloning and expression. The expression results were satisfactory, obtaining sufficient protein for its purification followed by structural characterization. The XACb0033 was analyzed by Mass Spectrometry (MALDI-Tof MS), Circular Dichroism (CD), static and dynamic Fluorescence, Nuclear Magnetic Resonance (H NMR) and by Small Angle X-ray Scattering (SAXS). All collected data indicated that XACb0033 has folded structure, does not interact with nucleotides (ATP and ADP) and tends to act in dimeric form, following a model of a secretory chaperona, and, at last but not at least, its molecular envelope structure has been obtained.
Mestrado
Quimica Organica
Mestre em Química
22

Bueno, Natalia Fernanda. "Caracterização de dois pares efetor/inibidor associados ao sistema de secreção tipo IV de Xanthomonas citri." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-24082018-094918/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
O sistema de secreção tipo IV (T4SS) da família de bactérias Xanthomonadaceae transfere efetores (X-Tfes) com a capacidade de matar outras bactérias, conferindo uma vantagem em comunidades bacterianas mistas para colonizar diferentes nichos como o solo ou as superfícies das plantas. Os X-Tfes possuem diferentes domínios putativos com atividades hidrolíticas contra componentes do envelope celular bacteriano do tipo: glicohidrolases, transglicosilases, amidases e lipases. Os X-Tfes por sua atividade biológica inata podem ocasionar dano intracelular para a bactéria que os produz. Para se proteger contra estas atividades, também são produzidas lipoproteínas com função inibitoria (X-Tfis) localizadas no periplasma. Os genes que codificam os X-Tfes e os X-Tfis estão organizados em operons, o que permite gerar os pares efetor/inibidor simultaneamente. Entre os potenciais X-Tfes do fitopatógeno Xanthomonas citri estão Xac1918 e Xac0574. Xac1918 é uma proteína com um domínio da superfamília da lisozima e um domínio conhecido como RTX (Repeats in Toxin) de ligação ao cálcio, enquanto Xac0574 tem um domínio da superfamília da lipase 3. Os seus possíveis inibidores, Xac1917 e Xac0573 respectivamente, apresentam um peptídeo sinal no N-terminal contendo o lipobox representativo das lipoproteínas. As proteínas Xac0574 e Xac0573 são monômeros em solução que formam um complexo estável 1:1, favorecido termodinamicamente (ΔG°= -12 Kcal/mol) com uma constante de dissociação de 2,45 nM, garantindo que a bactéria fique protegida contra os efeitos nocivos de Xac0574 quando é produzida intracelularmente. Xac0574 é uma fosfolipase A1, sem atividade lisofosfolipase, com a capacidade de hidrolisar os três fosfolipídios majoritários que compõem a membrana celular bacteriana, fosfatidilglicerol (PG), cardiolipina e fosfatidiletanolamina (PE), mostrando uma aparente preferência pelo último. A atividade enzimática de Xac0574 explica a forte inibição do crescimento celular em E. coli após da sua indução heteróloga, já que gera uma diminuição de quase 10 vezes da população celular comparada com a cultura não induzida com a mesma construção. Poroutro lado, Xac0573 inibe efetivamente a atividade enzimática de Xac0574 ao formar o complexo, além de não ter atividade fosfolipase nem lisofosfolipase. Foram produzidos cristais da Xac1918 e Xac0573 que difrataram com uma resolução de 3,0 e 2,5 Å, respectivamente. Porém, só foi gerado um modelo de Xac0573. Xac0573 está composta por duas folhas β antiparalelas com uma topologia característica de β sanduíche Com uma pequena hélice e duas voltas. Um alinhamento de homólogos de Xac0573 identificou nas extremidades da proteína as regiões conservadas, constituindo duas possíveis interfaces de interação que podem ser as responsáveis por bloquear o acesso dos fosfolipídios ao sítio catalítico ou impedir os rearranjos estruturais de Xac0574 que são necessários para a sua atividade enzimática. Adicionalmente, a topologia da Xac0573 é semelhante do domínio C2, conhecido em eucariotos como domínio de ligação ao lipídio e ao cálcio, e está envolvido em processos de sinalização de segundos mensageiros lipídicos, proteínas de trafego de membranas e mecanismos de fusão de membranas. Nossos resultados apontam para uma nova função biológica do domínio C2 como um inibidor enzimático intracelular em bactérias.
The type IV secretion system (T4SS) of the bacteria family Xanthomonadaceae transfers effectors (X-Tfes) with that can kill other bacterial cells, conferring an advantage to the bacterial community during colonization of different niches in the soil or on the plant surface. The X-Tfes possess different putative domains with hydrolytic activity against components of the bacterial cellular envelope, including glycohydrolase, transglycolase, amidase and lipase domain. The innate biological activity of X-Tfes can cause intracellular damage. Therefore, the bacteria that produce them also produce lipoproteins with inhibitor function (X-Tfis) located in the periplasm for their protection. The genes that code for X-Tfes and X-Tfis are organized in operons that allow for their simultaneous expression. Among the X-Tfes of the phytopathogen Xanthomonas citri are Xac1918 and Xac0574. Xac1918 is carries a lysozyme superfamily domain, as well as a domain known as RTX (Repeats in Toxic) predict to bind calcium, while, Xac0574 has a domain belonging to the lipase 3 superfamily. Their possible inhibitors, Xac1917 e Xac0573 respectively, carry an N-terminal signal peptide containing a lipobox found in bacterial lipoproteins. The Xac0574 and Xac0573 proteins are both monomers in solution, They can form a stable 1:1 complex, that is thermodynamically favored (ΔG°= -12 Kcal/mol) with a dissociation constant of 2,45 nM. This affinity ensure that the bacterium is protected against the harmful effects of Xac0574 when it is produced intracellularly. We show that Xac0574 is a phospholipase A1, without lisophospholipase activity, and is able to hydrolyze the three most common phospholipids found in the membranes of Gram negative bacteria, namely phosphatidylglycerol (PG), cardiolipin and phosphatidylethanolamine (PE), presenting an apparent preference for PE. The enzymatic activity of Xac0574 explains the strong inhibition of growth of E. coli cells after its heterologous induction: a nearly 10-fold decrease in the cell population is observed when compared to the non-induced culture with the same construct. On the other hand, Xac0573 effectively inhibits the enzymatic activity of Xac0574. Furthermore, Xac0573 does not possess when forming the complex, besides not having phospholipase nor lysophospholipase activity.Crystals of Xac1918 and Xac0573 were produced which diffracted with to resolution of 3.0 and 2.5 Å, respectively. However, we were able to resolve the structure of only Xac0573. Xac0573 is composed of two anti-parallel sheet that form a β-sandwich with three small helices. An alignment to Xac0573 homologs identified conserved regions at the ends of the protein that constitute two possible interfaces of interaction that may be responsible for blocking the access of the phospholipids to the catalytic site or impede the structural rearrangements of Xac0574 that are necessary for its enzymatic activity. Additionally, the topology of Xac0573 is similar to that to C2 domains, known in eukaryotes to bind lipids and calcium and to be involved in signaling processes mediated by lipid second messengers, membrane trafficking and membrane fusion mechanisms. Our results point to a new biological function of the C2 domain as an intracellular enzyme inhibitor in bacteria.
23

Lopes, Thais Pereira. "Caracterização estrutural do complexo de proteinas hipoteticas - XACb0032/XACb0033 da bacteria Xanthomonas axonopodis pv. citri." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/248422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Orientador: Ljubica Tasic
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-08-09T16:14:23Z (GMT). No. of bitstreams: 1 Lopes_ThaisPereira_M.pdf: 827343 bytes, checksum: a4f6f9404835341a96ecd4f5ca467c69 (MD5) Previous issue date: 2007
Resumo: A bactéria gram-negativa Xanthomonas axonopodis pv. citri (Xac) é responsável pelo cancro cítrico, uma doença de grande importância econômica em todo o mundo. Seus mecanismos de virulência ainda são pouco conhecidos, mas acredita-se que o processo de translocação das proteínas de virulência para a célula da planta hospedeira seja realizado por meio dos sistemas de secreção, principalmente do tipo III e hipoteticamente do tipo IV, onde se destaca o papel das chaperones secretórias. O alvo do nosso estudo é uma proteína hipotética, a XACb0032, que em ensaios de duplo híbrido, apresentou interação com a também hipotética XACb0033 anteriormente indicada como possível chaperone do sistema secretório tipo IV (TTFS). Ambas as proteínas hipotéticas são codificadas pelo locus virB do plasmídeo pXAC64. Os estudos estruturais apresentados iniciaram-se com a clonagem em pET23a, seguidos de testes de expressão desta proteína utilizando cepas de Escherichia coli, BL21(DE3)pLysS e RP códon plus. A expressão da XACb0032 foi bem sucedida utilizando a cepa RP códon plus. Os problemas encontrados para purificar a insolúvel XACb0032 foram resolvidos utilizando a sua co-expressão com a XACb0033. Após dois passos de purificação, obtivemos o complexo das proteínas (XACb0032/XACb0033) puro e em quantidades satisfatórias para análises espectroscópicas. O complexo destas proteínas foi analisado por dicroismo circular (CD), emissão de fluorescência (estática e dinâmica), ressonância magnética nuclear (RMN) e espalhamento de raios-X a baixo ângulo (SAXS). Todos os dados obtidos indicaram que o complexo purificado exibe a estrutura enovelada e que após a adição de adenosina difosfato (ADP) ocorre uma mudança evidente na sua forma e no seu tamanho, indicando uma possível quebra do complexo XACb0032/XACb0033 após a liberação de ADP na célula. Portanto, podemos supor que o sistema de secreção do tipo IV deve funcionar da seguinte maneira: 1. Ligação da chaperone XACb0033 à XACb0032 mantendo-a em uma conformação semi-desenovelada; 2. Ligação do complexo ao ATP; 3. Reconhecimento do sistema ATP + complexo pelo TTFS, logo a ATPase cliva o ATP; 4. Formação do ADP e sua presença promove a dissociação da XACb0032 do complexo; 5. Possível secreção da proteína alvo, ou seja, a XACb0032 poderia passar através do canal de secreção até atingir a célula eucariótica
Abstract: Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker, a disease of significant economic importance worldwide. The molecular bases of the virulence mechanism are still unknown, but is believed that transfer of bacterial virulence proteins directly into the host cell cytoplasm is mediated by protein secretion systems, mainly type III and hypotheticaly type IV. The target of our study was XACb0032. This protein, in two hibrid system, interacted with XACb0033, a protein previously annoted as a possible cytoplasmatic chaperone of type four secretion system (TFSS). Both proteins are hypothetic and encoded by virB locus on pXAC64 plasmid. Structural studies were initiated by pET23a cloning; followed by expression tests with Escherichia coli strands BL21(DE3)pLysS and RP. The XACb0032 RP-expression was successful, however, the protein was insoluble. This problem was solved with its co-expression with XACb0033. After two purification steps, the pure protein complex has been analysed by following spectroscopic methods: circular dichroism (CD), fluorescence emission (static and dinamic), nuclear magnetic ressonance (NMR) and small angle X-ray scattering (SAXS). Our results indicate that the complex shows a folded structure and that after ADP addition, a drastic change occured in the complex size and shape, that might indicate complex breaking upon ADP production in cell. Based on these observations, we can provide the following model for TFSS pathway concerning these proteins: 1. The chaperone (XACb0033) binds to the XACb0032 to keep it in a semiunfolded conformation; 2. This complex binds with ATP; 3. ATP bound to complex docks onto the TFSS apparatus and ATPase hydrolysis ATP; 4. ADP is formed and its presence provides that XACb0032 protein dissociates from complex; 5. The XACb0032 could be able to pass through the needle into the eukaryotic cell
Mestrado
Quimica Organica
Mestre em Química
24

Souza, Diorge Paulo de. "Estudos estruturais e de interações proteína-proteína envolvendo componentes de um sistema de secreção do tipo IV de Xanthomonas axonopodis pv. citri." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/46/46131/tde-08112010-092717/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Xanthomonas axonopodis pv. citri (Xac) é o causador do cancro de plantas cítricas. Entre os potenciais fatores de virulência codificados por Xac, está o Sistema de Secreção do Tipo IV (T4SS), um grande complexo multiprotéico que atravessa o periplasma e as membranas interna e externa de bactérias Gram-negativas. O T4SS está envolvido com secreção de proteínas e/ou DNA para o meio extracelular ou diretamente no interior da célula do hospedeiro. Este Sistema requer tipicamente 12 proteínas para realizar suas funções: VirB1-VirB11 e VirD4. O T4SS codificado pelo cromossomo de Xac está aparentemente incompleto, devido a não codificar nenhuma proteína com similaridade de seqüência a VirB7. Os objetivos deste trabalho são estudar a estrutura, função e interações das proteínas do T4SS de Xanthomonas. Foram clonados 23 genes que codificam proteínas ou domínios relacionados ao T4SS, e os polipeptídeos foram produzidos de forma recombinante em E. coli. Treze deles foram purificados e submetidos a estudos estruturais, espectroscópicos e de interações proteína-proteína. A estrutura em solução de Xac262224-139 foi resolvida, apresentando uma região N-terminal desenovelada de aproximadamente 30 resíduos e um domínio globular. Este polipeptídeo oligomeriza em troca química rápida na escala de tempo de RMN e o seu N-terminal desenovelado reconhece o domínio C-terminal de VirB9 (VirB9154-255) em troca lenta. Análise de RMN demonstrou que VirB9154-255 possui uma estrutura flexível em solução, sofrendo uma marcante mudança conformacional na presença de Xac262224-139. Ambas proteínas se tornam rígidas após a interação. Xac2622 é o equivalente a VirB7 em Xanthomonas, baseado na localização do seu gene no lócus do T4SS, localização subcelular predita do polipeptídeo codificado e sua interação com VirB9. Porém, diferente de outras proteínas da família VirB7, Xac2622 possui um domínio globular adicional, com topologia e estrutura similares a domínios presentes apenas em proteínas associadas à membrana externa de bactérias Gram-negativas. Nocaute do gene xac2622, contudo, não afetou a virulência de Xac na infecção de plantas de laranja pêra. O domínio enovelado de Xac2622 foi cristalizado, e os cristais obtidos difrataram até uma resolução de 1,0 Å, pertencendo ao grupo espacial C2221. O modelo preliminar possui Rfactor de 0,121 e Rfree de 0,147. Foram obtidos cristais de outras 3 proteínas relacionadas ao T4SS de Xac, porém somente um deles difratou em alta resolução (2,0 Å, pertencendo ao grupo espacial C2). O potencial sinal de secreção pelo T4SS de Xanthomonas é um domínio C-terminal conservado de aproximadamente 115 resíduos, encontrado nos substratos putativos do T4SS. Caracterizamos um destes domínios, presente na proteína Xac2609, e ele é intrinsicamente desestruturado. Essa observação pode ter implicações funcionais, visto que os substratos são desenovelados antes de sua passagem pelo canal de secreção do T4SS
Xanthomonas axonopodis pv. citri (Xac) is a gram-negative bacterial phytopathogen that infects citrus. One possible virulence determinant is a chromosomally encoded Type IV Secretion System (T4SS), a multiprotein complex that spans the bacterial periplasm and both inner and outer membranes. The T4SS is used by some bacteria to secrete proteins and/or DNA to the extracellular milieu or the host interior. The model T4SS from Agrobacterium tumefaciens is made up of twelve structural proteins: VirB1-VirB11 and VirD4. The Xanthomonas T4SS is apparently incomplete because of the lack of a polypeptide with sequence similarity to VirB7. The aim of this project is the study of structure-function relationships in the Xanthomonas T4SS. Twenty-three T4SS protein-coding genes, including full-length proteins or domains, were cloned and the proteins were produced in different E. coli strains. Thirteen polypeptides were purified and some of them were submitted to structural, spectroscopic and protein-protein interaction studies. We used NMR to solve the solution structure of Xac262224-139 which consists of an unfolded N-terminal segment of ~30 residues followed by a globular domain. Xac262224-139 oligomerizes in fast exchange at the NMR time scale and interacts via its unfolded N-terminus with the VirB9 C-terminus (VirB9154-255) in slow exchange. NMR analysis showed that VirB9154-255 has a flexible structure in solution. However, this polypeptide undergoes a significant conformational modification in the presence of Xac2622,24-139 and both proteins become rigid upon interaction. Xac2622 is the Xanthomonas VirB7, based on the chromosomal localization of its gene, predicted subcellular localization and protein interaction analysis. But surprisingly, unlike other VirB7 proteins, Xac2622 has an extra C-terminal folded domain whose topology and structure are strikingly similar to that of periplasmic domains found in outer membrane proteins of many bacterial Secretion Systems. Knockout of the xac2622 gene, however, does not affect the Xac virulence in orange leaf infection assays. The Xac2622 folded domain was also crystallized, and these crystals diffracted up to 1.0 Å resolution and belong to the space group C2221. The preliminary refined model has Rfactor of 0.121 and Rfree of 0.147. Crystals of three other T4SS proteins have been obtained, but only one of them diffracted to high resolution (2.0 Å; space group C2). Xac2610 is a hypothetical protein whose gene is located in the T4SS locus, and its interactions were studied with VirB9, VirB11 and Xac2609, a putative T4SS substrate. The potential T4SS secretion signal is a conserved, approximately 115 residues, C-terminal domain found in the putative substrates of the Xanthomonas T4SS. This sequence mediates interactions with VirD4. We have characterized this domain from one substrate and it is mainly unfolded. This observation may have functional implications, as the substrates are unfolded before their secretion through the T4SS channel
25

Arantxa, Camus Etchecopar. "Mécanismes moléculaires impliqués dans la formation de biofilm à l’interface eau-composés organiques hydrophobes." Thesis, Pau, 2014. http://www.theses.fr/2014PAUU3032/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les composés organiques hydrophobes (HOC), une grande famille de molécules naturelles ou d’origine anthropique incluant les lipides et les hydrocarbures, constituent une part significative de la matière organique dans les écosystèmes marins. Du fait de leur faible solubilité dans l’eau, les bactéries qui les dégradent requièrent la mise en place de fonctions cellulaires spécifiques permettant d’augmenter la fraction assimilable de ces HOC. La formation de biofilms à l’interface eau-HOC est une de ces stratégies adaptatives. C’est le cas pour Marinobacter hydrocarbonoclasticus SP17, modèle d’étude utilisé au laboratoire, qui est capable de former des biofilms sur un large spectre de HOC métabolisables tels que les alcanes, les triglycérides et les alcools gras. Le but de mes recherches consistait à améliorer la compréhension du processus d’adhésion et de développement des biofilms sur les HOC, à travers la caractérisation fonctionnelle de 10 gènes candidats mis en évidence lors d’analyses d’expression en protéomique et en transcriptomique. Pour mener à bien ce projet, des outils génétiques et une caractérisation fonctionnelle propre à chaque gène ont dû être développés. L’étude fonctionnelle du gène MARHY2686 a relevé son implication dans la formation de biofilm sur les alcanes. La co-expression de MARHY2686 et des gènes adjacents MARHY2687 et MARHY2685 en transcriptomique, leur distribution phylogénétique et leur conservation de la synthénie suggèreraient que ces trois gènes soient impliqués dans le même processus biologique. D’après l’identité forte de 36 % qui existe entre la protéine MARHY2686 et une protéine périplasmique AdeT d’un système de pompe d’efflux tripartite d’Acinetobacter baumanii, cette protéine, en association avec MARHY2687 et MARHY2685, pourrait faire partie d’un système de ce type. Par ailleurs, des observations ont permis d’envisager une implication potentielle de ce gène dans l’assimilation des HOC ou dans l’accumulation des réserves lipidiques intracellulaires. M. hydrocarbonoclasticus SP17 utilise les pili de type IV lors de la formation de biofilm sur les HOC. Ces appendices interviennent lors de l’adhésion de cette souche à des HOC ainsi que dans un processus de détachement d’un support hydrophobe. Les pili pourraient soit intervenir directement pour permettre à la bactérie de se détacher de la surface à laquelle elle s’est adhérée, soit indirectement par l’action de bactériophages. La présence d’une mobilité de type twitching sur les HOC a pu être également envisagée. Enfin, le rôle du système de sécrétion de type VI (T6SS), connu pour permettre à la bactérie d’interagir avec une cellule hôte, lors de la formation de biofilm mono-spécifique sur HOC, où aucun autre microorganisme que M. hydrocarbonoclasticus SP17 n’est présent, a été étudié
Hydrophobic organic compounds (HOC), a large family of naturally-produced or anthropogenic molecules including lipids and hydrocarbons, represent a significant part of organic matter in marine ecosystems. Because of their low solubility in water, bacteria that degrade those compounds require the establishment of specific cell functions to increase their biodisponibility. Biofilm formation in water-HOC interface is one of these adaptations. The model of bacteria used in our laboratory, Marinobacter hydrocarbonoclasticus SP17, is able to form a biofilm on a wide range of HOC, such as alkanes, fatty alcohols and triglycerides, in order to use them as a carbon and energy source. The main purpose of my work was to broaden the knowledge of how bacteria adhere to and from biofilms on HOC, through the functional characterization of 10 candidate genes highlighted during proteomic and transcriptomic studies. Genetic tools and a gene-specific functional characterization have been developed in order to carry out this project. Functional study conducted on MARHY2686 revealed its involvement in the formation of biofilm on alkanes. Co-expression of MARHY2686 and the adjacent genes MARHY2687 and MARHY2685 durnig transcriptomic analysis together with their phylogenetic distribution and synteny conservation suggest that these three genes are involved in the same biological process. According to the high peptide sequence identity between MARHY2686 and AdeT, a periplasmic protein of a tripartite efflux pump system of Acinetobacter baumanii, MARHY2686 in combination with MARHY2687 and MARHY2685 could be the components of such a system. Other phenotypic observations would consider the involvement of MARHY2686 either in the assimilation of HOC or in the accumulation of intracellular lipid reserves. M. hydrocarbonoclasticus SP17 uses type IV pili during biofilm formation on HOC. These appendages are involved in the adhesion of this strain to and in a detachment process from HOC. Type IV pili could either act directly to allow bacteria to detach from the surface to which it is adhered, or indirectly through the action of bacteriophages. The presence of twitching motility on HOC has also been suggested. Finally, the role of the type VI secretion system (T6SS), a well-known protein system which allows interactions between bacteria and host cells, during the formation of a mono-species biofilm on HOC where no other microorganism than M. hydrocarbonoclasticus SP17 is present, has been studied
26

Santos, Netto Diogo dos. "Desenvolvimento de um banco de dados para classificação e análise de sistemas de secreção do tipo IV bacteriano." Laboratório Nacional de Computação Científica, 2008. https://tede.lncc.br/handle/tede/120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2015-03-04T18:51:16Z (GMT). No. of bitstreams: 1 Anexos-Final.pdf: 7146890 bytes, checksum: bb4f151b856a0b67e03a2261753fccfe (MD5) Previous issue date: 2008-10-31
Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior
The type IV secretion system can be classified as a large family of macromolecule transporters divided in three recognized sub-families involved in different bacterial functions. The major sub-family of T4SS is the conjugation system, which allows transfer of genetic material as a nucleoprotein via cell contact among bacteria. Analogously to bacterial conjugation, the T4SS can transfer genetic material from bacteria to eukaryotic cells; such is the case of T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector proteins transport constitutes the second sub-family, being indispensable for infection processes of several mammalian and plants pathogens. The third sub-family corresponds to the DNA uptake/release system involved in genetic transformation competence, independently of cell contact, as it was described to the systems VirB/D4 from Campylobacter jejuni and ComB form Helicobacter pylori. Several essential features of T4SS are well known, but the knowledge in support of an uncomplicated classification or proper protein annotation of system subunits remains confusing, which in same cases can avoid making inferences about evolution of the system in bacterial species. The purpose of this work was to organize, classify and integrate the knowledge about T4SS through building a database devoted to this bacterial secretion system. The T4SS database was created using the SGBD MySQL and Perl programming language and with a web interface (HTML/CGI) that gives access to the database. Currently, this database hold genomic data from 43 bacteria and 10 plasmids acquired from the GenBank NCBI, these organisms comprise groups from Actionobacteria to Gram-negative Proteobacteria including symbiotic and pathogenic bacteria. By applying Bidirectional Best-Hits method was possible to get a core set of 75 clusters with 974 proteins involved in the T4SS. Also, during this procedure BlastP, Muscle e ClustalW algorithms were applied. The database was manually annotated supported by cross references built-in the T4SS annotation pages, such as the UniProtKB/Swiss-Prot, COG, InterPro and TCDB as well as by the methods for signal peptide and transmembrane regions prediction. All T4SS protein records scattered into 75 ortholog clusters were organized into five different classes of type IV secretion system proteins: (i) Type IVA Mpf/T4CP; (ii) Type IVA Dtr; (iii) F-type plasmid; (iv) IncP-1-type plasmid; (v) Type IVB Icm/Dot. All 974 proteins were annotated into 68 well-known families, which can be involved in conjugation, effector translocator, DNA uptake/release or even can be bifunctional proteins. Also, by using the Maximum Likelihood method were built 70 unrooted phylogenetic trees that represents just 70 clusters instead of 75, this is due to five clusters had only two protein sequences, five unrooted phylogenetic trees were built for each group of first hierarchical classification, one unrooted phylogenetic trees including proteins from archetype systems of all groups, one unrooted phylogenetic trees from 16S sequence of each organism and one rooted tree including a sequence from a Gram-positive bacteria as an external group. The phylogenetic analyses show that some proteins of T4SS are more divergent than others, which indicate that for a particular function few sequence mutations were needed, but other proteins required many sequence mutations to get another functions. Thus, these results proved that proteins belong to the same cluster show different functions: conjugation, DNA uptake/release or effector translocator. Consequently, it was possible verify that similar functions were grouped together within phylogenetic tree, which allowed to annotate a probable function of some uncharacterized proteins, that is possibly due to the sequence similarity may reveal a similar evolution to get the same function. Thus, the phylogenetic trees allowed confirming the protein annotation as well as inferring whether uncharacterized proteins would encompass a known function. The T4SS database will be an open access, given to the users searching and submission sequence tools, which will permit to get insights about classification and phylogeny of T4SS sequence of interest. T4SS Database is accessible at the URL http://www.t4ss.lncc.br.
O T4SS pode ser classificado como uma família de transportadores de macromoléculas envolvidos em diferentes funções bacterianas. A maior subfamília do T4SS é a do sistema de conjugação, o qual permite a transferência de material genético entre bactérias. Analogamente à conjugação, o sistema pode transferir material genético entre bactérias e eucariotos, tal como a transferência de T-DNA de Agrobacterium tumefaciens. O sistema de transporte de proteínas efetoras constitui uma segunda subfamília do T4SS, sendo indispensável nos processos de infecção de vários patógenos de mamíferos e plantas. A última subfamília corresponde ao sistema DNA-uptake/release" que funciona independente de contato com uma célula alvo, representado pelos sistemas VirB/D4 de Campylobacter jejuni e ComB de Helicobacter pylori. Muitas características básicas do T4SS são bem conhecidas, entretanto o conhecimento para a classificação simples e intuitiva ou a anotação apropriada das proteínas ainda não está claro, impedindo em alguns casos estabelecer correlações evolutivas deste sistema em bactérias. O objetivo deste trabalho foi o de organizar, classificar e integrar o conhecimento do T4SS através da construção de um banco de dados especializado para este sistema secretório bacteriano. O banco de dados T4SS foi criado utilizando o SGBD MySQL e a linguagem de programação Perl e com uma interface web (HTML/CGI) que fornece acesso ao banco. Este banco consta atualmente com 43 genomas bacterianos e 10 plasmídeos obtidos do GenBank NCBI, estes organismos vão desde Actinobactérias até Proteobactérias Gram-negativas, incluindo simbiontes e patogênicos. Foi utilizada a metodologia do Bidirectional Best-Hits", com a qual foi possível obter um conjunto mínimo de 75 clusters" com 974 proteínas envolvidas no T4SS. Também, durante este procedimento foram utilizados os algoritmos BlastP, Muscle e ClustalW. O banco foi anotado manualmente utilizando referências cruzadas incluídas nas páginas de anotação do T4SS, tais como UniProtKB/Swiss-Prot, COG, InterPro e TCDB e métodos para predição de regiões de peptídeos sinal e transmembrana. As análises do banco T4SS permitiram criar uma classificação hierárquica e funcional para as proteínas do T4SS, consistindo em cinco grupos: (i) Type IVA Mpf/T4CP; (ii) Type IVA Dtr; (iii) F-type plasmid; (iv) IncP-1-type plasmid; (v) Type IVB Icm/Dot). As 974 proteínas foram anotadas em 68 famílias conhecidas, as quais podem estar envolvidas em conjugação, transferência de T-DNA, transferência de proteínas efetoras, DNA-uptake/release" ou bem serem proteínas bifuncionais. Também, através do método de máxima verossimilhança foram geradas 70 árvores filogenéticas não enraizadas (NR) representando apenas 70 clusters, já que cinco clusters apresentaram apenas duas seqüências de proteínas, cinco árvores filogenéticas NR foram criadas para cada grupo da primeira categoria hierárquica, uma árvore NR com representantes de todos os grupos, uma árvore NR gerada a partir das seqüências 16S de cada organismo e uma árvore de um cluster incluindo uma seqüência de bactéria Gram-positiva como grupo externo. As análises filogenéticas mostram que determinadas proteínas do sistema são mais divergentes que outras, indicando que para uma determinada função poucas mutações de seqüências foram necessárias, já outras proteínas precisaram de maiores mutações para adquirir outras funções. Por isso, verifica-se que proteínas de um mesmo cluster apresentam diferentes funções: conjugação, DNA-uptake/release", traslocadores de proteínas efetoras. Conseqüentemente, foi possível verificar que funções semelhantes se agruparam juntas nas árvores filogenéticas, permitindo anotar uma função provável das proteínas ainda não caracterizadas ( unknown"), isto possivelmente devido a que em virtude de sua semelhança de seqüências, possivelmente evoluíram para realizar a mesma função. Assim, as arvores possuíram a finalidade de confirmar a anotação e contribuíram permitindo inferir se os unknown" ou probable" podem ser de uma determinada classificação funcional. O banco T4SS será de uso público, oferecendo ao usuário ferramentas de buscas e submissão de seqüências, as quais permitirão inferir respostas sobre a classificação e filogenia da seqüência T4SS de interesse. O banco de dados T4SS pode ser acessado na URL: http://www.t4ss.lncc.br.
27

Dangla, Pélissier Gauthier. "Identification et caractérisation des régulateurs du transfert horizontal de l’îlot de pathogénicité PAPI-1 chez Pseudomonas aeruginosa PA14." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le transfert horizontal d’ADN est un des moteurs importants de l’évolution. Par ce biais, les bactéries acquièrent de nouvelles voies métaboliques, résistent à de plus en plus de stress environnementaux et s’adaptent aux stratégies thérapeutiques. Chez P. aeruginosa PA14, l’îlot de pathogénicité majeur acquis par transfert horizontal est nommé PAPI-1. Cet îlot augmente considérablement la virulence de P. aeruginosa PA14. Cet îlot, appartenant à la famille des ICE, est capable de se transmettre de façon autonome au sein de l’espèce P. aeruginosa via une machinerie de conjugaison (SST4-GI) impliquant au moins 55 gènes encodés en son sein. Au cours de ma thèse, j’ai montré que l’H-NS MvaT réprime la biosynthèse du pilus conjugatif et que l’anti-H-NS NdpA2 encodé sur PAPI-1 lève cette inhibition afin que le facteur de régulation transcriptionnelle (FRT) TprA (encodé sur PAPI-1) puisse activer la synthèse du SST4-GI. J’ai montré que TprA régule également un changement de phénotype chez P. aeruginosa PA14 lié à l’induction de la majorité des gènes de l’ICE PAPI-1. Ces travaux ont été également l’occasion de caractériser le domaine régissant la spécificité de fixation des FRT de la famille RHH. En effet, la région N-terminale de ces FRT interagit spécifiquement avec l’ADN et leur confère leur spécificité de fixation. Enfin, à travers un crible de mutagénèse aléatoire, j’ai identifié ce qui semble être les prémices d’une cascade de régulation du transfert horizontal chez P. aeruginosa PA14
Horizontal transfer of DNA is one of the major motors of evolutive forces. It allows bacteria to obtain extra biological functions such as new metabolic pathways, resistance factors against environmental stresses and adaption to therapeutic strategies. The opportunistic human pathogen P. aeruginosa PA14 is a gram-negative bacterium with a large genome plasticity partially due to genomic island acquisition. The major genomic acquisition is PAPI-1 which considerably increases the virulence potential of the PA14 strain. Indeed, a strain of P. aeruginosa without PAPI-1 is less infectious against various organisms. This genomic island, belonging to ICE family, is self-transmissible among P. aeruginosa species via a conjugative machinery (T4SS-GI) requiring at least 55 genes encoded within it. During my PhD, I proved that MvaT repress the conjugative pilus biosynthesis and that the anti-H-NS NdpA2 can release this repression to allow the transcriptional regulation factor (TRF) TprA to induce T4SS-GI synthesis. I also proved that TprA controls phenotype changes in P. aeruginosa PA14 through the regulation of the majority of PAPI-1 encoded genes. Through this work I also characterised the domain leading to the specificity of action of RHH family TRF. As a matter of fact, the N-terminal region of these TRF interacts directly with DNA leading their binding specificity. At last, by a random mutagenesis screening, I identified what seems to be a regulation cascade of horizontal transference in P. aeruginosa PA14
28

Jiménez, Soto Luisa Fernanda [Verfasser]. "Studies on the function of the Cag Type IV Secretion System of Helicobacter pylori with integrin β1 [Beta-1] / submitted by Luisa Fernanda Jiménez Soto". 2009. http://d-nb.info/997741716/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Morgan, John Kent 1974. "Analysis of the Coxiella burnetii type iv secretion system region I during infection." 2009. http://digital.library.okstate.edu/etd/Morgan_okstate_0664D_10554.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kohler, Petra L. "Components of the Neisseria gonorrhoeae type IV secretion system and their interactions with peptidoglycan." 2008. http://www.library.wisc.edu/databases/connect/dissertations.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sharifahmadian, Mahzad. "Structural and Biochemical Characterization of VirB8 Protein in Type IV Secretion Systems." Thèse, 2017. http://hdl.handle.net/1866/19323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Secretion is the passage of macromolecules across cellular membranes. In bacteria, secretion is essential for virulence and survival. Gram-negative bacteria use specialized envelope-spanning multiprotein complexes to secrete macromolecules called type IV secretion system (T4SS). T4SSs mediate the secretion of monomeric proteins, multisubunit protein toxins and nucleoprotein complexes. Also, they contribute to the horizontal spread of plasmid-encoded antibiotic resistance genes. Consequently, they are potential targets for antivirulence drugs. Gram- negative bacteria have two membranes that the secretion complex spans. As a result, the T4SS consists of proteins inserted in the membranes and of soluble proteins that face into or out of the bacterial cell. The details of channel assembly and structure are not known, although recent advances have revealed the structure of the core secretion channel. VirB8 is an inner membrane protein of the complex that interacts with many other T4SS subunits and works as nucleation factor for T4SS channel assembly. Biophysical studies and NMR experiments in particular were conducted to characterize the structural aspects of VirB8 interactions. Dynamic regions of VirB8 during monomer-to-dimer transition were identified by NMR spectroscopy. X-ray crystal and NMR analyses revealed structural differences at the helical regions (α-1 and α-4) of wild-type VirB8 and its monomeric variant VirB8M102R. Fragment screening identified small molecules binding to the wild-type and monomeric variant. In silico docking analyses suggested that the surface groove in the VirB8 structure is important for effective binding of the small molecules. NMR experiments and biochemical assays demonstrated that the β-sheet domain (β1 in particular) is the binding interface of VirB8 for the interaction with VirB10. The identified interface has functional importance for T4SS-mediated conjugation. In addition, I used NMR spectroscopy to identify changes in the structure of VirB8 upon interaction with VirB5. Altogether, structural and biochemical studies on periplasmic and full length VirB8 enabled us to characterize the sequence of interactions between VirB8 and other VirB proteins during T4SS complex assembly and function. The results of this research may lead to an innovative strategy for the development of novel antimicrobial drugs.
La sécrétion est le passage de macromolécules à travers les membranes cellulaires. Chez les bactéries, la sécrétion est essentielle pour la virulence et la survie. Les bactéries à Gramnégatif utilisent le système de sécrétion de type IV (SST4) pour la sécrétion de toxines et de nucléoprotéines. Les SST4 contribuent notamment à la propagation des gènes de résistance aux antibiotiques. Pour cette raison, les composants du SST4 sont des cibles potentielles pour le développement de médicaments antivirulence. Le SST4 est un complexe protéique qui s’étend entre la double membrane de la bactérie à Gram-négatif. Les protéines qui le composent sont insérées dans les membranes cellulaires ou solubles. Bien que la structure du pore central du SST4 ait été résolue récemment, les détails de l'assemblage et la structure de ce complexe ne sont pas connus. VirB8 est une protéine de la membrane interne qui interagit avec de nombreuses autres sous-unités du SST4. Il s’agit d’un acteur central de l'assemblage du SST4. Des études biophysiques, et notamment des expériences de RMN ont ainsi été réalisées pour caractériser les aspects structuraux des interactions avec VirB8. Des regions dynamiques dans la structure de VirB8 ont été identifiées par spectroscopie RMN lors de la transition entre la forme monomérique et dimérique. Les analyses de cristallographie et de RMN ont révélé des différences structurales dans les régions hélicoïdales (α1 et α4) de VirB8 wild-type et du variant monomérique VirB8M102R. Le criblage de fragments a permis d’identifier de petites molécules capables de se lier à VirB8 ainsi qu’au variant monomérique. Les analyses d’arrimage moléculaire in silico suggèrent que la rainure de surface dans la structure VirB8 est importante pour laliaison de ces petites molécules. Les expériences de RMN et les essais biochimiques révèlent que le feuillet β (β1 en particulier) constitue l'interface d’interaction entre VirB8 et VirB10. Cette interface d’interaction est d’ailleurs importante pour la conjugaison du SST4. De plus, j'ai identifié des changements dans la structure de VirB8 lors de l'interaction avec VirB5. Les études sur la protéine VirB8 nous ont permis de caractériser la séquence d'événements entre VirB8 et d'autres protéines VirB, régulant l'assemblage et la fonction du SST4.
32

Pabón, Wilmara Salgado. "Neisseria gonorrhoeae processing of chromosomal DNA for direct secretion via a type IV secretion system : requirement of a novel relaxase homologue /." 2008. http://www.library.wisc.edu/databases/connect/dissertations.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Um, Nlend Ingrid. "New insights into small molecules inhibitors and protein-protein interactions of VirB8 : a critical conserved component of the type IV secretion system." Thèse, 2015. http://hdl.handle.net/1866/13799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mary, Charline. "Analyse du rôle de l’interaction de VirB6 avec VirB10 dans le système de sécrétion de type IV." Thèse, 2018. http://hdl.handle.net/1866/21188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Casu, Bastien. "Caractérisation biochimique, structurale et inhibition du système de sécrétion de type IV par l’étude des protéines VirB8." Thèse, 2018. http://hdl.handle.net/1866/20745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії