Добірка наукової літератури з теми "Byzantine consensus"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Byzantine consensus".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Byzantine consensus"
Martin, J. P., and L. Alvisi. "Fast Byzantine Consensus." IEEE Transactions on Dependable and Secure Computing 3, no. 3 (July 2006): 202–15. http://dx.doi.org/10.1109/tdsc.2006.35.
Повний текст джерелаAttie, Paul. "Wait-free Byzantine consensus." Information Processing Letters 83, no. 4 (August 2002): 221–27. http://dx.doi.org/10.1016/s0020-0190(01)00334-9.
Повний текст джерелаGramoli, Vincent. "From blockchain consensus back to Byzantine consensus." Future Generation Computer Systems 107 (June 2020): 760–69. http://dx.doi.org/10.1016/j.future.2017.09.023.
Повний текст джерелаBaldoni, Roberto, Jean-Michel Hélary, Michel Raynal, and Lenaik Tangui. "Consensus in Byzantine asynchronous systems." Journal of Discrete Algorithms 1, no. 2 (April 2003): 185–210. http://dx.doi.org/10.1016/s1570-8667(03)00025-x.
Повний текст джерелаMartin, Jean-philippe, and Lorenzo Alvisi. "Correction to "Fast Byzantine Consensus"." IEEE Transactions on Dependable and Secure Computing 3, no. 4 (October 2006): 400. http://dx.doi.org/10.1109/tdsc.2006.45.
Повний текст джерелаCorreia, Miguel, Nuno Ferreira Neves, Lau Cheuk Lung, and Paulo Ver�ssimo. "Low complexity Byzantine-resilient consensus." Distributed Computing 17, no. 3 (March 2005): 237–49. http://dx.doi.org/10.1007/s00446-004-0110-7.
Повний текст джерелаCanakci, Burcu, and Robbert Van Renesse. "Scaling Membership of Byzantine Consensus." ACM Transactions on Computer Systems 38, no. 3-4 (November 30, 2020): 1–31. http://dx.doi.org/10.1145/3473138.
Повний текст джерелаKihlstrom, K. P. "Byzantine Fault Detectors for Solving Consensus." Computer Journal 46, no. 1 (January 1, 2003): 16–35. http://dx.doi.org/10.1093/comjnl/46.1.16.
Повний текст джерелаTaheri, Erfan, and Mohammad Izadi. "Byzantine consensus for unknown dynamic networks." Journal of Supercomputing 71, no. 4 (January 21, 2015): 1587–603. http://dx.doi.org/10.1007/s11227-015-1379-y.
Повний текст джерелаCoelho, Igor M., Vitor N. Coelho, Rodolfo P. Araujo, Wang Yong Qiang, and Brett D. Rhodes. "Challenges of PBFT-Inspired Consensus for Blockchain and Enhancements over Neo dBFT." Future Internet 12, no. 8 (July 30, 2020): 129. http://dx.doi.org/10.3390/fi12080129.
Повний текст джерелаДисертації з теми "Byzantine consensus"
Tariq, Qurat-ul-Ain Inayat. "Design and performance analysis of fail-signal based consensus protocols for Byzantine faults." Thesis, University of Newcastle Upon Tyne, 2007. http://hdl.handle.net/10443/536.
Повний текст джерелаGarg, Mohit. "Generalized Consensus for Practical Fault-Tolerance." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/85049.
Повний текст джерелаMaster of Science
Online services like Facebook, Twitter, Netflix and Spotify to cloud services like Google and Amazon serve millions of users which include individuals as well as organizations. They use many distributed technologies to deliver a rich experience. The distributed nature of these technologies has removed geographical barriers to accessing data, services, software, and hardware. An essential aspect of these technologies is the concept of the shared state. Distributed databases with multiple replicated data nodes are an example of this shared state. Maintaining replicated data nodes provides several advantages such as (1) availability so that in case one node goes down the data can still be accessed from other nodes, (2) quick response times, by placing data nodes closer to the user, the data can be obtained quickly, (3) scalability by enabling multiple users to access different nodes so that a single node does not cause bottlenecks. To maintain this shared state some mechanism is required to maintain consistency, that is the copies of these shared state must be identical on all the data nodes. This mechanism is called Consensus, and several such mechanisms exist in practice today which use the Crash Fault Tolerance (CFT). The CFT model implies that these mechanisms provide consistency in the presence of nodes crashing. While the state-of-the-art for security has moved from assuming a trusted environment inside a firewall to a perimeter-less and semi-trusted environment with every service living on the internet, only the application layer is required to be secured while the core is built just with an idea of crashes in mind. While there exists comprehensive research on secure Consensus mechanisms which utilize what is called the Byzantine Fault Tolerance (BFT) model, the extra costs required to implement these mechanisms and comparatively lower performance in a geographically distributed setting has impeded widespread adoption. A new model recently proposed tries to find a cross between these models that is achieving security while paying no extra costs called the Cross Fault Tolerance (XFT). This thesis presents Elpis, a consensus mechanism which uses precisely this model that will secure the shared state from its core without modifications to the existing setups while delivering high performance and lower response times. We perform a comprehensive evaluation on AWS and demonstrate that Elpis achieves 3.5x over the state-of-the-art while improving response times by as much as 50%.
Auvolat, Alex. "Probabilistic methods for collaboration systems in large-scale trustless networks." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S125.
Повний текст джерелаThe Internet is a formidable tool for education, communication and collaboration, however it is currently being monopolized by large corporations (GAFAM), which has consequences for many social issues such as respect of human rights and individual freedoms. This thesis focuses on ways to build decentralized applications: Internet applications that provide levels of functionality similar to those provided by the GAFAM, but that function in a decentralized manner, empowering the users to democratically decide of their functioning and their uses. We focus on epidemic algorithms, which are particularly suited to the context of very large open networks. We make contributions on causal broadcast in presence of Byzantine nodes, epidemic causal broadcast using an event store synchronized with an anti-entropy algorithm, random peer sampling in presence of Byzantine nodes and Sybil attacks, as well as a new epidemic total order broadcast which is tolerant to malicious nodes and provides high throughput message delivery
Abid, Muhammad Zeeshan. "A Multi-leader Approach to Byzantine Fault Tolerance : Achieving Higher Throughput Using Concurrent Consensus." Thesis, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-170553.
Повний текст джерелаMoniz, Henrique Lícias Senra. "Byzantine Fault-Tolerant Agreement Protocols for Wireless Ad hoc Networks." Master's thesis, 2012. http://hdl.handle.net/10451/14305.
Повний текст джерелаGilbert, Seth, Rachid Guerraoui, and Calvin Newport. "Of Malicious Motes and Suspicious Sensors." 2006. http://hdl.handle.net/1721.1/32534.
Повний текст джерелаMoniz, Henrique 1980. "Byzantine fault-tolerant agreement protocols for wireless Ad hoc networks." Doctoral thesis, 2010. http://hdl.handle.net/10451/2234.
Повний текст джерелаThe thesis investigates the problem of fault- and intrusion-tolerant consensus in resource-constrained wireless ad hoc networks. This is a fundamental problem in distributed computing because it abstracts the need to coordinate activities among various nodes. It has been shown to be a building block for several other important distributed computing problems like state-machine replication and atomic broadcast. The thesis begins by making a thorough performance assessment of existing intrusion-tolerant consensus protocols, which shows that the performance bottlenecks of current solutions are in part related to their system modeling assumptions. Based on these results, the communication failure model is identified as a model that simultaneously captures the reality of wireless ad hoc networks and allows the design of efficient protocols. Unfortunately, the model is subject to an impossibility result stating that there is no deterministic algorithm that allows n nodes to reach agreement if more than n2 omission transmission failures can occur in a communication step. This result is valid even under strict timing assumptions (i.e., a synchronous system). The thesis applies randomization techniques in increasingly weaker variants of this model, until an efficient intrusion-tolerant consensus protocol is achieved. The first variant simplifies the problem by restricting the number of nodes that may be at the source of a transmission failure at each communication step. An algorithm is designed that tolerates f dynamic nodes at the source of faulty transmissions in a system with a total of n 3f + 1 nodes. The second variant imposes no restrictions on the pattern of transmission failures. The proposed algorithm effectively circumvents the Santoro- Widmayer impossibility result for the first time. It allows k out of n nodes to decide despite dn 2 e(nk)+k2 omission failures per communication step. This algorithm also has the interesting property of guaranteeing safety during arbitrary periods of unrestricted message loss. The final variant shares the same properties of the previous one, but relaxes the model in the sense that the system is asynchronous and that a static subset of nodes may be malicious. The obtained algorithm, called Turquois, admits f < n 3 malicious nodes, and ensures progress in communication steps where dnf 2 e(n k f) + k 2. The algorithm is subject to a comparative performance evaluation against other intrusiontolerant protocols. The results show that, as the system scales, Turquois outperforms the other protocols by more than an order of magnitude.
Esta tese investiga o problema do consenso tolerante a faltas acidentais e maliciosas em redes ad hoc sem fios. Trata-se de um problema fundamental que captura a essência da coordenação em actividades envolvendo vários nós de um sistema, sendo um bloco construtor de outros importantes problemas dos sistemas distribuídos como a replicação de máquina de estados ou a difusão atómica. A tese começa por efectuar uma avaliação de desempenho a protocolos tolerantes a intrusões já existentes na literatura. Os resultados mostram que as limitações de desempenho das soluções existentes estão em parte relacionadas com o seu modelo de sistema. Baseado nestes resultados, é identificado o modelo de falhas de comunicação como um modelo que simultaneamente permite capturar o ambiente das redes ad hoc sem fios e projectar protocolos eficientes. Todavia, o modelo é restrito por um resultado de impossibilidade que afirma não existir algoritmo algum que permita a n nós chegaram a acordo num sistema que admita mais do que n2 transmissões omissas num dado passo de comunicação. Este resultado é válido mesmo sob fortes hipóteses temporais (i.e., em sistemas síncronos) A tese aplica técnicas de aleatoriedade em variantes progressivamente mais fracas do modelo até ser alcançado um protocolo eficiente e tolerante a intrusões. A primeira variante do modelo, de forma a simplificar o problema, restringe o número de nós que estão na origem de transmissões faltosas. É apresentado um algoritmo que tolera f nós dinâmicos na origem de transmissões faltosas em sistemas com um total de n 3f + 1 nós. A segunda variante do modelo não impõe quaisquer restrições no padrão de transmissões faltosas. É apresentado um algoritmo que contorna efectivamente o resultado de impossibilidade Santoro-Widmayer pela primeira vez e que permite a k de n nós efectuarem progresso nos passos de comunicação em que o número de transmissões omissas seja dn 2 e(n k) + k 2. O algoritmo possui ainda a interessante propriedade de tolerar períodos arbitrários em que o número de transmissões omissas seja superior a . A última variante do modelo partilha das mesmas características da variante anterior, mas com pressupostos mais fracos sobre o sistema. Em particular, assume-se que o sistema é assíncrono e que um subconjunto estático dos nós pode ser malicioso. O algoritmo apresentado, denominado Turquois, admite f < n 3 nós maliciosos e assegura progresso nos passos de comunicação em que dnf 2 e(n k f) + k 2. O algoritmo é sujeito a uma análise de desempenho comparativa com outros protocolos na literatura. Os resultados demonstram que, à medida que o número de nós no sistema aumenta, o desempenho do protocolo Turquois ultrapassa os restantes em mais do que uma ordem de magnitude.
FCT
Moniz, Henrique Lícias Senra. "Byzantine Fault-Tolerant Agreement Protocols for Wireless Ad hoc Networks." Master's thesis, 2010. http://hdl.handle.net/10451/14308.
Повний текст джерелаЧастини книг з теми "Byzantine consensus"
Correia, Miguel. "From Byzantine Consensus to Blockchain Consensus." In Essentials of Blockchain Technology, 41–80. Boca Raton : CRC Press, [2020]: Chapman and Hall/CRC, 2019. http://dx.doi.org/10.1201/9780429674457-3.
Повний текст джерелаCachin, Christian, and Luca Zanolini. "Asymmetric Asynchronous Byzantine Consensus." In Lecture Notes in Computer Science, 192–207. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93944-1_13.
Повний текст джерелаRaynal, Michel. "Consensus Despite Byzantine Failures." In Fault-tolerant Agreement in Synchronous Message-passing Systems, 125–41. Cham: Springer International Publishing, 2010. http://dx.doi.org/10.1007/978-3-031-02001-8_8.
Повний текст джерелаAlchieri, Eduardo A. P., Alysson Neves Bessani, Joni da Silva Fraga, and Fabíola Greve. "Byzantine Consensus with Unknown Participants." In Lecture Notes in Computer Science, 22–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-92221-6_4.
Повний текст джерелаCachin, Christian, Daniel Collins, Tyler Crain, and Vincent Gramoli. "Anonymity Preserving Byzantine Vector Consensus." In Computer Security – ESORICS 2020, 133–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58951-6_7.
Повний текст джерелаSaramago, Rodrigo, Eduardo Alchieri, Tuanir Rezende, and Lasaro Camargos. "Byzantine Collision-Fast Consensus Protocols." In Lecture Notes in Computer Science, 103–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59540-4_6.
Повний текст джерелаKelkar, Mahimna, Fan Zhang, Steven Goldfeder, and Ari Juels. "Order-Fairness for Byzantine Consensus." In Advances in Cryptology – CRYPTO 2020, 451–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56877-1_16.
Повний текст джерелаBinun, Alexander, Shlomi Dolev, and Tal Hadad. "Self-stabilizing Byzantine Consensus for Blockchain." In Lecture Notes in Computer Science, 106–10. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20951-3_10.
Повний текст джерелаSong, Yee Jiun, and Robbert van Renesse. "Bosco: One-Step Byzantine Asynchronous Consensus." In Lecture Notes in Computer Science, 438–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87779-0_30.
Повний текст джерелаBorran, Fatemeh, and André Schiper. "A Leader-Free Byzantine Consensus Algorithm." In Distributed Computing and Networking, 67–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11322-2_11.
Повний текст джерелаТези доповідей конференцій з теми "Byzantine consensus"
Berger, Christian, and Hans P. Reiser. "Scaling Byzantine Consensus." In Middleware '18: 19th International Middleware Conference. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3284764.3284767.
Повний текст джерелаMoumen, Hamouma, and Achour Mostefaoui. "Time-Free Authenticated Byzantine Consensus." In 2010 9th IEEE International Symposium on Network Computing and Applications (NCA). IEEE, 2010. http://dx.doi.org/10.1109/nca.2010.25.
Повний текст джерелаBouzid, Zohir, Achour Mostfaoui, and Michel Raynal. "Minimal Synchrony for Byzantine Consensus." In PODC '15: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2767386.2767418.
Повний текст джерелаNazreen Banu, Taisuke Izumi, and Koichi Wada. "Doubly-expedited one-step Byzantine consensus." In Networks (DSN). IEEE, 2010. http://dx.doi.org/10.1109/dsn.2010.5544293.
Повний текст джерелаVaidya, Nitin H., and Vijay K. Garg. "Byzantine vector consensus in complete graphs." In the 2013 ACM symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2484239.2484256.
Повний текст джерелаCarvalho, Carlos, Daniel Porto, Luís Rodrigues, Manuel Bravo, and Alysson Bessani. "Dynamic adaptation of byzantine consensus protocols." In SAC 2018: Symposium on Applied Computing. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3167132.3167179.
Повний текст джерелаHaseltalab, A., and Mehmet Akar. "Approximate byzantine consensus in faulty asynchronous networks." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7170960.
Повний текст джерелаCorreia, Miguel, Giuliana S. Veronese, and Lau Cheuk Lung. "Asynchronous Byzantine consensus with 2f+1 processes." In the 2010 ACM Symposium. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1774088.1774187.
Повний текст джерелаMostefaoui, Achour, and Gilles Trédan. "Towards the minimal synchrony for byzantine consensus." In the twenty-sixth annual ACM symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1281100.1281149.
Повний текст джерелаDoudou, Assia, and André Schiper. "Muteness detectors for consensus with Byzantine processes." In the seventeenth annual ACM symposium. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/277697.277772.
Повний текст джерелаЗвіти організацій з теми "Byzantine consensus"
Tseng, Lewis, and Nitin Vaidya. Parameter-independent Iterative Approximate Byzantine Consensus. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada564307.
Повний текст джерелаTseng, Lewis, and Nitin Vaidya. Exact Byzantine Consensus in Directed Graphs. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada568111.
Повний текст джерелаLiang, Guanfeng, and Nitin Vaidya. Error-Free Multi-Valued Consensus with Byzantine Failures. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada555083.
Повний текст джерелаTseng, Lewis, and Nitin Vaidya. Iterative Approximate Byzantine Consensus under a Generalized Fault Model. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada564090.
Повний текст джерелаVaidya, Nitin. Matrix Representation of Iterative Approximate Byzantine Consensus in Directed Graphs. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada558910.
Повний текст джерела