Добірка наукової літератури з теми "BV solutions"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "BV solutions".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "BV solutions"
Krejčí, Pavel, and Vincenzo Recupero. "$\rm BV$ solutions of rate independent differential inclusions." Mathematica Bohemica 139, no. 4 (2014): 607–19. http://dx.doi.org/10.21136/mb.2014.144138.
Повний текст джерелаYOUNG, ROBIN. "NONUNIQUENESS OF BV SOLUTIONS OF QUASILINEAR HYPERBOLIC SYSTEMS." Journal of Hyperbolic Differential Equations 09, no. 04 (December 2012): 555–70. http://dx.doi.org/10.1142/s021989161250018x.
Повний текст джерелаAncona, Fabio, Laura Caravenna, and Andrea Marson. "On the structure of BV entropy solutions for hyperbolic systems of balance laws with general flux function." Journal of Hyperbolic Differential Equations 16, no. 02 (June 2019): 333–78. http://dx.doi.org/10.1142/s0219891619500139.
Повний текст джерелаNOLAN, B. C. "WEAK SOLUTIONS FOR WEAK SINGULARITIES." International Journal of Modern Physics A 17, no. 20 (August 10, 2002): 2769. http://dx.doi.org/10.1142/s0217751x02011965.
Повний текст джерелаBianchini, Stefano. "BV Solutions of the Semidiscrete Upwind Scheme." Archive for Rational Mechanics and Analysis 167, no. 1 (March 2003): 1–81. http://dx.doi.org/10.1007/s00205-002-0237-2.
Повний текст джерелаKnees, Dorothee. "Convergence analysis of time-discretisation schemes for rate-independent systems." ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 65. http://dx.doi.org/10.1051/cocv/2018048.
Повний текст джерелаAnzellotti, G. "BV solutions of quasilinear PDEs in divergence form." Communications in Partial Differential Equations 12, no. 1 (January 1987): 77–122. http://dx.doi.org/10.1080/03605308708820485.
Повний текст джерелаBressan, Alberto, and Wen Shen. "Small BV Solutions of Hyperbolic Noncooperative Differential Games." SIAM Journal on Control and Optimization 43, no. 1 (January 2004): 194–215. http://dx.doi.org/10.1137/s0363012903425581.
Повний текст джерелаLerner, Nicolas, and Ferruccio Colombini. "Uniqueness of continuous solutions for BV vector fields." Duke Mathematical Journal 111, no. 2 (February 2002): 357–84. http://dx.doi.org/10.1215/s0012-7094-01-11126-5.
Повний текст джерелаMinh, Mach Nguyet. "BV solutions constructed using the epsilon-neighborhood method." ESAIM: Control, Optimisation and Calculus of Variations 22, no. 1 (January 2016): 188–207. http://dx.doi.org/10.1051/cocv/2015001.
Повний текст джерелаДисертації з теми "BV solutions"
Faria, Josiane Cristina de Oliveira. "Estabilidade fraca de soluções lagrangeanas de equações semigeostroficas." [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307165.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-10T07:01:21Z (GMT). No. of bitstreams: 1 Faria_JosianeCristinadeOliveira_D.pdf: 915381 bytes, checksum: 33fbbc86d823554534cbe546850e707d (MD5) Previous issue date: 2008
Resumo: As equações semigeostrocas, introduzidas por Hoskins e Bretherton em 1972 em [20], sao um conjunto de equacoes que modelam fluxos atmosfericos/ oceanicos de larga escala. Elas possuem uma formulação em variaveis duais que se presta ao tratamento analítico. Alguns autores estudaram esta formulação, veja, por exemplo, [3], [14], [22], [12], [21],em particular obtendo existencia de solucões fracas em espaços de medidas. Contudo, ha dificuldades em converter soluções fracas da formulação dual em soluções fracas na formulação original, e portanto de interpretar fisicamente as soluções obtidas. Em [11], Culled e Feldman provaram a existencia de soluções Lagrangeanas para o sistema semigeostrofico em coordenadas fisicas com vorticidade potencial em Lp, p > 1. No presente trabalho estendemos os resultados de Cullen e Feldman para o caso limite p = 1 e estudamos o comportamento de sequencias de soluções Lagrangeanas correspondentes a uma sequencia de vorticidades potenciais iniciais convergindo fortemente em L1. Provamos que tais soluções Lagrangeanas convergem em L1 loc. Exibimos um contra-exemplo que sugere que nosso resultado não pode ser estendido para o espaço das medidas de Radon
Abstract: The semigeostrophic equations, which were introduced by Hoskins and Bretherton in 1972 in [20], are a set of equations that model large-escale atmospheric/ocean ows. They have a formulation in dual variables which can be analytically treated. Some authors studied these equations in dual variables, see for instance [3], [14], [22], [12], [21], particularly it is obtained existence of weak solutions in the space of Radon measures. In [11], Cullen and Feldman proved existence of Lagrangian solutions for the semigeostrophic system in physical variables with initial potential vorticity in Lp, p > 1. In the present work we extend Cullen and Feldman's result to the limit case p = 1 and we study the behavior of sequences of Lagrangian solutions corresponding to a sequence of initial potential vorticities converging strongly in L1. We prove that these Lagrangian solutions converge in L1 loc. However, there is difficulties in to turn weak solutions in dual formulations into solutions in original formulation, and therefore there is dificulties in to interpret the obtained solutions physically. We show by means of a counterexample that our result cannot be extended to the space of Radon measures
Doutorado
Matematica - Analise
Doutor em Matemática
Guelmame, Billel. "Sur une régularisation hamiltonienne et la régularité des solutions entropiques de certaines équations hyperboliques non linéaires." Thesis, Université Côte d'Azur, 2020. https://tel.archives-ouvertes.fr/tel-03177654.
Повний текст джерелаIn this thesis, we study some non-dispersive conservative regularisations for the scalar conservation laws and also for the barotropic Euler system. Those regularisations are obtained inspired by a regularised Saint-Venant system introduced by Clamond and Dutykh in 2017. We also study the regularity, in generalised BV spaces, of the entropy solutions of some nonlinear hyperbolic equations. In the first part, we obtain and study a suitable regularisation of the inviscid Burgers equation, as well as its generalisation to scalar conservation laws. We prove that this regularisation is locally well-posedness for smooth solutions. We also prove the global existence of solutions that satisfy a one-sided Oleinik inequality for uniformly convex fluxes. When the regularising parameter ``l’’ goes to zero, we prove that the solutions converge, up to a subsequence, to the solutions of the original scalar conservation law, at least for a short time. We also generalise the regularised Saint-Venant equations to obtain a regularisation of the barotropic Euler system, and the Saint-Venant system with uneven bottom. We prove that both systems are locally well-posed in Hs, with s ≥ 2. In the second part, we prove a regularising effect, on the initial data, of scalar conservation laws with Lipschitz strictly convex flux, and of scalar equations with a linear source term. For some cases, we give a limit of the regularising effect.Finally, we prove the global existence of entropy solutions of a class of triangular systems involving a transport equation in BV^s x L^∞ where s > 1/3
Al, Zohbi Maryam. "Contributions to the existence, uniqueness, and contraction of the solutions to some evolutionary partial differential equations." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2646.
Повний текст джерелаIn this thesis, we are mainly interested in the theoretical and numerical study of certain equations that describe the dynamics of dislocation densities. Dislocations are microscopic defects in materials, which move under the effect of an external stress. As a first work, we prove a global in time existence result of a discontinuous solution to a diagonal hyperbolic system, which is not necessarily strictly hyperbolic, in one space dimension. Then in another work, we broaden our scope by proving a similar result to a non-linear eikonal system, which is in fact a generalization of the hyperbolic system studied first. We also prove the existence and uniqueness of a continuous solution to the eikonal system. After that, we study this system numerically in a third work through proposing a finite difference scheme approximating it, of which we prove the convergence to the continuous problem, strengthening our outcomes with some numerical simulations. On a different direction, we were enthused by the theory of differential contraction to evolutionary equations. By introducing a new distance, we create a new family of contracting positive solutions to the evolutionary p-Laplacian equation
Aujol, Jean-François. "Contribution à l'analyse de textures en traitement d'images par méthodes variationnelles et équations aux dérivées partielles." Phd thesis, Université de Nice Sophia-Antipolis, 2004. http://tel.archives-ouvertes.fr/tel-00006303.
Повний текст джерелаL'objectif des deux premières parties de cette thèse
est de proposer un modèle pour décomposer une image f en trois composantes : f=u+v+w.
La première composante, u, contient l'information géométrique. On peut la considérer comme une esquisse de l'image originale f.
La seconde composante, v, contient l'information texture.
La troisième composante, w, contient le bruit présent dans l'image originale.
Notre approche repose sur l'utilisation d'espaces mathématiques
adaptés à chaque composante: l'espace BV des fonctions à variations bornées pour u, un espace G proche du dual de BV pour les textures, et un espace de Besov d'exposant négatif E pour le bruit.
Nous effectuons l'étude mathématique complète des différents modèles que nous proposons.
Nous illustrons notre approche par de nombreux exemples, et donnons deux applications concrètes : une première en restauration d'images RSO, et une seconde en compression d'images.
Dans la troisième et dernière partie de cette thèse, nous nous intéressons
spécifiquement à la composante texturée.
Nous proposons un algorithme de classification supervisée pour les images texturées. L'approche utilisée est basée sur l'utilisation de la méthode des contours actifs et d'un terme d'attache aux donnés spécifiques au textures. Ce dernier est construit à partir d'une transformée en paquets d'ondelettes. Nous obtenons ainsi une fonctionnelle, dont le minimum correspond à la classification cherchée. Nous résolvons numériquement ce problème à l'aide d'un système couplé d'EDP que nous plongeons dans un schéma dynamique. Nous illustrons notre démarche par de nombreux exemples numériques. Nous effectuons également l'étude théorique de la fonctionnelle de classification.
Papafitsoros, Konstantinos. "Novel higher order regularisation methods for image reconstruction." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/246692.
Повний текст джерелаRizik, Vivian. "Analysis of an elasto-visco-plastic model describing dislocation dynamics." Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2505.
Повний текст джерелаIn this thesis, we are interested in the theoretical and numerical analysis o the dynamics of dislocation densities, where dislocations are crystalline defects appearing at the microscopic scale in metallic alloys. Particularly, the study of the Groma-Czikor-Zaiser model (GCZ) and the study of the Groma-Balog model (GB) are considered. The first is actually a system of parabolic type equations, where as, the second is a system of non-linear Hamilton-Jacobi equations. Initially, we demonstrate an existence and uniqueness result of a regular solution using a comparison principle and a fixed point argument for the GCZ model. Next, we establish a time-based global existence result for the GB model, based on notions of discontinuous viscosity solutions and a new estimate of total solution variation, as well as finite velocity propagation of the governed equations. This result is extended also to the cas of general Hamilton-Jacobi equation systems. Finally, we propose a semi-explicit numerical scheme allowing the discretization of the GB model. Based on the theoretical study, we prove that the discrete solution converges toward the continuous solution, as well as an estimate of error between the continuous solution and the numerical solution has been established. Simulations showing the robustness of the numerical scheme are also presented
Книги з теми "BV solutions"
Dennis, Faber, Verhoeven Frédéric, and Vermunt Niels. Part III Europe, 12 The Use of a Composition Plan as a Valuation and Distribution Framework. Oxford University Press, 2017. http://dx.doi.org/10.1093/law/9780198755371.003.0012.
Повний текст джерелаЧастини книг з теми "BV solutions"
Bianchini, Stefano. "BV Solutions of Semidiscrete Upwind Scheme." In Hyperbolic Problems: Theory, Numerics, Applications, 135–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55711-8_11.
Повний текст джерелаDafermos, Constantine M. "BV Solutions for Systems of Balance Laws." In Grundlehren der mathematischen Wissenschaften, 585–622. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49451-6_16.
Повний текст джерелаBressan, Alberto. "BV Solutions to Hyperbolic Systems by Vanishing Viscosity." In Lecture Notes in Mathematics, 1–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72187-1_1.
Повний текст джерелаDafermos, Constantine M. "Construction of BV Solutions by the Vanishing Viscosity Method." In Grundlehren der mathematischen Wissenschaften, 557–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49451-6_15.
Повний текст джерелаDafermos, Constantine M. "Construction of BV Solutions by the Vanishing Viscosity Method." In Grundlehren der mathematischen Wissenschaften, 517–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04048-1_15.
Повний текст джерелаKosiński, Witold. "On the Concept of Weak Solutions in the BV-Space." In Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications, 320–28. Wiesbaden: Vieweg+Teubner Verlag, 1989. http://dx.doi.org/10.1007/978-3-322-87869-4_33.
Повний текст джерелаNakayasu, Atsushi, and Piotr Rybka. "Energy Solutions to One-Dimensional Singular Parabolic Problems with $${ BV}$$ Data are Viscosity Solutions." In Springer Proceedings in Mathematics & Statistics, 195–213. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66764-5_9.
Повний текст джерелаWright, S. F., and S. K. Zeto. "Effects of pH and Al3+ activity on survival of Rhizobium leguminosarum bv. trifolii in a simple solution and on nodulation of red clover in acid soils." In Plant-Soil Interactions at Low pH, 603–9. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3438-5_68.
Повний текст джерела"BV. Three-dimensional axial symmetry." In Analytical Solutions of Geohydrological Problems, 353–421. Elsevier, 1999. http://dx.doi.org/10.1016/s0167-5648(99)80011-2.
Повний текст джерелаColombo, Rinaldo M. "BV Solutions to Hyperbolic Conservation Laws." In Series in Contemporary Applied Mathematics, 87–159. WSPC/HEP, 2019. http://dx.doi.org/10.1142/9789813276185_0002.
Повний текст джерелаТези доповідей конференцій з теми "BV solutions"
Schindler, Sebastian. "Comparison of Design by Analysis Methods." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-94028.
Повний текст джерелаHaywood, Alan, Andrew Ricks, Bruno Bouckaert, and Julian Hofman. "Dynamic Hull Vane – A Solution for active Pitch Motion Reduction and Resistance Reduction of ships." In SNAME International Conference on Fast Sea Transportation. SNAME, 2021. http://dx.doi.org/10.5957/fast-2021-002.
Повний текст джерелаMoon, Jei-Kwon, Eil-Hee Lee, Chong-Hun Jung, and Byung-Chul Lee. "Separation of Technetium in Nitric Acid Solution With an Extractant Impregnated Resin." In 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/icone14-89797.
Повний текст джерела