Дисертації з теми "Buildings Thermal properties Testing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-49 дисертацій для дослідження на тему "Buildings Thermal properties Testing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Bellander, Rickard. "Testing large samples of PCM in water calorimeter and PCM used in room applications by night-air cooling." Licentiate thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-495.
Повний текст джерелаRamos, Pablo D. Jr. "SYSTEM IDENTIFICATION OF A BRIDGE-TYPE BUILDING STRUCTURE." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/944.
Повний текст джерелаGoodhew, Steven Michael Rhyder. "The thermal properties of cob buildings of Devon." Thesis, University of Plymouth, 2000. http://hdl.handle.net/10026.1/594.
Повний текст джерелаYam, Chi-wai, and 任志偉. "Effect of internal thermal mass on building thermal performance." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B27770631.
Повний текст джерелаKuklane, Kalev. "Footwear for cold environments : thermal properties, performance and testing /." Solna : National Institute for Working Life (Arbetslivsinstitutet), 1999. http://epubl.luth.se/1402-1544/1999/36/index.html.
Повний текст джерелаThorsell, Thomas. "Advances in Thermal Insulation : Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings." Doctoral thesis, KTH, Byggnadsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-90745.
Повний текст джерелаQC 20120228
Fu, Chia-Yu. "Application of internal state variable models to thermal processing and reliability of plated through holes in printed wiring boards." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17375.
Повний текст джерелаWoodmansee, Michael W. "Thermal cycling and rate-dependent stress relaxation behavior of solders." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/17301.
Повний текст джерелаAmoah-Kusi, Christian. "Constant Interface Temperature Reliability Assessment Method: An Alternative Method for Testing Thermal Interface Material in Products." PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2295.
Повний текст джерелаXie, Weidong. "Thermo-mechanical evaluation of interfacial integrity in multilayered microelectronic packages." Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/17380.
Повний текст джерелаDel, Zio Michael R. (Michael Robert) 1982. "Design and testing of the thermal properties of the structure of an ultra high-throughput mutational spectrometer." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32822.
Повний текст джерелаIncludes bibliographical references (leaves 42-43).
A process known as mutational spectrometry allows the detection of both single and multiple mutations that appear to be spontaneous, using a technique known as constant denaturing capillary electrophoresis (CDCE). CDCE requires a region of constant temperature and concentration of denaturant. A massively parallel, fully automated instrument, capable of handling as many as 10,000 DNA samples simultaneously, is suited to this technique. A modular structure of such a mutational spectrometer was designed to remain water-tight, provide an array to hold the capillaries for electrophoretic excitation, and modulate the flow of a heat transfer fluid. Six such modules were manufactured and assembled. As the heat transfer fluid passed through the assembled structure, the natural thermal loss was determined.
by Michael R. Del Zio.
S.B.
Long, Ethan Schuyler. "The Role of Temperature in Testing Deep Submicron CMOS ASICs." PDXScholar, 2003. https://pdxscholar.library.pdx.edu/open_access_etds/34.
Повний текст джерелаNamjoshi, Shanatanu Ashok. "Reaction synthesis of dynamically-densified Ti-based intermetallic and ceramic forming powders." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/19572.
Повний текст джерелаSung, Taehyun. "Variable frequency microwave curing of polymer dielectrics on metallized organic substrates." Thesis, Available online, Georgia Institute of Technology, 2004:, 2003. http://etd.gatech.edu/theses/available/etd-04082004-180423/unrestricted/sung%5ftaehyun%5f200312%5fms.pdf.
Повний текст джерелаTaylor, Tim. "Assessing the thermal performance of buildings at the construction stage using thermography : development and evaluation of a testing approach in the context of new housing in Wales." Thesis, Cardiff Metropolitan University, 2014. http://hdl.handle.net/10369/6500.
Повний текст джерелаShen, Yijiang, and 沈逸江. "Efficient finite-difference schemes in thermal analysis and inverse lithography for integrated circuit manufacturing." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45455041.
Повний текст джерелаCox, Bryce Kevin. "The Influence of Ambient Temperature on Green Roof R-values." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/142.
Повний текст джерелаBeckius, Fredrik, and Robin Gustafsson. "Connecting casting simulation and FE software including local variation of physical properties. : Investigation on local material properties and microstructure in a grey iron cylinder head." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Material och tillverkning, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-31248.
Повний текст джерелаMahmood, Salih Qasim. "Behavior of Lap Shear Connections with Thermally Insulating Filler Plates." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/4159.
Повний текст джерелаCampbell, Kevin Ryan. "Phase Change Materials as a Thermal Storage Device for Passive Houses." PDXScholar, 2011. http://pdxscholar.library.pdx.edu/open_access_etds/201.
Повний текст джерелаKumirai, Tichaona. "Energy efficiency interventions for residential buildings in Bloemfontein using passive energy techniques." Thesis, Bloemfontein : Central University of Technology, Free State, 2010. http://hdl.handle.net/11462/124.
Повний текст джерелаThe purpose of this research is to minimize the use of active systems in providing thermal comfort in single-family detached, middle to high income residential buildings in Bloemfontein. The typical case study house was selected according to the criteria as reviewed by Mathews et al., (1999). Measurements were taken for seven days (18 – 24 May 2009). The measurements were carried out in the winter period for Bloemfontein, South Africa. Ecolog TH1, humidity and temperature data logger was used in doing the measurements. These measurements included indoor temperatures and indoor relative humidity. Temperature swings of 8.43 ºC and thermal lag of 1 hour were observed. For the period of seven days (168 hours), the house was thermally comfortable for 84 hours. Thermal analysis for the base case house was done using Ecotect™ (building analysis software) and the simulated results were compared with the measured results. A mean bias error (MBE) of between 10.3% ≤≤11.5% was obtained on the initial calibration. The final calibration of the model yielded error between0.364% ≤≤0.365%. The final calibration model which presented a small error was adopted as the base case. Passive strategies were incorporated to the Ecotect™ model (final calibrated model) singly and in combination; then both thermal and space load simulations were obtained and compared to simulations from the original situation (base case) for assessing improvements in terms of thermal comfort and heating, ventilation and air conditioning (HVAC) energy consumption. Annual HVAC electricity savings of up to 55.2 % were obtained from incorporating passive strategies in combination. Incorporating passive strategies resulted in small improvements in thermal comfort.
Avila, Melissa Barter. "The effect of resin type and glass content on the fire engineering properties of typical FRP composites." Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-040307-133151/.
Повний текст джерелаAkevren, Selen. "Non-destructive Examination Of Stone Masonry Historic Structures-quantitative Ir Thermography And Ultrasonic Velocity." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611673/index.pdf.
Повний текст джерелаTorres, Filho Rodrigo José de Almeida. "Análise térmica de estruturas de aço utilizadas no sistema light steel framing." Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/2641.
Повний текст джерелаThe thermal performance of light steel framing (LSF) panels was the objective of this study. The study subject was panels used in the construction of two model houses located at Federal Technology University – Parana, built with materials commercially available in Brazil. The analysis was set with material properties from the manufacturer and in compliance with the Brazilian regulation, using the finite element method for a transient thermal analysis. The model validation was based on experimental tests available in the literature. Based on the validated model, the four panels have been analyzed. Two of the panels used PET wool in the cavity for insulation and the analysis was repeated with them replacing it for glass wool. A panel with no insulation was also analyzed to be used as reference. Based on the analysis results and the resistance reduction coefficients proposed by ABNT NBR 14323:2001, the resistance decrease of the studs due to the fire exposure and the panels resistance to fire were determined. Based on the obtained results, it can be affirmed that, depending on the applied load and the required Equivalent time of fire exposure, even the less protective configuration of the panels presented can be viable. The current study presented relevant information about the performance of LSF manufactured in Brazil when exposed to fire.
Abouelleil, Sayed Hazem. "Dental composite properties evaluation : from experimental approaches to the prerequisite of a chewing bench." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1054/document.
Повний текст джерелаScientific literature reveals that in vitro results are poorly correlated to materials clinical behavior. ISO standardized testing provides valuable information about the dental materials properties, and enables result comparison between different institutes. Conversely, new materials chemistry and formulations requires improved methodology and testing methods. Throughout our studies included in this work, the main objective was to reach a more global knowledge of the way dental materials are evaluated before being inserted into the oral cavity. A great deal of emphasis was given to the choice of materials to be tested, and that it would represent the current trends in dental practice and the latest developments in material composition. Equal highlight was given to the choice of testing methodology and laboratory testing techniques and their correlation to the clinical outcome. The modifications made to the methodology of these tests explored further the concealed aspects of different parameter interactions. Dental materials characterization and assessment required more understanding about the interaction between different properties to explain material aging; our work was to combine numerous studies to answer this topic. The studies included mechanical and physical properties, bulk and fiber composite, CAD CAM block materials, dental resin adhesive, thermal shock and thermal cycling, Bisphenol A. The final objective was to develop an oral simulator that would enable the reproduction of different chemical, physical and mechanical parameters of the oral environment, thus permitting to bridge the gap between in vitro and in vivo testing of dental materials
Rauchfussová, Karolína. "Studium užitných vlastností tepelně-reflexních izolací pro stavebnictví." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-295661.
Повний текст джерелаSvoboda, Martin. "Projevy fyzikálních vlastností staviv v budovách v nízkoenergetickém a pasivním stavitelství." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2018. http://www.nusl.cz/ntk/nusl-372075.
Повний текст джерелаVaněk, Lukáš. "Vývoj pokročilých tepelně izolačních omítek s možností uplatnění jako sanační omítky dle WTA." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226722.
Повний текст джерелаChoi, Keum-Ran. "3D thermal mapping of cone calorimeter specimen and development of a heat flux mapping procedure utilizing an infrared camera." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-020205-215634/.
Повний текст джерелаKeywords: temperature measurement; heat flux maps; Cone Calorimeter; three-dimensional heat conduction; fire growth models; retainer frame; ceramic fiberboard; edge effect; one-dimensional heat conduction; heat flux mapping procedure; infrared camera; specimen preparation; edge frame; one-dimensional heat conduction model; thermal properties. Includes bibliographical references (p.202-204).
Larget, Mathilde. "Contribution à l’évaluation de la dégradation du béton : thermographie infrarouge et couplage de techniques." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14318/document.
Повний текст джерелаThis thesis focuses on the use of infrared thermography as a tool for non destructive testing ofbuildings. Mainly, the application is on civil engineering projects.The first part includes identifying the parameters that can affect this in situ technique. Thisparticularly deals with the infrared thermography capacity to detect intrinsic property variations, anddelamination detection. Combination of experiments on concrete slabs and numerical simulationsare used. In a first step, a study on the capacity of thermography to detect porosity and watercontent variation was conducted. In a second step a study on the thresholds for detectingdelaminations based on exposure conditions is carried out. As an outcome, the threshold that hasbeen detected corresponds to a ratio of 2 between the lateral extension of the defect and its depthto direct sunlight; while a ratio of 3,3 if it is exposed to air temperature variations. This studysuggests that a time monitoring combined with the study of the evolution of temporal temperaturegradients can improve the detection limits. Finally, an original study showed the predominance ofthe influence of bridging on the depth of delamination.The second part tackles the works carried out during the ANR project SENSO. Results fromdifferent non destructive tools were coupled for the purpose of improving diagnosis in the assetmanagement
Blivi, Adoté Sitou. "Effet de taille dans les polymères nano-renforcés : caractérisation multi-échelles et modélisation." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2431/document.
Повний текст джерелаThe work presented in this paper aims to highlight and to understand the size effect of nano-reinforcements on nanocomposite properties With an experimental approach. Nanocomposites of PMMA and silica particles With different sizes (15nm, 25nm, 60nm, 150nm and 500nm) and volume fractions (20/0, 4 0/0 and 60/0) were manufactured. Multiscale analysis (MET and DRX-WAXS) have shown that the characteristic parameters of the microstructure of nanocomposites vary With the size of the nanoparticles. Indeed, the decrease in the size of nanoparticles at a given volume fraction implies a decrease of the intermolecular distance. This decrease has induced a densification of the matrix and a decrease of the matrix chain mobility. Mechanical tests (tensile, DMA) have shown that the young (E) and the conservation (E') moduli of the nanocomposites increase With the decrease in the size of the nanoparticles With a constant volume fraction. And the increase of E l is kept when temperature growing. An increase in glass transition (Tg) and degradation temperature (Td) was also observed With the DSC, DMA and ATG tests. Experimental elastic properties of the nanocomposites were used to assess the relevance of size effect micromechanical models, particularly the Hashin-Shtrikman bounds With interface effects proposed by Brisard. The modeling has shown that to reproduce the experimental elastic moduli of nanocomposites, the elastic coefficients of the interface must be dependents on particle sizes. And the state of dispersion of particles must be taken into account
Velísková, Eva. "Posouzení vlivu provedení zateplení rodinného domu na Zlínsku na výdaje spojené s provozem této nemovitosti." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-232704.
Повний текст джерелаBourlet, Clément. "Développement de la fabrication additive par procédé arc-fil pour les aciers : caractérisation microstructurale et mécanique des dépôts en nuances ER100 et 316L pour la validation des propriétés d'emploi de pièces industrielles." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0058.
Повний текст джерелаWire-arc additive manufacturing is a new process using a common weldingrobotic cell to build large parts layer by layer. It allows building rough single pieces orsmall series parts with a low cost and a short delay. First developments were done ontitanium and aluminum parts for aeronautic and space applications, but more industriessuch as maritime, oil and gas, railway…are now interested into it. In this work, amethodology is proposed to define suitable process parameters and deposit’s strategies,with the final control of the elaborated parts. Developments are done on both highstrength steel ER100 and austenitic stainless steel 316LSi. The results of theexperimental characterisation enable to show the relations between the manufacturingconditions, the dimensions, the microstructure and the mechanicals properties of theparts, and finally lead to guidelines to evolve the wire-arc additive manufacturingtowards industrialisation
Ayvazyan, Vigen. "Etude de champs de température séparables avec une double décomposition en valeurs singulières : quelques applications à la caractérisation des propriétés thermophysiques des matérieux et au contrôle non destructif." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14671/document.
Повний текст джерелаInfrared thermography is a widely used method for characterization of thermophysical properties of materials. The advent of the laser diodes, which are handy, inexpensive, with a broad spectrum of characteristics, extend metrological possibilities of infrared cameras and provide a combination of new powerful tools for thermal characterization and non destructive evaluation. However, this new dynamic has also brought numerous difficulties that must be overcome, such as high volume noisy data processing and low sensitivity to estimated parameters of such data. This requires revisiting the existing methods of signal processing, adopting new sophisticated mathematical tools for data compression and processing of relevant information.New strategies consist in using orthogonal transforms of the signal as a prior data compression tools, which allow noise reduction and control over it. Correlation analysis, based on the local cerrelation study between partial derivatives of the experimental signal, completes these new strategies. A theoretical analogy in Fourier space has been performed in order to better understand the «physical» meaning of modal approaches.The response to the instantaneous point source of heat, has been revisited both numerically and experimentally. By using separable temperature fields, a new inversion technique based on a double singular value decomposition of experimental signal has been introduced. In comparison with previous methods, it takes into account two or three-dimensional heat diffusion and therefore offers a better exploitation of the spatial content of infrared images. Numerical and experimental examples have allowed us to validate in the first approach our new estimation method of longitudinal thermal diffusivities. Non destructive testing applications based on the new technique have also been introduced.An old issue, which consists in determining the initial temperature field from noisy data, has been approached in a new light. The necessity to know the thermal diffusivities of an orthotropic medium and the need to take into account often three-dimensional heat transfer, are complicated issues. The implementation of the double singular value decomposition allowed us to achieve interesting results according to its ease of use. Indeed, modal approaches are statistical methods based on high volume data processing, supposedly robust as to the measurement noise
Gibbon, George James. "Laboratory test procedures to predict the thermal behaviour of concrete." Thesis, 1995. https://hdl.handle.net/10539/25060.
Повний текст джерелаThe cracking of mass and structural concrete due to thermal stress is a major problem in the concrete construction industry. Concrete will crack when the thermal stress exceeds tbe tensile strength of the concrete, Decisions on the type of concrete mix, cooling facilities and construction techniques to be used in the erection of a concrete structure can only be made if the thermal behaviour and strength of the concrete can be predicted during hydration. This thesis describes the development of a low cost, computer controlled, adiabatic calorimeter to determine tlte heat of hydration and a probe to determine the thermal conductivity or concrere samples. The main thrust of this thesis is the development of the thermal conductivity probe which, for the first time, can measure the thermal conductivity of concrete through all stages of hydration. A thermal model was also developed to verify the results, and the use of the calorimeter for temperature matched curing tests is also discussed. Results, obtained from the test procedures described, will provide far more accurate predictions of the temperatures in concrete structures than was possible in the past.
Andrew Chakane 2018
"Predicting thermal performance of building design in Hong Kong: scale-model measurement and field study." 2004. http://library.cuhk.edu.hk/record=b5892127.
Повний текст джерелаThesis (M.Phil.)--Chinese University of Hong Kong, 2004.
Includes bibliographical references (leaves 150-153).
Abstracts in English and Chinese.
Chapter chapter 1 --- Introduction --- p.10
Chapter chapter 2 --- Background & Literature --- p.15
Chapter 2.1 --- Why Environmental Design? --- p.15
Comfort and Energy --- p.15
"Our Problems: Energy, Environment, and Health" --- p.19
Chapter 2.2 --- Knowledge in Environmental Design --- p.27
What is Environmental Design? --- p.27
Current knowledge in Environmental Design: Thermal Performance --- p.30
Thermal Studies in Hong Kong --- p.37
Chapter 2.3 --- Summary and Propositions --- p.42
Chapter chapter 3 --- Scale Model Study --- p.47
Chapter 3.1 --- Test Modules Application --- p.47
Chapter 3.2 --- Research Methodology & Experimental Setup --- p.54
Testing Facility in CUHK --- p.54
Solarimeter Substitute --- p.58
Chapter 3.3 --- Experimental Series --- p.61
Chapter 3.3.1 --- Envelope Colour --- p.61
Chapter 3.3.2 --- Windows --- p.73
Chapter 3.3.3 --- Shading --- p.75
Chapter 3.3.4 --- Thermal Mass --- p.80
Chapter 3.3.5 --- Orientations --- p.83
Chapter 3.3.6 --- "Combined Effects ofThermal Mass, Windows and Orientations" --- p.85
Chapter 3.3.7 --- "Combined Effects ofThermal Mass, Shading and Orientations" --- p.88
Chapter 3.4 --- Summary of Experiments --- p.90
Chapter 3.5 --- Predicting Indoor Air Temperature --- p.93
Chapter 3.5.1 --- Development of Predictive Formulas --- p.93
Chapter 3.5.2 --- Parametric Study of Envelope Colour --- p.97
Chapter 3.5.3 --- Parametric Study of Window Shading --- p.100
Chapter chapter 4 --- Field Study --- p.104
Chapter 4.1 --- Description of Housing Unit: Concord-I Block --- p.104
Chapter 4.2 --- Experimental Setup --- p.105
Chapter 4.3 --- Result of Field Measurement --- p.108
Chapter 4.3.1 --- Perform ance of top-most floor --- p.108
Chapter 4.3.2 --- Performance of Individual Rooms --- p.109
Chapter 4.3.3 --- Effect of Orientation --- p.110
Chapter 4.3.4 --- Indoor Thermal Comfort --- p.113
Chapter 4.4 --- Summary of Field Measurement --- p.116
Chapter chapter 5 --- Thermal Performance Prediction --- p.118
Chapter chapter 6 --- Conclusion --- p.126
Appendix 1 --- p.131
Appendix 2 --- p.133
Appendix 3 --- p.140
XIE, YA-XUAN, and 謝亞璇. "A Study on Thermal Insulation Properties of Inorganic Mineral Powder Coating Materials Containing Color Materials in Concrete Buildings." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/7n6q64.
Повний текст джерела國立臺北科技大學
土木工程系土木與防災碩士班
107
The inorganic mineral powder coating materials have the functions of reflection and insulation, which can be divided into two types: Cement (UU620) and Geopolymer (UU500). The coated materials have six colors of white, red, blue, green, yellow and gray which are capable of reflecting and blocking part of the radiation heat into the concrete building. The reflectivity and thermal conductivity of inorganic mineral powder materials were measured by spectrometers and heat conduction instrument, respectively; and measurement of adhesion according to ASTM D3359. Notably, the obtained results show that the coating materials have high reflectivity values, excellent thermal conductivity, and the adhesion of different colors is quite good. Through the visible light and infrared radiation concrete plate specimens, the result of turning the light on and off, the upper and lower heat flux, surface and environmental temperature were measured to explore the insulation and cooling effect in different colors. Moreover, it possesses the excellent thermal insulation. Finally, the coated concrete plate has better thermal insulation ability than the uncoated concrete plate in situ test. Through the above-mentioned heat flux experimental data and the formula set by the Green Building Technical Specification, the heat transmission rate of the coated specimen has calculated.
HSU, YU-WEN, and 徐郁雯. "The Study of Thermal Properties and Rapid Chloride Permeability Testing in Concrete Containing Reclaimed Asphalt Pavement." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6v4d87.
Повний текст джерела國立高雄科技大學
土木工程系
107
The research objective was to assess the mechanical properties, shrinkage, thermal expansion and conductivity, and chloride penetration of concrete containing reclaimed asphalt pavement materials. Rich and lean concrete mixtures were blended by water to cementitious materials (w/c) ratio of 0.5 and the RAP materials were replacing both coarse and fine aggregates by 0, 20, 40, 60, 80, and 100-%. The concrete cylinders and specimens were cast and cured in the water tank for 7, 28, 56, and 90 days. The test results demonstrate as follows: the mixing temperatures of all concrete mixtures increased among 24.5 and 26.8, from 20-°C; the unit weight, compressive strength, pulse velocity, and shrinkage decreased, when more percentage of RAP were incorporated; thermal conductivity increased when more percentage of RAP were added. However, thermal conductivity decreased when longer curing time of concrete were given; thermal expansion also increased when more percentage of RAP were blended; lastly, the coulombs or charge pass indicating the chloride penetration increased on 90-day moisture-cured concrete specimens, when more RAP were replaced.
Chinnathambi, Prasanna. "Experimental investigation on traversing hot jet ignition of lean hydrocarbon-air mixtures in a constant volume combustor." Thesis, 2013. http://hdl.handle.net/1805/4439.
Повний текст джерелаA constant-volume combustor is used to investigate the ignition initiated by a traversing jet of reactive hot gas, in support of combustion engine applications that include novel wave-rotor constant-volume combustion gas turbines and pre-chamber IC engines. The hot-jet ignition constant-volume combustor rig at the Combustion and Propulsion Research Laboratory at the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) was used for this study. Lean premixed combustible mixture in a rectangular cuboid constant-volume combustor is ignited by a hot-jet traversing at different fixed speeds. The hot jet is issued via a converging nozzle from a cylindrical pre-chamber where partially combusted products of combustion are produced by spark- igniting a rich ethylene-air mixture. The main constant-volume combustor (CVC) chamber uses methane-air, hydrogen-methane-air and ethylene-air mixtures in the lean equivalence ratio range of 0.8 to 0.4. Ignition delay times and ignitability of these combustible mixtures as affected by jet traverse speed, equivalence ratio, and fuel type are investigated in this study.
Attoye, Samuel Osekafore. "A Study of Fused Deposition Modeling (FDM) 3-D Printing Using Mechanical Testing and Thermography." Thesis, 2018. http://hdl.handle.net/1805/17670.
Повний текст джерелаFused deposition modeling (FDM) represents one of the most common techniques for rapid proto-typing in additive manufacturing (AM). This work applies image based thermography to monitor the FDM process in-situ. The nozzle temperature, print speed and print orientation were adjusted during the fabrication process of each specimen. Experimental and numerical analysis were performed on the fabricated specimens. The combination of the layer wise temperature profile plot and temporal plot provide insights for specimens fabricated in x, y and z-axis orientation. For the x-axis orientation build possessing 35 layers, Specimens B16 and B7 printed with nozzle temperature of 225 C and 235 C respectively, and at printing speed of 60 mm/s and 100 mm/s respectively with the former possessing the highest modulus, yield strength, and ultimate tensile strength. For the y-axis orientation build possessing 59 layers, Specimens B23, B14 and B8 printed with nozzle temperature of 215 C, 225 C and 235 C respectively, and at printing speed of 80 mm/s, 80 mm/s and 60 mm/s respectively with the former possessing the highest modulus and yield strength, while the latter the highest ultimate tensile strength. For the z-axis orientation build possessing 1256 layers, Specimens B6, B24 and B9 printed with nozzle temperature of 235 C, 235 C and 235 ➦C respectively, and at printing speed of 80 mm/s, 80 mm/s and 60 mm/s respectively with the former possessing the highest modulus and ultimate tensile strength, while B24 had the highest yield strength and B9 the lowest modulus, yield strength and ultimate tensile strength. The results show that the prints oriented in the y-axis orientation perform relatively better than prints in the x-axis and z-axis orientation.
Karimi, Abdullah. "Numerical study of hot jet ignition of hydrocarbon-air mixtures in a constant-volume combustor." Thesis, 2014. http://hdl.handle.net/1805/6249.
Повний текст джерелаIgnition of a combustible mixture by a transient jet of hot reactive gas is important for safety of mines, pre-chamber ignition in IC engines, detonation initiation, and in novel constant-volume combustors. The present work is a numerical study of the hot-jet ignition process in a long constant-volume combustor (CVC) that represents a wave-rotor channel. The mixing of hot jet with cold mixture in the main chamber is first studied using non-reacting simulations. The stationary and traversing hot jets of combustion products from a pre-chamber is injected through a converging nozzle into the main CVC chamber containing a premixed fuel-air mixture. Combustion in a two-dimensional analogue of the CVC chamber is modeled using global reaction mechanisms, skeletal mechanisms, and detailed reaction mechanisms for four hydrocarbon fuels: methane, propane, ethylene, and hydrogen. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Hybrid turbulent-kinetic schemes using some skeletal reaction mechanisms and detailed mechanisms are good predictors of the experimental data. Shock-flame interaction is seen to significantly increase the overall reaction rate due to baroclinic vorticity generation, flame area increase, stirring of non-uniform density regions, the resulting mixing, and shock compression. The less easily ignitable methane mixture is found to show higher ignition delay time compared to slower initial reaction and greater dependence on shock interaction than propane and ethylene. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive. Inclusion of minor radical species in the hot-jet is observed to reduce the ignition delay by 0.2 ms for methane mixture in the main chamber. Reaction pathways analysis shows that ignition delay and combustion progress process are entirely different for hybrid turbulent-kinetic scheme and kinetics-only scheme.
(5931008), Samuel Attoye. "A Study of Fused Deposition Modeling (FDM) 3-D Printing using Mechanical Testing and Thermography." Thesis, 2019.
Знайти повний текст джерела"Experimental studies thermally of ecological building in Loess Plateau areas of China." 2006. http://library.cuhk.edu.hk/record=b5896466.
Повний текст джерелаThesis submitted in: December 2005.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.
Includes bibliographical references (leaves 181-183).
Abstracts in English and Chinese.
Chapter 1. --- Introduction --- p.1
Chapter 2. --- Issues and Background --- p.5
Chapter 2.1. --- Why Ecological Architecture? --- p.5
Chapter 2.1.1. --- Fossil Fuels and Environmental Issues --- p.5
Chapter 2.1.2. --- The Buildings' Role in the Issues --- p.9
Chapter 2.2. --- Knowledge in Ecological Design --- p.11
Chapter 2.2.1. --- About Ecological Architecture --- p.11
Chapter 2.2.2. --- Thermal Study ~ A Significant Way to Ecological Architecture --- p.13
Chapter 2.2.3. --- What is Suitable Ecological Architecture for Loess Plateau areas of China --- p.16
Chapter 3. --- Defining the Future Ecological Architecture in Loess Plateau Areas --- p.20
Chapter 3.1. --- Economy for Building --- p.20
Chapter 3.1.1. --- Situation --- p.20
Chapter 3.1.2. --- Technological Strategies towards a Cost-effective Ecological Approach --- p.22
Chapter 3.1.3. --- Alternative-Technological Approach --- p.24
Chapter 3.2. --- Climate --- p.25
Chapter 3.2.1. --- Climatic Characteristics --- p.25
Chapter 3.2.2. --- A climatically Responsive Approach ~ Selective Environmental Design --- p.32
Chapter 3.2.3. --- Climatic Response of Thermal Design Guidelines --- p.33
Chapter 3.2.3.1. --- Minimizing Heat loss through Building Fabrics --- p.34
Chapter 3.2.3.2. --- Utilization of Available Natural Energy --- p.37
Chapter 3.3. --- Benefits from Vernacular Architecture --- p.45
Chapter 3.3.1. --- Earth ArchitecturéؤVernacular Architecture on Loess Plateau --- p.45
Chapter 3.3.1.1. --- Classification --- p.46
Chapter 3.3.1.2. --- Environmental Performance --- p.53
Chapter 3.3.2. --- Literature Review of Studies on Earth Architecture --- p.58
Chapter 3.3.2.1. --- Properties of Earth-based Materials --- p.58
Chapter 3.3.2.2. --- Literature on Earth Architecture --- p.60
Chapter 3.3.3. --- Issues and Development --- p.76
Chapter 3.3.3.1. --- Limitation in Existing Earth Architecture of Loess Plateau --- p.76
Chapter 3.3.3.2. --- Recent Research on Developing Earth Architecture in Loess Plateau Areas --- p.77
Chapter 3.3.3.3. --- Considerations --- p.81
Chapter 3.4. --- Conclusion --- p.82
Chapter 4. --- Making of the Classroom as Designed for the Thermal Study --- p.84
Chapter 4.1. --- Why a Classroom? --- p.84
Chapter 4.2. --- The School Project and the Classroom Simulated --- p.85
Chapter 5. --- Thermal Study by Simulating Experiments --- p.88
Chapter 5.1. --- Research Methodology --- p.88
Chapter 5.2. --- Program Validation --- p.89
Chapter 5.3. --- Experimental Series of Simulation and Model Setup --- p.93
Chapter 5.4. --- Thermal Mass and Insulation --- p.95
Chapter 5.4.1. --- External Wall --- p.95
Chapter 5.4.2. --- Roof Study --- p.97
Chapter 5.4.3. --- "Windows, Doors and Glazing" --- p.100
Chapter 5.4.4. --- Incorporated Performance --- p.103
Chapter 5.5. --- Passive system for natural energy use --- p.106
Chapter 5.5.1. --- Passive Solar System Study --- p.106
Chapter 5.5.1.1. --- Wall-based Passive Solar System --- p.106
Chapter 5.5.1.2. --- Roof-based Passive Solar System --- p.125
Chapter 5.5.1.3. --- System Comparison in Thermal Performance --- p.135
Chapter 5.5.2. --- Natural Ventilation System with the Heat Exchanger --- p.137
Chapter 5.5.2.1. --- Pre-warming Effect of the Solar Space --- p.139
Chapter 5.5.2.2. --- Effect of the Earth-air-tunnel --- p.142
Chapter 5.5.2.3. --- Incorporation with the Chimney --- p.153
Chapter 5.5.2.4. --- Comparison in Performance --- p.158
Chapter 5.6. --- Summary --- p.159
Chapter 6. --- Design Improvement and Performance Prediction --- p.162
Chapter 6.1. --- System Incorporation and Design Improvement --- p.161
Chapter 6.2. --- Thermal Performance Prediction --- p.167
Chapter 7. --- Conclusion --- p.174
Appendix --- p.179
(6631748), Shikha Shrestha. "Effect of nanocellulose reinforcement on the properties of polymer composites." Thesis, 2019.
Знайти повний текст джерелаPolymer nanocomposites are envisioned for use in many advanced applications, such as structural industries, aerospace, automotive technology and electronic materials, due to the improved properties like mechanical strengthening, thermal and chemical stability, easy bulk processing, and/or light-weight instigated by the filler-matrix combination compared to the neat matrix. In recent years, due to increasing environmental concerns, many industries are inclining towards developing sustainable and renewable polymer nanocomposites. Cellulose nanomaterials (CNs), including cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs), have gained popularity due to their excellent mechanical properties and eco-friendliness (extracted from trees, algae, plants etc.). However, to develop CN-reinforced nanocomposites with industrial applications it is necessary to understand impact of hygroscopic swelling (which has very limited quantitative study at present), aspect ratio, orientation, and content of CNs on the overall performance of nanocomposites; and overcome the low dispersibility of CNs and improve their compatibility with hydrophobic matrix. In this work, we attempt to understand the influence of single nanocrystals in the hygroscopic and optical response exhibited by nanostructured films; effect of CNCs on the properties of PVA/CNC fibers by experimental evidence with mathematical modeling predictions; and hydrophobized CNFs using a facile, aqueous surface modification to improve interfacial compatibility with epoxy.
To evaluate the effect of CNC alignment in the bulk response to hygroscopic expansion, self-organized and shear-oriented CNC films were prepared under two different mechanisms. The coefficient of hygroscopic swelling (CHS) of these films was determined by using a new contact-free method of Contrast Enhanced Microscopy Digital Image Correlation (CEMDIC) that enabled the characterization of dimensional changes induced by hygroscopic swelling of the films. This method can be readily used for other soft materials to accurately measure hygroscopic strain in a non-destructive way. By calculating the CHS values of CNC films, it was determined that hygroscopic swelling is highly dependent on the alignment of nanocrystals within the films, with aligned CNC films showing dramatically reduced hygroscopic expansion than randomly oriented films. Finite element analysis was used to simulate moisture sorption and kinetics profile which further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.
To study the effects of different types and aspect ratios of CNCs on mechanical, thermal and morphological properties of polyvinyl alcohol (PVA) composite fibers, CNCs extracted from wood pulp and cotton were reinforced into PVA to produce fibers by dry-jet-wet spinning. The fibers were collected as-spun and with first stage drawing up to draw ratio 2. The elastic modulus and tensile strength of the fibers improved with increasing CNC content (5 – 15 wt. %) at the expense of their strain-to-failure. The mechanical properties of fibers with cotton CNC were higher than the fibers with wood CNC when the same amount of CNCs were added due to their higher aspect ratio. The degree of orientation along the spun fiber axis was quantified by 2D X-ray diffraction. As expected, the CNC orientation correlates to the mechanical properties of the composite fibers. Micromechanical models were used to predict the fiber performance and compare with experimental results. Finally, surface and cross-sectional morphologies of fibers were analyzed by scanning electron microscopy and optical microscopy.
To improve the dispersibility and compatibility of CNFs with epoxy, CNFs were modified by using a two-step water-based method where tannic acid (TA) acts as a primer with CNF suspension and reacts with hexadecylamine (HDA), forming the modified product as CNF-TA-HDA. The modified (-m) and unmodified (-um) CNFs were filled into hydrophobic epoxy resin with a co-solvent (acetone), which was subsequently removed to form a solvent-free two component epoxy system, followed by addition of hardener to cure the resin. Better dispersion and stronger adhesion between fillers and epoxy were obtained for m-CNF than the um-CNF, resulting in better mechanical properties of nanocomposites at the same loading. Thermal stability and the degradation temperature of m-CNF/epoxy improved when compared to neat epoxy.
Kim, Hyeong Jun. "Thermal effects on modular maglev steel guideways." Thesis, 2007. http://hdl.handle.net/2152/3282.
Повний текст джерелаtext
Zhang, Yi. "Atomistic and finite element modeling of zirconia for thermal barrier coating applications." Thesis, 2014. http://hdl.handle.net/1805/6191.
Повний текст джерелаZirconia (ZrO2) is an important ceramic material with a broad range of applications. Due to its high melting temperature, low thermal conductivity, and high-temperature stability, zirconia based ceramics have been widely used for thermal barrier coatings (TBCs). When TBC is exposed to thermal cycling during real applications, the TBC may fail due to several mechanisms: (1) phase transformation into yttrium-rich and yttrium-depleted regions, When the yttrium-rich region produces pure zirconia domains that transform between monoclinic and tetragonal phases upon thermal cycling; and (2) cracking of the coating due to stress induced by erosion. The mechanism of erosion involves gross plastic damage within the TBC, often leading to ceramic loss and/or cracks down to the bond coat. The damage mechanisms are related to service parameters, including TBC material properties, temperature, velocity, particle size, and impact angle. The goal of this thesis is to understand the structural and mechanical properties of the thermal barrier coating material, thus increasing the service lifetime of gas turbine engines. To this end, it is critical to study the fundamental properties and potential failure mechanisms of zirconia. This thesis is focused on investigating the structural and mechanical properties of zirconia. There are mainly two parts studied in this paper, (1) ab initio calculations of thermodynamic properties of both monoclinic and tetragonal phase zirconia, and monoclinic-to-tetragonal phase transformation, and (2) image-based finite element simulation of the indentation process of yttria-stabilized zirconia. In the first part of this study, the structural properties, including lattice parameter, band structure, density of state, as well as elastic constants for both monoclinic and tetragonal zirconia have been computed. The pressure-dependent phase transition between tetragonal (t-ZrO2) and cubic zirconia (c-ZrO2) has been calculated using the density function theory (DFT) method. Phase transformation is defined by the band structure and tetragonal distortion changes. The results predict a transition from a monoclinic structure to a fluorite-type cubic structure at the pressure of 37 GPa. Thermodynamic property calculations of monoclinic zirconia (m-ZrO2) were also carried out. Temperature-dependent heat capacity, entropy, free energy, Debye temperature of monoclinic zirconia, from 0 to 1000 K, were computed, and they compared well with those reported in the literature. Moreover, the atomistic simulations correctly predicted the phase transitions of m-ZrO2 under compressive pressures ranging from 0 to 70 GPa. The phase transition pressures of monoclinic to orthorhombic I (3 GPa), orthorhombic I to orthorhombic II (8 GPa), orthorhombic II to tetragonal (37 GPa), and stable tetragonal phases (37-60 GPa) are in excellent agreement with experimental data. In the second part of this study, the mechanical response of yttria-stabilized zirconia under Rockwell superficial indentation was studied. The microstructure image based finite element method was used to validate the model using a composite cermet material. Then, the finite element model of Rockwell indentation of yttria-stabilized zirconia was developed, and the result was compared with experimental hardness data.
Smith, Carol Elaine. "A method for determining the installed capacity of an underfloor electrical resistance heating and energy storage system." 1985. http://hdl.handle.net/2097/27546.
Повний текст джерелаSchmidt, Dennis Patrick. "Design and testing of a modular hydride hydrogen storage system for mobile vehicles." 1985. http://hdl.handle.net/2097/27531.
Повний текст джерелаNagamani, Jaya B. "Micro-scale Fracture Testing of Graded (Pt,Ni)Al Bond Coats." Thesis, 2013. http://etd.iisc.ernet.in/2005/3406.
Повний текст джерела