Зміст
Добірка наукової літератури з теми "Bruit fractionnaire"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bruit fractionnaire".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Bruit fractionnaire"
Breton, Alain Le. "Une approche de type girsanov pour le filtrage dans un système linéaire simple avec bruit brownien fractionnaire." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 8 (April 1998): 997–1002. http://dx.doi.org/10.1016/s0764-4442(98)80129-8.
Повний текст джерелаДисертації з теми "Bruit fractionnaire"
Drouilhet, Rémy. "Dérivée de mouvement brownien fractionnaire et estimation de densité spectrale." Pau, 1993. http://www.theses.fr/1993PAUU3024.
Повний текст джерелаWONG, Wa. "Conception de circuits MMIC BiMOS SiGe appliqués à la synthèse de fréquence fractionnaire." Phd thesis, Université Paul Sabatier - Toulouse III, 2003. http://tel.archives-ouvertes.fr/tel-00011081.
Повний текст джерелаWong, King-Wah. "Conception de circuits MMIC BiCMOS SiGe appliqués à la synthèse de fréquence fractionnaire." Toulouse 3, 2003. http://www.theses.fr/2003TOU30238.
Повний текст джерелаCai, Chunhao. "Analyse statistique de quelques modèles de processus de type fractionnaire." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1030/document.
Повний текст джерелаThis thesis focuses on the statistical analysis of some models of stochastic processes generated by fractional noise in discrete or continuous time.In Chapter 1, we study the problem of parameter estimation by maximum likelihood (MLE) for an autoregressive process of order p (AR (p)) generated by a stationary Gaussian noise, which can have long memory as the fractional Gaussiannoise. We exhibit an explicit formula for the MLE and we analyze its asymptotic properties. Actually in our model the covariance function of the noise is assumed to be known but the asymptotic behavior of the estimator ( rate of convergence, Fisher information) does not depend on it.Chapter 2 is devoted to the determination of the asymptotical optimal input for the estimation of the drift parameter in a partially observed but controlled fractional Ornstein-Uhlenbeck process. We expose a separation principle that allows us toreach this goal. Large sample asymptotical properties of the MLE are deduced using the Ibragimov-Khasminskii program and Laplace transform computations for quadratic functionals of the process.In Chapter 3, we present a new approach to study the properties of mixed fractional Brownian motion (fBm) and related models, based on the filtering theory of Gaussian processes. The results shed light on the semimartingale structure andproperties lead to a number of useful absolute continuity relations. We establish equivalence of the measures, induced by the mixed fBm with stochastic drifts, and derive the corresponding expression for the Radon-Nikodym derivative. For theHurst index H > 3=4 we obtain a representation of the mixed fBm as a diffusion type process in its own filtration and derive a formula for the Radon-Nikodym derivative with respect to the Wiener measure. For H < 1=4, we prove equivalenceto the fractional component and obtain a formula for the corresponding derivative. An area of potential applications is statistical analysis of models, driven by mixed fractional noises. As an example we consider only the basic linear regression setting and show how the MLE can be defined and studied in the large sample asymptotic regime
Nguyen, Thi Kim Thanh. "Interaction entre deux circuits mesoscopiques pour la mesure du bruit." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2007. http://tel.archives-ouvertes.fr/tel-00175563.
Повний текст джерелаquasiparticules, ou, de manière plus intéressante, est du à la réflexion d'Andreev. La théorie du blocage de Coulomb dynamique est utilisée pour calculer le courant continu qui passe dans le circuit de détection, procurant ainsi une information sur le bruit à haute fréquence. Dans la deuxième partie de cette thèse, la source de bruit est connue : elle provient d'une barre de Hall avec un contact ponctuel, dont les caractéristiques de courant-tension et de bruit sont bien établies dans le régime de l'effet Hall
quantique fractionnaire. Un point quantique connecté à des bornes source et drain, qui est placé au voisinage du
contact ponctuel, acquière une largeur de raie finie lorsque le courant fluctue, et se comporte comme un
détecteur de bruit de charge. Nous calculons le taux de déphasage du point quantique dans le régime de
faible et de fort rétrodiffusion, tout en décrivant l'effet de l'écrantage faible ou fort de l'interaction
Coulombienne entre la barre de Hall et le point quantique.
Kapfer, Maëlle. "Dynamic of excitations of the Fractional quantum Hall effect : fractional charge and fractional Josephson frequency." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS393/document.
Повний текст джерелаIn some quantum matter states, the current may remarkably be transported by carriers that bear a fraction e* of the elementary electron charge. This is the case for the Fractional quantum Hall effect (FQHE) that happens in two-dimensional systems at low temperature under a high perpendicular magnetic field. When the number of magnetic flux in units of h/e is a fraction of the number of electron, a dissipationless current flows along the edges of the sample and is carried by anyons with fractional charge. The observation of the fractional charge is realized through small current fluctuations produced by the granularity of the charge. Here is presented a reliable method to measure the fractional charge by the mean of cross-correlation of current fluctuations. Moreover, the dynamical properties of those charges is probed when the sample is irradiated with photos at GHz frequency. The long predicted Josephson frequency of the fractional charge is measured. Those measurements validate Photoassisted processes in the FQHE and enable timedomain manipulation of fractional charges in order to realize a single anyon source based on levitons to perform tests of the anyonic statistics of fractional charge
Uss, Mykhailo. "Estimation aveugle de l'écart-type du bruit additif, indépendant et/ou dépendant du signal : application aux images texturées multi/hyperspectrales." Rennes 1, 2011. http://www.theses.fr/2011REN1E008.
Повний текст джерелаSchaeffer, Nicolas. "Étude d'équations aux dérivées partielles dirigées par une perturbation stochastique." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0054.
Повний текст джерелаThe subject of this thesis is the study of some nonlinear partial differential equations driven by a stochastic perturbation. In Chapter 1, we define the notion of white noise and fractional noise. We then describe the general procedure to prove the local well-posedness of the models under consideration. After having presented a state of the art, we detail and comment the different results obtained, we insist on the novelties and we precise the possible perspectives. In Chapter 2, we present the stochastic tools we will need throughout our study. We start by defining the fractional Brownian motion. We then recall the essential notions concerning Wiener integral and the integration against the Fourier transform of a white noise. We also establish the harmonizable representation formula of the fractional Brownian motion that will be a precious tool when doing computations. We state the main results related to the regularity of stochastic terms, namely Kolmogorov's criterion and the Garsia-Rodemich-Rumsey inequality. To end with, we define Hermite polynomials that will allow us to renormalize our equations and we develop the notion of Wiener Chaoses in order to benefit from the classical inequality of control of moments of order "p". In Chapter 3, we study a stochastic nonlinear heat equation (SNLH) with a quadratic nonlinearity, forced by a fractional space-time white noise. Two types of regimes are exhibited, depending on the ranges of the Hurst index "H=(H_0,...,H_d) in (0,1)^{d+1}". In particular, we show that the local well-posedness of (SNLH) resulting from the Da Prato-Debussche trick, is easily obtained when "2H_0+sum_{i=1}^{d}H_i >d". On the contrary, (SNLH) is much more difficult to handle when "2H_0+sum_{i=1}^{d}H_i leq d". In this case, the model has to be interpreted in the Wick sense, thanks to a time-dependent renormalization. Helped with the regularising effect of the heat semigroup, we establish local well-posedness results for (SNLH) for all dimension "d geq 1". In Chapter 4, we study a stochastic Schr"{o}dinger equation with a quadratic nonlinearity and a space-time fractional perturbation. When the Hurst index is large enough, precisely when "2H_0+sum_{i=1}^{d}H_i >d+1", we prove local well-posedness of the problem using classical arguments. However, for a small Hurst index, that is when "2H_0+sum_{i=1}^{d}H_i leq d", even the interpretation of the equation needs some care. In this case, a renormalization procedure must come into the picture, leading to a Wick-type interpretation of the model. Our fixed-point argument then involves some specific regularization properties of the Schr"{o}dinger group, which allows us to cope with the strong irregularity of the solution. In Chapter 5, we study a stochastic quadratic nonlinear Schr"{o}dinger equation (SNLS), driven by a fractional derivative (of order "-alpha<0") of a space-time white noise. When "alpha < frac{d}{2}", the stochastic convolution is a function of time with values in a negative-order Sobolev space and the model has to be interpreted in the Wick sense by means of a time-dependent renormalization. When "1 leq d leq 3", combining both the Strichartz estimates and a deterministic local smoothing, we establish the local well-posedness of (SNLS) for a small range of "alpha". Then, we revisit our arguments and establish multilinear smoothing on the second order stochastic term. This allows us to improve our local well-posedness result for some "alpha"
Komaty, Ali. "Traitement et analyse des processus stochastiques par EMD et ses extensions." Thesis, Brest, 2014. http://www.theses.fr/2014BRES0107.
Повний текст джерелаThe main contribution of this thesis is aimed towards understanding the behaviour of the empirical modes decomposition (EMD) and its extended versions in stochastic situations
Creux, Marjorie. "Détection des corrélations de courant à haute fréquence à l'aide d'un circuit résonnant." Phd thesis, Université de la Méditerranée - Aix-Marseille II, 2007. http://tel.archives-ouvertes.fr/tel-00148425.
Повний текст джерелаNous considérons l'injection controllée d'une charge d'un métal normal sur un état de bord de l'effet Hall quantique fractionnaire, à l'aide d'une tension dépendant du temps V(t). Nous montrons que les corrélations électroniques préviennent les divergences des fluctuations de charge pour un pulse de tension générique. La formule de la charge moyenne et des fluctuations de charges sont obtenue en utilisant l'approximation adiabatique et les résultats non perturbatifs pour un bord de l'effet Hall quantique Fractionnaire de facteur de remplissage 1/3. Nous faisons également une généralisation aux systèmes décrits par les autres modèles des liquides de Luttinger.
Nous considérons la mesure à haute fréquence des corrélations de courant à l'aide d'un circuit résonnant, qui est couplé inductivement au circuit mésoscopique dans le régime cohérent. Les informations sur les corrélations apparaissent dans les histogrammes de la charge aux bornes de la capacité du circuit résonnant. La dissipation est essentiel afin de conserver des fluctuations de charge finis. Nous identifions quelle combinaison du courant de corrélation entre dans la mesure du troisième moment. Ce dernier reste stable pour une dissipation nulle. Nous proposons alors une généralisation du circuit LC résonant afin de sonder directement les corrélations croisées. Les corrélations croisées dépendent de quatre corrélateurs non-symétrisés. Les résultats sont illustrés pour un point contact.