Дисертації з теми "Brownian motion processes"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Brownian motion processes".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Dunkel, Jörn. "Relativistic Brownian motion and diffusion processes." kostenfrei, 2008. http://d-nb.info/991318757/34.
Повний текст джерелаTrefán, György. "Deterministic Brownian Motion." Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc279262/.
Повний текст джерелаKeprta, S. "Integral tests for Brownian motion and some related processes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ26856.pdf.
Повний текст джерелаKeprta, Stanislav Carleton University Dissertation Mathematics and Statistics. "Integral tests for Brownian motion and some related processes." Ottawa, 1997.
Знайти повний текст джерелаCakir, Rasit Grigolini Paolo. "Fractional Brownian motion and dynamic approach to complexity." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3992.
Повний текст джерелаSimon, Matthieu. "Markov-modulated processes: Brownian motions, option pricing and epidemics." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/250010.
Повний текст джерелаDoctorat en Sciences
info:eu-repo/semantics/nonPublished
莊競誠 and King-sing Chong. "Explorations in Markov processes." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31235682.
Повний текст джерелаChong, King-sing. "Explorations in Markov processes /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B18736105.
Повний текст джерелаDuncan, Thomas. "Brownian Motion: A Study of Its Theory and Applications." Thesis, Boston College, 2007. http://hdl.handle.net/2345/505.
Повний текст джерелаThe theory of Brownian motion is an integral part of statistics and probability, and it also has some of the most diverse applications found in any topic in mathematics. With extensions into fields as vast and different as economics, physics, and management science, Brownian motion has become one of the most studied mathematical phenomena of the late twentieth and early twenty-first centuries. Today, Brownian motion is mostly understood as a type of mathematical process called a stochastic process. The word "stochastic" actually stems from the Greek word for "I guess," implying that stochastic processes tend to produce uncertain results, and Brownian motion is no exception to this, though with the right models, probabilities can be assigned to certain outcomes and we can begin to understand these complicated processes. This work reaches to attain this goal with regard to Brownian motion, and in addition it explores several applications found in the aforementioned fields and beyond
Thesis (BA) — Boston College, 2007
Submitted to: Boston College. College of Arts and Sciences
Discipline: Mathematics
Discipline: College Honors Program
Hult, Henrik. "Topics on fractional Brownian motion and regular variation for stochastic processes." Doctoral thesis, KTH, Mathematics, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3604.
Повний текст джерелаThe first part of this thesis studies tail probabilities forelliptical distributions and probabilities of extreme eventsfor multivariate stochastic processes. It is assumed that thetails of the probability distributions satisfy a regularvariation condition. This means, roughly speaking, that thereis a non-negligible probability for very large or extremeoutcomes to occur. Such models are useful in applicationsincluding insurance, finance and telecommunications networks.It is shown how regular variation of the marginals, or theincrements, of a stochastic process implies regular variationof functionals of the process. Moreover, the associated tailbehavior in terms of a limit measure is derived.
The second part of the thesis studies problems related toparameter estimation in stochastic models with long memory.Emphasis is on the estimation of the drift parameter in somestochastic differential equations driven by the fractionalBrownian motion or more generally Volterra-type processes.Observing the process continuously, the maximum likelihoodestimator is derived using a Girsanov transformation. In thecase of discrete observations the study is carried out for theparticular case of the fractional Ornstein-Uhlenbeck process.For this model Whittles approach is applied to derive anestimator for all unknown parameters.
Hartung, Lisa Bärbel [Verfasser]. "Extremal Processes in Branching Brownian Motion and Friends / Lisa Bärbel Hartung." Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1113688432/34.
Повний текст джерелаOverbeck, Ludger. "Konditionierungen der Super-Brownsche-Bewegung und verzweigender Diffusionen." Bonn : [s.n.], 1992. http://catalog.hathitrust.org/api/volumes/oclc/29044483.html.
Повний текст джерелаCakir, Rasit. "Fractional Brownian motion and dynamic approach to complexity." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3992/.
Повний текст джерелаErdogan, Ahmet Yasin. "Analysis of the effects of phase noise and frequency offest in orthogonal frequency division multiplexing (OFDM) systems /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Mar%5FErdogan.pdf.
Повний текст джерелаThesis advisor(s): Murali Tummala, Roberto Cristi. Includes bibliographical references (p. 127-129). Also available online.
Lappala, Anna. "Molecular dynamics simulations : from Brownian ratchets to polymers." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709251.
Повний текст джерелаSanyal, Suman. "Stochastic dynamic equations." Diss., Rolla, Mo. : Missouri University of Science and Technology, 2008. http://scholarsmine.mst.edu/thesis/pdf/Sanyal_09007dcc80519030.pdf.
Повний текст джерелаVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed August 21, 2008) Includes bibliographical references (p. 124-131).
Maher, David Graham School of Mathematics UNSW. "Brownian motion and heat kernels on compact lie groups and symmetric spaces." Awarded by:University of New South Wales. School of Mathematics, 2006. http://handle.unsw.edu.au/1959.4/28295.
Повний текст джерелаWu, Tung-Lung Jr. "Linear and non-linear boundary crossing probabilities for Brownian motion and related processes." Applied Probability Trust - Journal of Applied Probability, 2010. http://hdl.handle.net/1993/8123.
Повний текст джерелаTanner, Stephen. "Non-tangential and conditioned Brownian convergence of pluriharmonic functions /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5729.
Повний текст джерелаBessada, Dennis Fernandes Alves. "Generalizações do movimento browniano e suas aplicações à física e a finanças /." São Paulo : [s.n.], 2005. http://hdl.handle.net/11449/91854.
Повний текст джерелаBanca: Victo dos Santos Filho
Banca: Fernando Manoel Ramos
Resumo: Realizamos neste trabalho uma exposição geral da Teoria do Movimento Browniano, desde suas primeiras observações, feitas no âmbito da Biologia, até sua completa descrição seundo as leis da Mecânica estatística, formulação esta efetuada por Einstein em 1905. Com base nestes princípios físicos analisamos a Teoria do Movimento Browniano de Einstein como sendo um processo estocástico, o que permite sua generalização para um processo de Lévy. Fazemos uma exposição da Teoria de Lévy, e aplicamo-la em seguida na análise de dados provenientes do índice IBOVESPA. Camparamos os resultados com as distribuições empíricas e a modelada via distribuição gaussiana, demonstrando efetivamente que a série financeira analisada apresenta um comportamento não-gaussiano.
Abstracts: We review in this work the foundations of the Theory of Brownian Motion, from the first observations made in Biology to its complete description according to the laws of Statistical Mechanics performed by einstein in 1905. Afterwards we discuss the Einstein's Theory of Brownian Motion as a stochastic process, since this connection allows its generalization to a Lévy process. After a brief review of Lévy Theory we analyse IBOVESPA data within this framework. We compare the outcomes with the empirical and gaussian distributions, showing effectively that the analyzed financial series behaves exactly as a non-gaussian stochastic process.
Mestre
Nouri, Suhila Lynn. "Expected maximum drawdowns under constant and stochastic volatility." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050406-151319/.
Повний текст джерелаSwanson, Jason. "Variations of stochastic processes : alternative approaches /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/5733.
Повний текст джерелаBessada, Dennis Fernandes Alves [UNESP]. "Generalizações do movimento browniano e suas aplicações à física e a finanças." Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/91854.
Повний текст джерелаFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Realizamos neste trabalho uma exposição geral da Teoria do Movimento Browniano, desde suas primeiras observações, feitas no âmbito da Biologia, até sua completa descrição seundo as leis da Mecânica estatística, formulação esta efetuada por Einstein em 1905. Com base nestes princípios físicos analisamos a Teoria do Movimento Browniano de Einstein como sendo um processo estocástico, o que permite sua generalização para um processo de Lévy. Fazemos uma exposição da Teoria de Lévy, e aplicamo-la em seguida na análise de dados provenientes do índice IBOVESPA. Camparamos os resultados com as distribuições empíricas e a modelada via distribuição gaussiana, demonstrando efetivamente que a série financeira analisada apresenta um comportamento não-gaussiano.
Abstracts: We review in this work the foundations of the Theory of Brownian Motion, from the first observations made in Biology to its complete description according to the laws of Statistical Mechanics performed by einstein in 1905. Afterwards we discuss the Einstein's Theory of Brownian Motion as a stochastic process, since this connection allows its generalization to a Lévy process. After a brief review of Lévy Theory we analyse IBOVESPA data within this framework. We compare the outcomes with the empirical and gaussian distributions, showing effectively that the analyzed financial series behaves exactly as a non-gaussian stochastic process.
Corry, Ben Alexander. "Simulation studies of biological ion channels." View thesis entry in Australian Digital Theses Program, 2002. http://thesis.anu.edu.au/public/adt-ANU20030423.162927/index.html.
Повний текст джерелаLyons, Simon. "Inference and parameter estimation for diffusion processes." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10518.
Повний текст джерелаVardar, Ceren. "On the Correlation of Maximum Loss and Maximum Gain of Stock Price Processes." Bowling Green State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1224274306.
Повний текст джерелаUfuktepe, Ünal. "Positive solutions of nonlinear elliptic equations in the Euclidean plane /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9841364.
Повний текст джерелаOsborn, Allan Ray. "Flow control methods in a high-speed virtual channel." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/13521.
Повний текст джерелаZhou, Wei, and 周硙. "Topics in optimal stopping with applications in mathematical finance." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46582046.
Повний текст джерелаWalljee, Raabia. "The Levy-LIBOR model with default risk." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96957.
Повний текст джерелаENGLISH ABSTRACT : In recent years, the use of Lévy processes as a modelling tool has come to be viewed more favourably than the use of the classical Brownian motion setup. The reason for this is that these processes provide more flexibility and also capture more of the ’real world’ dynamics of the model. Hence the use of Lévy processes for financial modelling is a motivating factor behind this research presentation. As a starting point a framework for the LIBOR market model with dynamics driven by a Lévy process instead of the classical Brownian motion setup is presented. When modelling LIBOR rates the use of a more realistic driving process is important since these rates are the most realistic interest rates used in the market of financial trading on a daily basis. Since the financial crisis there has been an increasing demand and need for efficient modelling and management of risk within the market. This has further led to the motivation of the use of Lévy based models for the modelling of credit risky financial instruments. The motivation stems from the basic properties of stationary and independent increments of Lévy processes. With these properties, the model is able to better account for any unexpected behaviour within the market, usually referred to as "jumps". Taking both of these factors into account, there is much motivation for the construction of a model driven by Lévy processes which is able to model credit risk and credit risky instruments. The model for LIBOR rates driven by these processes was first introduced by Eberlein and Özkan (2005) and is known as the Lévy-LIBOR model. In order to account for the credit risk in the market, the Lévy-LIBOR model with default risk was constructed. This was initially done by Kluge (2005) and then formally introduced in the paper by Eberlein et al. (2006). This thesis aims to present the theoretical construction of the model as done in the above mentioned references. The construction includes the consideration of recovery rates associated to the default event as well as a pricing formula for some popular credit derivatives.
AFRIKAANSE OPSOMMING : In onlangse jare, is die gebruik van Lévy-prosesse as ’n modellerings instrument baie meer gunstig gevind as die gebruik van die klassieke Brownse bewegingsproses opstel. Die rede hiervoor is dat hierdie prosesse meer buigsaamheid verskaf en die dinamiek van die model wat die praktyk beskryf, beter hierin vervat word. Dus is die gebruik van Lévy-prosesse vir finansiële modellering ’n motiverende faktor vir hierdie navorsingsaanbieding. As beginput word ’n raamwerk vir die LIBOR mark model met dinamika, gedryf deur ’n Lévy-proses in plaas van die klassieke Brownse bewegings opstel, aangebied. Wanneer LIBOR-koerse gemodelleer word is die gebruik van ’n meer realistiese proses belangriker aangesien hierdie koerse die mees realistiese koerse is wat in die finansiële mark op ’n daaglikse basis gebruik word. Sedert die finansiële krisis was daar ’n toenemende aanvraag en behoefte aan doeltreffende modellering en die bestaan van risiko binne die mark. Dit het verder gelei tot die motivering van Lévy-gebaseerde modelle vir die modellering van finansiële instrumente wat in die besonder aan kridietrisiko onderhewig is. Die motivering spruit uit die basiese eienskappe van stasionêre en onafhanklike inkremente van Lévy-prosesse. Met hierdie eienskappe is die model in staat om enige onverwagte gedrag (bekend as spronge) vas te vang. Deur hierdie faktore in ag te neem, is daar genoeg motivering vir die bou van ’n model gedryf deur Lévy-prosesse wat in staat is om kredietrisiko en instrumente onderhewig hieraan te modelleer. Die model vir LIBOR-koerse gedryf deur hierdie prosesse was oorspronklik bekendgestel deur Eberlein and Özkan (2005) en staan beken as die Lévy-LIBOR model. Om die kredietrisiko in die mark te akkommodeer word die Lévy-LIBOR model met "default risk" gekonstrueer. Dit was aanvanklik deur Kluge (2005) gedoen en formeel in die artikel bekendgestel deur Eberlein et al. (2006). Die doel van hierdie tesis is om die teoretiese konstruksie van die model aan te bied soos gedoen in die bogenoemde verwysings. Die konstruksie sluit ondermeer in die terugkrygingskoers wat met die wanbetaling geassosieer word, sowel as ’n prysingsformule vir ’n paar bekende krediet afgeleide instrumente.
Al-Talibi, Haidar. "On the Relevance of Fractional Gaussian Processes for Analysing Financial Markets." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1762.
Повний текст джерелаIn recent years, the field of Fractional Brownian motion, Fractional Gaussian noise and long-range dependent processes has gained growing interest. Fractional Brownian motion is of great interest for example in telecommunications, hydrology and the generation of artificial landscapes. In fact, Fractional Brownian motion is a basic continuous process through which we show that it is neither a semimartingale nor a Markov process. In this work, we will focus on the path properties of Fractional Brownian motion and will try to check the absence of the property of a semimartingale. The concept of volatility will be dealt with in this work as a phenomenon in finance. Moreover, some statistical method like R/S analysis will be presented. By using these statistical tools we examine the volatility of shares and we demonstrate empirically that there are in fact shares which exhibit a fractal structure different from that of Brownian motion.
Long, Brian Russell. "Transport of polymers and particles in microfabricated array devices /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8289.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaves 122-127). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Delorme, Mathieu. "Processus stochastiques et systèmes désordonnés : autour du mouvement Brownien." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE058/document.
Повний текст джерелаIn this thesis, we study stochastic processes appearing in different areas of statistical physics: Firstly, fractional Brownian motion is a generalization of the well-known Brownian motion to include memory. Memory effects appear for example in complex systems and anomalous diffusion, and are difficult to treat analytically, due to the absence of the Markov property. We develop a perturbative expansion around standard Brownian motion to obtain new results for this case. We focus on observables related to extreme-value statistics, with links to mathematical objects: Levy’s arcsine laws and Pickands’ constant. Secondly, the model of elastic interfaces in disordered media is investigated. We consider the case of a Brownian random disorder force. We study avalanches, i.e. the response of the system to a kick, for which several distributions of observables are calculated analytically. To do so, the initial stochastic equation is solved using a deterministic non-linear instanton equation. Avalanche observables are characterized by power-law distributions at small-scale with universal exponents, for which we give new results
Baumgarten, Christoph [Verfasser], and Frank [Akademischer Betreuer] Aurzada. "Persistence of sums of independent random variables, iterated processes and fractional Brownian motion / Christoph Baumgarten. Betreuer: Frank Aurzada." Berlin : Universitätsbibliothek der Technischen Universität Berlin, 2013. http://d-nb.info/1035276445/34.
Повний текст джерелаHerdiana, Ratna. "Numerical methods for SDEs - with variable stepsize implementation /." [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17638.pdf.
Повний текст джерелаBenjamin, Ronald. "Stochastic energetics of the Büttiker-Landauer motor and refrigerator." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2008p/benjamin.pdf.
Повний текст джерелаAdditional advisors: Renato Camata, Nikolai Chernov, Perry A. Gerkines, Gunter Stolz. Description based on contents viewed Feb. 9, 2009; title from PDF t.p. Includes bibliographical references (p. 123-129).
Arikan, Ali Ferda. "Structural models for the pricing of corporate securities and financial synergies : applications with stochastic processes including arithmetic Brownian motion." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/5416.
Повний текст джерелаArikan, Ali F. "Structural models for the pricing of corporate securities and financial synergies. Applications with stochastic processes including arithmetic Brownian motion." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/5416.
Повний текст джерелаSuzuki, Kohei. "Convergence of stochastic processes on varying metric spaces." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215281.
Повний текст джерелаGomez-Solano, Juan Rubén. "Nonequilibrium fluctuations of a Brownian particle." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2011. http://tel.archives-ouvertes.fr/tel-00680302.
Повний текст джерелаSerrano, Francisco de Castilho Monteiro Gil. "Fractional processes: an application to finance." Master's thesis, Instituto Superior de Economia e Gestão, 2016. http://hdl.handle.net/10400.5/13002.
Повний текст джерелаNeste trabalho é apresentada uma extensa descrição matemática, orientada para a modelação financeira, de três principais processos fracionários: o processo Browniano fracionário e os dois processos de Lévy fracionários. Mostram-se como estes processos podem ser originados. É explorado o conceito de auto-semelhança e apresentamos algumas noções de cálculo fracionário. Também é discutido o lugar destes processos no problema de encontrar o preço de derivados financeiros e apresentamos uma nova abordagem para a simulação do processo de Lévy fracionário que permite um método Monte Carlo para encontrar o preço de derivados financeiros.
In this work it is presented an extensive mathematical description oriented to financial modelling based on three main fractional processes: the fractional Brownian motion and both fractional Lévy processes. It is shown how these processes were originated. The concept of self-similarity is explored and we present some notions of fractional calculus. It is discussed the opportunity of these processes in pricing financial derivatives and we present a new approach for simulation of the fractional Lévy process, which allows a Monte Carlo method for pricing financial derivatives.
info:eu-repo/semantics/publishedVersion
Lee, Joongsup. "New control charts for monitoring univariate autocorrelated processes and high-dimensional profiles." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42711.
Повний текст джерелаPopovic, Ray. "Parameter estimation error: a cautionary tale in computational finance." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34731.
Повний текст джерелаAntonini, Claudia. "Folded Variance Estimators for Stationary Time Series." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6931.
Повний текст джерелаMisiran, Masnita. "Modeling and pricing financial assets under long memory processes." Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/2549.
Повний текст джерелаSchmid, Patrick. "Random processes in truncated and ordinary Weyl chambers." Doctoral thesis, Universitätsbibliothek Leipzig, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-66394.
Повний текст джерелаDuhalde, Jean-Pierre. "Sur des propriétés fractales et trajectorielles de processus de branchement continus." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066029/document.
Повний текст джерелаThis thesis investigates some fractal and pathwise properties of branching processes with continuous time and state-space. Informally, this kind of process can be described by considering the evolution of a population where individuals reproduce and die over time, randomly. The first chapter deals with the class of continuous branching processes with immigration. We provide a semi-explicit formula for the hitting times and a necessary and sufficient condition for the process to be recurrent or transient. Those two results illustrate the competition between branching and immigration. The second chapter deals with the Brownian tree and its local time measures : the level-sets measures. We show that they can be obtained as the restriction, with an explicit multiplicative constant, of a Hausdorff measure on the tree. The result holds uniformly for all levels. The third chapter study the Super-Brownian motion associated with a general branching mechanism. Its total occupation measure is obtained as the restriction to the total range, of a given packing measure on the euclidean space. The result is valid for large dimensions. The condition on the dimension is discussed by computing the packing dimension of the total range. This is done under a weak assumption on the regularity of the branching mechanism
Afonso, Maria de Lourdes Belchior. "Evaluation of ruin probabilities for surplus processes with credibility and surplus dependent premiums." Doctoral thesis, Instituto Superior de Economia e Gestão, 2008. http://hdl.handle.net/10400.5/1113.
Повний текст джерелаIn this dissertation we present a method for the numerical evaluation of the ruin prob¬ability in continuous and finite time for a classical risk process where the premium can change from year to year. A major consideration in the development of this methodology is that it should be easily applicable to large portfolios. Our method is based on the simu¬lation of the annual aggregate claims and then on the calculation of the ruin probability for a given surplus at the start and at the end of each year. We calculate the within-year ruin probability assuming first a Brownian motion approximation and, secondly, a translated gamma distribution approximation for aggregate claim amounts. We will check the accuracy of our method by comparing our results applied to the classical risk process with the results of Wikstad (1971) and Seal (1978b) in finite and continuous time. We also check its accuracy in the case of exponential and mixed expo¬nential claim amounts by choosing a very long time horizon and comparing results with exact results for infinite time ruin. We apply our method to three different risk models where the premium is set at the start of each year but can change from year to year. For each model aggregate claims have a compound Poisson distribution with either a fixed or a variable Poisson parameter for the claim number process. For the first model the premium in each year is a function of the surplus level at the start of that, or an earlier, year. The premium rate is set so that the probability of ultimate ruin from that time is approximately equal to a pre-determined value. We will use De Vylder's (1978) approximation to achieve that. For the second and third models we consider a portfolio of risks which satisfy the assumptions of the Btihlmann or Btihlmann-Straub credibility models with the pure premium updated each year in accordance with these models.
E proposto um método para o cálculo da probabilidade de ruina em tempo contínuo e horizonte finito para um processo de Poisson composto onde o premio e constante ao longo de cada período de tempo (ano), mas depende da informação passada de indemnizacoes agregadas anuais. Em funçao disso, o premio e ajustado anualmente, passando a ser variavel de período para período. Um dos grandes contributos deste trabalho e o facto da metodologia apresentada ser facilmente aplicavel a carteiras de grande dimensao. O metodo e baseado na simulacão das indemnizacoes agregadas anuais e no calculo da probabilidade de ruína dado um determi¬nado montante de reserva no início e no fim do período. Este calculo da probabilidade de ruína e aproximado de duas formas: primeiro usando um movimento Browniano adequado e depois uma aproximaçao a distribuído gama deslocada. A coerencia dos resultados produzidos pelo modelo e testada comparando os resultados produzidos para o modelo clíassico de risco com o modelo-base e com os resultados exactos obtidos por Wikstad (1971) e por Seal (1978), em tempo contínuo e horizonte finito. O metodo e aplicado a tres modelos de risco diferentes em que o premio e actualizado no ínicio do ano. Para cada modelo as indemnizaçcãoes agregadas seguem uma distribuiçcãao de Poisson composta em que processo do nímero de sinistros tem o parâmetro de Poisson fixo ou variavel. No primeiro modelo o premio e definido como função do nível de reserva em algum momento anterior. O coeficiente de carga para o premio anual e determinado em cada caso de forma a probabilidade em horizonte infinito, partindo da reserva incial considerada, ser aproximadamente um valor pré-definido para o modelo classico. Para tal, e utilizada a aproximacão de De Vylder (1978). No segundo e terceiro modelos considera-se uma carteira que satisfaz as hipóteses dos modelos de credibilidade de Bühlmann e Bühlmann-Straub sendo o premio anual actualizado de acordo com estes modelos.
Pereira, Gonçalo André Nunes. "Modelling sovereign debt with Lévy Processes." Master's thesis, Instituto Superior de Economia e Gestão, 2014. http://hdl.handle.net/10400.5/7611.
Повний текст джерелаPropomos modelizar o risco de crédito soberano de cinco países da zona Euro (Portugal, Irlanda, Itália, Grécia e Espanha) seguindo uma abordagem estrutural de primeira passagem em que o movimento Browniano geométrico é substituído por um processo de Lévy regido apenas por uma componente de saltos. Deste modo, introduzimos incrementos assimétricos e leptocúrticos e a possibilidade de incumprimento instantâneo, removendo assim algumas das principais limitações do modelo Black-Scholes. Calculamos a probabilidade de sobrevivência como preço de uma opção barreira discreta, utilizando um método de valorização de opções baseado na aproximação da densidade de transição como expansão em série de Fourier de cossenos. Assumindo uma taxa de recuperação determinística, calibramos o modelo de Lévy Carr-Geman-Madan-Yor (CGMY) utilizando spreads de Credit Default Swaps semanais e obtemos a estrutura temporal de probabilidades de incumprimento. Tiramos ainda partido da representação do processo Variance Gamma (uma instância do modelo CGMY) como movimento Browniano modificado temporalmente para considerar uma estrutura de dependência entre os riscos de crédito soberanos através de uma modificação temporal comum. Em seguida, ilustramos um possível procedimento de calibração multidimensional e obtemos a distribuição de sobrevivência conjunta via simulação.
We propose to model the sovereign credit risk of five Euro area countries (Portugal, Ireland, Italy, Greece and Spain) under a first passage structural approach, replacing the classical geometric Brownian motion dynamics with a pure jump Lévy process. This framework caters for skewness, fat tails and instantaneous defaults, thus addressing some of the main drawbacks of the Black-Scholes model. We compute the survival probability as the price of a discrete barrier option, using an option pricing method based on the approximation of the transition density as a Fourier-cosine series expansion. Assuming a deterministic recovery rate, we calibrate the Carr-Geman-Madan-Yor (CGMY) Lévy model to weekly Credit Default Swaps data and obtain the default probability term structure. By drawing on the representation of the Variance Gamma process (a particular instance of the CGMY model) as a time-changed Brownian motion, we accommodate dependency between sovereigns via a common time change. We then illustrate a possible multivariate calibration procedure and simulate the joint default distribution.
Triampo, Wannapong. "Non-Equilibrium Disordering Processes In binary Systems Due to an Active Agent." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/26738.
Повний текст джерелаPh. D.