Добірка наукової літератури з теми "Breccia intrusions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Breccia intrusions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Breccia intrusions"

1

NICOLL, GRAEME R., MARIAN B. HOLNESS, VALENTIN R. TROLL, COLIN H. DONALDSON, EOGHAN P. HOLOHAN, C. HENRY EMELEUS, and DAVID CHEW. "Early mafic magmatism and crustal anatexis on the Isle of Rum: evidence from the Am Màm intrusion breccia." Geological Magazine 146, no. 3 (March 25, 2009): 368–81. http://dx.doi.org/10.1017/s0016756808005864.

Повний текст джерела
Анотація:
AbstractThe Rum Igneous Centre comprises two early marginal felsic complexes (the Northern Marginal Zone and the Southern Mountains Zone), along with the later central ultrabasic–basic layered intrusions. These marginal complexes represent the remnants of near-surface to eruptive felsic magmatism associated with caldera collapse, examples of which are rare in the North Atlantic Igneous Province. Rock units include intra-caldera collapse breccias, rhyolitic ignimbrite deposits and shallow-level felsic intrusions, as well the enigmatic ‘Am Màm intrusion breccia’. The latter comprises a dacitic matrix enclosing lobate basaltic inclusions (~1–15 cm) and a variety of clasts, ranging from millimetres to tens of metres in diameter. These clasts comprise Lewisian gneiss, Torridonian sandstone and coarse gabbro. Detailed re-mapping of the Am Màm intrusion breccia has shown its timing of emplacement as syn-caldera, rather than pre-caldera as previously thought. Textural analysis of entrained clasts and adjacent, uplifted country rocks has revealed their thermal metamorphism by early mafic intrusions at greater depth than their present structural position. These findings provide a window into the evolution of the early mafic magmas responsible for driving felsic magmatism on Rum. Our data help constrain some of the physical parameters of this early magma–crust interaction and place it within the geochemical evolution of the Rum Centre.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shaw, CSJ, G. M. Young, and C. M. Fedo. "Sudbury-type breccias in the Huronian Gowganda Formation near Whitefish Falls, Ontario: products of diabase intrusion into incompletely consolidated sediments?" Canadian Journal of Earth Sciences 36, no. 9 (September 1, 1999): 1435–48. http://dx.doi.org/10.1139/e99-057.

Повний текст джерела
Анотація:
Sudbury breccias are commonly attributed to meteoritic impact at about 1.85 Ga in the vicinity of the Sudbury Igneous Complex. In the Whitefish Falls area, about 75 km southwest of Sudbury, similar breccias are widely developed in argillites of the ~2.3 Ga Gowganda Formation. There is abundant evidence of "soft sediment" deformation of the Huronian sediments in the form of complex "fault" contacts, clastic dyke intrusions, and chaotic folding. These movements appear to have been penecontemporaneous with intrusion of highly irregular diabase bodies, which are interpreted as being older than the ~2.2 Ga Nipissing diabase. Complex shapes of diabase bodies and highly irregular contact relationships between diabase and argillites, including intrusions of sediment veins into diabase, support intrusion of the diabase into incompletely consolidated sediments. These data, together with chemical evidence of mixing of diabase, argillite, and other materials in the breccia bodies, suggest that the breccias at Whitefish Falls may have formed as a result of interaction between hot mafic magma and semiconsolidated, water-rich mud, more than 350 Ma prior to formation of the Sudbury Igneous Complex and attendant phenomena that are presumed to be impact related.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

ROBINS, BRIAN. "The mode of emplacement of the Honningsvåg Intrusive Suite, Magerøya, northern Norway." Geological Magazine 135, no. 2 (March 1998): 231–44. http://dx.doi.org/10.1017/s0016756898008395.

Повний текст джерела
Анотація:
The Honningsvåg Intrusive Suite consists of several layered mafic/ultramafic intrusions and a transgressive body of igneous breccia that appears to represent a magma conduit. It is emplaced into a Silurian, flysch-type sedimentary sequence that is thermally metamorphosed to spotted slate, cordierite–andalusite or pyroxene hornfels and agmatitic migmatite. Folds and flattened reduction spots in the hornfelses suggest that emplacement took place after Caledonian deformation and development of a slaty cleavage. Tectonic rotation subsequent to emplacement has led to exposure of the Honningsvåg Intrusive Suite in a natural cross-section corresponding to ∼10 km of crustal depth. Basaltic magma was initially emplaced as a several-kilometre-tall pipe that crystallized to form Intrusion 1. A second magma chamber was initiated alongside this pipe and subsequently expanded laterally into a sill-like magma body as batches of olivine-saturated basalt were added. A later magma chamber, represented by Intrusion 4, developed largely within the cumulates forming the upper part of Intrusion 2 and appears to have been accompanied by opening of a broad inclined feeder into which blocks and slabs of older cumulates collapsed. The resulting igneous breccias of Intrusion 3 are chaotic and largely clast-dominated in the lower part of the conduit, but enclosed slabs are matrix supported and orientated parallel to an originally subhorizontal banding in the feldspathic peridotite matrix in the upper part. The core of the breccia body has a troctolite matrix and contains blocks of older breccia, suggesting re-opening of the conduit, either during the crystallization of Intrusion 4 or possibly during the development of chambers represented by the younger layered intrusions. The cumulates in Intrusion 4 subsided sufficiently to invert marginal parts of the Layered Series before a further magma chamber was initiated in its roof rocks. The last major magma chamber opened alongside Intrusion 5 and extended upwards as a pipe or broad dyke to the highest structural levels exposed. Cross-cutting relationships show that the Honningsvåg magma chambers were not active simultaneously but were emplaced sequentially, generally at successively higher structural levels. Olivine tholeiite magma initially pooled in a crustal zone where it had neutral buoyancy. Subsequent chambers are suggested to have been initiated by emplacement of magma along the density discontinuities that existed above and around crystallized intrusions and their associated hornfelses. Chambers evolved by fractional crystallization, assimilation of country rocks and periodic replenishment. The abandonment of magma chambers may have resulted from the expulsion of low-density residual melts.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Platten, I. M., and M. S. Money. "Formation of late Caledonian subvolcanic breccia pipes at Cruachan Cruinn, Grampian Highlands, Scotland." Transactions of the Royal Society of Edinburgh: Earth Sciences 78, no. 2 (1987): 85–103. http://dx.doi.org/10.1017/s0263593300011007.

Повний текст джерела
Анотація:
ABSTRACTPipe-shaped breccia bodies associated with diorite intrusions are composed mainly of angular clasts of local schists with a few transported clasts of quartzite. Plate shaped fragments are commonly oriented to define planar fabrics in the breccias. These features indicate the operation of gas fluidisation within the pipes and both entrainment and expanded bed conditions are inferred. The fabrics result from the collapse of the fluidised suspensions as the gas flow declined. Dilational fracture patterns in the country rock comparable with the stress release patterns found around mine shafts can be matched with the fractures required to produce the angular schist clasts. It is concluded that fracturing and the introduction of fragments into the fluidised breccia system was a continuous process and that the pipe diameter increased progressively with time. Microdiorite sheets and related stock like bodies of diorite cut and metamorphose the breccias. Compaction, hornfelsing and hydrothermal alteration also contributed to breccia formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chubb, P. T., D. C. Vogel, D. C. Peck, R. S. James, and R. R. Keays. "Occurrences of pseudotachylyte at the East Bull Lake and Shakespeare–Dunlop intrusions, Ontario, Canada." Canadian Journal of Earth Sciences 31, no. 12 (December 1, 1994): 1744–48. http://dx.doi.org/10.1139/e94-155.

Повний текст джерела
Анотація:
Pseudotachylyte bodies were recently identified within and adjacent to the Early Proterozoic East Bull Lake and Shakespeare–Dunlop intrusions, located approximately 25–40 km west-southwest of the western margin of the Sudbury Igneous Complex. These breccia-like bodies locally form extensive vein networks and are preferentially developed along the contact between the intrusions and older Archean granitoid rocks. The pseudotachylyte veins comprise variable proportions of locally derived rock fragments and an aphanitic to fine-grained crystalline matrix that commonly displays flow textures. The veins appear to have formed by intense cataclasis and (or) frictional melting. These occurrences are very similar in appearance to Sudbury Breccia dykes that are observed at a radial distance of up to 80 km from the Sudbury Igneous Complex. Sudbury Breccia is widely believed to have formed as a result of the Sudbury event—a cataclysmic explosion that occurred at 1.85 Ga. The location of the pseudotachylyte veins described herein may coincide with one of the concentric bands of relatively intense Sudbury Breccia development observed to the north of the Sudbury Igneous Complex.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Poitrenaud, Thomas, Éric Marcoux, Romain Augier, and Marc Poujol. "The perigranitic W-Au Salau deposit (Pyrenees, France): polyphase genesis of a late Variscan intrusion related deposit." BSGF - Earth Sciences Bulletin 192 (2021): 22. http://dx.doi.org/10.1051/bsgf/2020044.

Повний текст джерела
Анотація:
A field study combined with a laboratory study and 3D modeling have been performed in order to decipher the genesis of the Salau deposit W-Au mineralization (Pyrenees, France), one of the most important for tungsten in Europe. Results show the existence of two superimposed ore types, emplaced ca. 10 km depth and within decreasing temperature conditions: a calcic silicates skarn with rare scheelite and disseminated sulphides followed by a mineralized breccia with massive sulphides (pyrrhotite and chalcopyrite dominant), coarse-grained scheelite and gold, representing the main part of the ore mined in the past. This breccia is localized in ductile-brittle shear-zones which crosscut the granodiorite. U/Pb dating on zircon, apatite and scheelite, previously realized, confirmed this polyphase evolution. These two types of mineralization, linked to the emplacement of two successive intrusions as confirmed by sulphur isotopic analysis, granodioritic then leucogranitic, can be classified as belonging to the Intrusion-Related Gold Deposit type (IRGD). The emplacement of the high-grade gold and scheelite breccia was initiated by the progressive localization of the regional deformation in the Axial Zone of the Pyrenees during the Permian within E-W dextral-reverse faults.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Priambodo, Galih, Mariyanto Mariyanto, and Wien Lestari. "Magnetotelluric data analysis using 2D resistivity modelling in Gondang region, Bojonegoro." Journal of Physics: Conference Series 2309, no. 1 (July 1, 2022): 012020. http://dx.doi.org/10.1088/1742-6596/2309/1/012020.

Повний текст джерела
Анотація:
Abstract Previous studies in Gondang Subdistricthave identified underground mud reservoirnear a rock intrusion, while another study near Gondang Subdistrict has identified deep fault structures. This study will identify the distribution and characteristics of possible geological features in the area using magnetotelluric (MT) method to further describe the relationship between the geological features related to local geology. MT data measurements were conducted on 7 stations alonga north-south line, then modelled in 2D using nonlinear conjugate gradient algorithm. The model was used to describe the subsurface resistivity distribution and to identify the geological features. The results show 5 resistive zones (20–1250 Ω⋅m) and 4 conductive zones (≤10 Ω⋅m). The former consist of 4 vertical zones, 1 vertical zone deeper than 5 km, and 1 horizontal zone near the surface. 2 conductive zones surround a resistive zone, while 2 others stretch below the horizontal resistive zone. The vertical resistive zones are interpreted as andesite intrusions, and the horizontal one as volcanic breccia. The conductive zones are interpreted consisting of tuff and marl with possible saline water content. 3 vertical intrusions are thought to have the same source, and all vertical intrusions are suspected to co-occurr with the Pandan Volcano intrusion.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tschirhart, Victoria, John A. Percival, and Charlie W. Jefferson. "Geophysical models of the Montresor metasedimentary belt and its environs, central Nunavut, Canada." Canadian Journal of Earth Sciences 52, no. 10 (October 2015): 833–45. http://dx.doi.org/10.1139/cjes-2015-0008.

Повний текст джерела
Анотація:
Recent identification of hydrothermally altered rocks and breccia in the underexplored Montresor belt of Paleoproterozoic metasedimentary rocks suggests the possible presence of undiscovered mineralization. This study examines potential field data from the region with the goal of identifying subsurface features that could be associated with or serve as vectors to mineralization (subsurface alteration zones, faulting and (or) igneous intrusions). Gravity data were used to model regional and local geological features using known geology and physical properties from the study area and environs as constraints, and documents dense intrusive bodies underlying the Paleoproterozoic sequences. Maps of transformed apparent magnetic susceptibility values outline corridors of weak magnetization that correspond to observed zones of non-magnetic breccia and epidote–hematite–quartz alteration. Imputing the apparent susceptibility and rock property information into a magnetic forward model defines the geometry of this alteration zone, which is best explained as a northerly dipping non-magnetic or demagnetized, metasomatized intrusive sheet. The presence of previously undocumented igneous intrusions, their association with demagnetized hydrothermal breccia, and the continuity of the demagnetized zone suggests additional prospective areas within the region. This geological–geophysical framework for the nature and geometry of the Montresor belt and its surrounds highlights the importance of integrated modelling for areas with limited data.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Matton, Guillaume, Michel Jébrak, and James K. W. Lee. "Resolving the Richat enigma: Doming and hydrothermal karstification above an alkaline complex." Geology 33, no. 8 (August 1, 2005): 665–68. http://dx.doi.org/10.1130/g21542ar.1.

Повний текст джерела
Анотація:
Abstract The Richat structure (Sahara, Mauritania) appears as a large dome at least 40 km in diameter within a Late Proterozoic to Ordovician sequence. Erosion has created circular cuestas represented by three nested rings dipping outward from the structure. The center of the structure consists of a limestone-dolomite shelf that encloses a kilometer-scale siliceous breccia and is intruded by basaltic ring dikes, kimberlitic intrusions, and alkaline volcanic rocks. Several hypotheses have been presented to explain the spectacular Richat structure and breccia, but their origin remains enigmatic. The breccia body is lenticular in shape and irregularly thins at its extremities to only a few meters. The breccia was created during karst dissolution and collapse. Internal sediments fill the centimeter- to meter-scale cavities. Alkaline enrichment and the presence of Cretaceous automorphous neoformed K-feldspar demonstrate the hydrothermal origin of these internal sediments and their contemporaneity with magmatism. A model is proposed in which doming and the production of hydrothermal fluids were instrumental in creating a favorable setting for dissolution. The circular Richat structure and its breccia core thus represent the superficial expression of a Cretaceous alkaline complex with an exceptionally well preserved hydrothermal karst infilling at its summit.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Escolme, Angela, David R. Cooke, Julie Hunt, Ron F. Berry, Roland Maas, and Robert A. Creaser. "The Productora Cu-Au-Mo Deposit, Chile: A Mesozoic Magmatic-Hydrothermal Breccia Complex with Both Porphyry and Iron Oxide Cu-Au Affinities." Economic Geology 115, no. 3 (May 1, 2020): 543–80. http://dx.doi.org/10.5382/econgeo.4718.

Повний текст джерела
Анотація:
Abstract The Productora Cu-Au-Mo deposit is hosted by a Cretaceous hydrothermal breccia complex in the Coastal Cordillera of northern Chile. The current resource, which includes the neighboring Alice Cu-Mo porphyry deposit, is estimated at 236.6 Mt grading 0.48% Cu, 0.10 g/t Au, and 135 ppm Mo. Local wall rocks consist of a thick sequence of broadly coeval rhyolite to rhyodacite lapilli tuffs (128.7 ± 1.3 Ma; U-Pbzircon) and two major intrusions: the Cachiyuyito tonalite and Ruta Cinco granodiorite batholith (92.0 ± 1.0 Ma; U-Pbzircon). Previous studies at Productora concluded the deposit had strong affinities with the iron oxide copper-gold (IOCG) clan and likened the deposit to Candelaria. Based on new information, we document the deposit geology in detail and propose a new genetic model and alternative classification as a magmatic-hydrothermal breccia complex with closer affinities to porphyry systems. Hydrothermal and tectonic breccias, veins, and alteration assemblages at Productora define five paragenetic stages: stage 1 quartz-pyrite–cemented breccias associated with muscovite alteration, stage 2 chaotic matrix-supported tectonic-hydrothermal breccia with kaolinite-muscovite-pyrite alteration, stage 3 tourmaline-pyrite-chalcopyrite ± magnetite ± biotite-cemented breccias and associated K-feldspar ± albite alteration, stage 4 chalcopyrite ± pyrite ± muscovite, illite, epidote, and chlorite veins, and stage 5 calcite veins. The Productora hydrothermal system crosscuts earlier-formed sodic-calcic alteration and magnetite-apatite mineralization associated with the Cachiyuyito stock. Main-stage mineralization at Productora was associated with formation of the stage 3 hydrothermal breccia. Chalcopyrite is the dominant hypogene Cu mineral and occurs predominantly as breccia cement and synbreccia veins with pyrite. The Alice Cu-Mo porphyry deposit is characterized by disseminated chalcopyrite and quartz-pyrite-chalcopyrite ± molybdenite vein stockworks hosted by a granodiorite porphyry stock. Alice is spatially associated with the Silica Ridge lithocap, which is characterized by massive, fine-grained, quartz-altered rock above domains of alunite, pyrophyllite, and dickite. Rhenium-Os dating of molybdenite indicates that main-stage mineralization at Productora occurred at 130.1 ± 0.6 Ma, and at 124.1 ± 0.6 Ma in the Alice porphyry. Chalcopyrite and pyrite from Productora have δ34Ssulfide values from –8.5 to +2.2‰, consistent with a magmatic sulfur source and fluids evolving under oxidizing conditions. No significant input from evaporite- or seawater-sourced fluids was detected. Stage 3 tourmalines have average initial Sr of 0.70397, consistent with an igneous-derived Sr source. The Productora magmatic-hydrothermal breccia complex formed as a result of explosive volatile fluid release from a hydrous intrusive complex. Metal-bearing fluids were of magmatic affinity and evolved under oxidizing conditions. Despite sharing many similarities with the Andean IOCG clan (strong structural control, regional sodic-calcic alteration, locally anomalous U), fluid evolution at the Productora Cu-Au-Mo deposit is more consistent with that of a porphyry-related magmatic hydrothermal breccia (sulfur-rich, acid alteration assemblages and relatively low magnetite contents, <5 vol %). The Productora camp is an excellent example of the close spatial association of Mesozoic magnetite-apatite, porphyry, and magmatic-hydrothermal breccia mineralization styles, a relationship seen throughout the Coastal Cordillera of northern Chile.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Breccia intrusions"

1

Stewart, Peter William. "Geology, geochemistry, geochronology and genesis of granitoid clasts in breccia-conglomerates, MacLean extension orebody, Buchans, Newfoundland /." 1985. http://collections.mun.ca/u?/theses,119284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roberts, Sarah Elizabeth. "Breccia of Frog Lakes : reconstructing Triassic volcanism and subduction initiation in the east-central Sierra Nevada, California." Thesis, 2014. http://hdl.handle.net/1805/4085.

Повний текст джерела
Анотація:
Indiana University-Purdue University Indianapolis (IUPUI)
The Antler and Sonoma orogenies occurred along the southwest-trending passive Pacific margin of North America during the Paleozoic concluding with the accretion of the McCloud Arc. A southeast-trending sinistral transform fault truncated the continental margin in the Permian, becoming a locus for initiation of an east-dipping subduction zone creating the Sierran magmatic arc. Constrained in age between two early Triassic tuff layers, the volcanic clasts in the breccia of Frog Lakes represent one of the earliest records of mafic magmatism in the eastern Sierra Nevada. Tholeiitic rock clasts found in the breccia of Frog Lakes in the Saddlebag Lake pendant in the east central Sierra Nevada range in composition from 48% to 63% SiO2. Boninites produced by early volcanism of subduction initiation by spontaneous nucleation at the Izu-Bonin-Mariana arc are more depleted in trace element concentrations than the clasts while andesites from the northern volcanic zone of the Andes produced on crust 50 km thick have similar levels of enrichment and provide a better geochemical modern analogue. Textural analysis of the breccia of Frog Lakes suggest a subaqueous environment of deposition from a mature magmatic arc built on continental crust > 50 km thick during the Triassic. The monzodiorites of Saddlebag and Odell Lakes are temporal intrusive equivalents of the breccia of Frog Lakes and zircon geochemistry indicates a magmatic arc petrogenesis.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Breccia intrusions"

1

Bradbury, James C. Intrusive breccias at Hicks Dome, Hardin County, Illinois. Champaign, Ill. (Natural Resources Building, 615 E. Peabody Dr., Champaign 61820): Illinois State Geological Survey, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Reynolds, Richard L. Paleomagnetic and ⁴⁰Ar/³⁹Ar results from the Grant intrusive breccia and comparison to the Permian Downeys Bluff sill--evidence for Permian igneous activity at Hicks Dome, southern Illinois Basin. Washington: U.S. G.P.O., 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wampler, Peter. A fluid inclusion and alteration study of the Spruce Claim breccia pipes, central Cascades, Washington. 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Breccia intrusions"

1

"intrusion breccia." In Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik, 745. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41714-6_91570.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dirks, P. H. G. M., I. V. Sanislav, M. R. van Ryt, J. M. Huizenga, T. G. Blenkinsop, S. L. Kolling, S. D. Kwelwa, and G. Mwazembe. "Chapter 8: The World-Class Gold Deposits in the Geita Greenstone Belt, Northwestern Tanzania." In Geology of the World’s Major Gold Deposits and Provinces, 163–83. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.08.

Повний текст джерела
Анотація:
Abstract The Geita mine is operated by AngloGold Ashanti and currently comprises four gold deposits mined as open pits and underground operations in the Geita greenstone belt, Tanzania. The mine produces ~0.5 Moz of gold a year and has produced ~8.3 Moz since 2000, with current resources estimated at ~6.5 Moz, using a lower cut-off of 0.5 g/t. The geologic history of the Geita greenstone belt involved three tectonic stages: (I) early (2820–2700 Ma) extension (D1) and formation of the greenstone sequence in an oceanic plateau environment; (II) shortening of the greenstone sequence (2700–2660 Ma) involving ductile folding (D2–5) and brittle-ductile shearing (D6), coincident with long-lived igneous activity concentrated in five intrusive centers; and (III) renewed extension (2660–2620 Ma) involving strike-slip and normal faulting (D7–8), basin formation, and potassic magmatism. Major gold deposits in the Geita greenstone belt formed late in the history of the greenstone belt, during D8 normal faulting at ~2640 Ma, and the structural framework, mineral paragenesis, and timing of gold precipitation is essentially the same in all major deposits. Gold is hosted in iron-rich lithologies along contacts between folded metaironstone beds and tonalite-trondhjemite-granodiorite (TTG) intrusions, particularly where the contacts were sheared and fractured during D6–7 faulting. The faults, together with damage zones created along D3 fold hinges and D2–3 hydrothermal breccia zones near intrusions, formed microfracture networks that were reactivated during D8. The fracture networks served as conduits for gold-bearing fluids; i.e., lithologies and structures that trap gold formed early, but gold was introduced late. Fluids carried gold as Au bisulfide complexes and interacted with Fe-rich wall rocks to precipitate gold. Fluid-rock interaction and mineralization were enhanced as a result of D8 extension, and localized hydrofracturing formed high-grade breccia ores. Gold is contained in electrum and gold-bearing tellurides that occur in the matrix and as inclusions in pyrrhotite and pyrite. The gold mineralization is spatially linked to long-lived, near-stationary intrusive centers. Critical factors in forming the deposits include the (syn-D2–6) formation of damage zones in lithologies that enhance gold precipitation (Fe-rich lithologies); late tectonic reactivation of the damage zones during extensional (D8) faulting with the introduction of an S-rich, gold-bearing fluid; and efficient fluid-rock interaction in zones that were structurally well prepared.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Maher, Harmon, Alvar Braathen, Morgan Ganerød, Per Terje Osmundsen, Tim Redfield, Per Inge Myhre, Christopher Serck, and Sara Parcher. "Core complex fault rocks of the Silurian to Devonian Keisarhjelmen detachment in NW Spitsbergen." In New Developments in the Appalachian-Caledonian- Variscan Orogen. Geological Society of America, 2022. http://dx.doi.org/10.1130/2022.2554(11).

Повний текст джерела
Анотація:
ABSTRACT A Silurian–Devonian metamorphic core complex has recently been recognized in northwest Spitsbergen, on the northwest corner of the Barents Shelf at the junction between the Atlantic and Arctic oceans. The associated Keisarhjelmen detachment, a major, ductile-brittle fault zone, is 200–500 m thick and has a map trace >150 km. A top-to-the-north transport direction is parallel to the axis of a large-scale, shallowly north-plunging, detachment corrugation. This detachment zone separates overlying faulted Silurian–Devonian aged cover strata from underlying migmatitic rocks in the core. The detachment shows a diverse array of fault and metamorphic rocks with structural ascent, ranging from sheared migmatite, mylonite, ultramylonite, foliated cataclasite, pseudotachylite, and breccia. Footwall post-kinematic granitic intrusions occurred shortly prior to, and likely during, deposition of the older cover strata. Variably deformed, syn-kinematic granitic sheets and veins within the detachment zone are considered coeval. Thin sections show significant grain size reduction, porphyroclasts, and well-developed composite fault surfaces. Relict garnet sigma porphyroclasts associated with chlorite and sericite indicate retrogression. Feldspar porphyroclasts show significant sericite alteration, undulose extinction and limited recrystallization low in the detachment, and brittle deformation throughout. Quartz deformation textures and grain size vary considerably within and between samples. Deformation during retrogression continued into the brittle realm with the development of thick foliated cataclasites, fault breccias, and local pseudotachylites concentrated at the top of the detachment. Biotite in particular shows grain size reduction, concentration along C-surfaces, and shredding and redistribution, suggesting it played a significant role in both ductile and brittle faulting. Veins, micro-veins, and fluid inclusion planes are ubiquitous throughout the detachment, indicating substantial fault-related fluid flow. Given existing geochronologic and P-T (pressure-temperature) data from the basement rocks of the area, the kinematics, retrogression, and ductile-brittle transition are consistent with exhumation of a core complex developing by orogen-parallel extension associated with transtension during the Late Silurian and Early to Middle Devonian in northwest Spitsbergen. Remaining questions include how this core complex connects with coeval plate-scale strike-slip faults in Svalbard, and its relationship to mainland Norwegian core complexes and Devonian basins to the south.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hay, Jonathan P., Mark M. Haydon, and François Robert. "Chapter 27: Geology of the Porgera Gold Deposit, Papua New Guinea." In Geology of the World’s Major Gold Deposits and Provinces, 559–77. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.27.

Повний текст джерела
Анотація:
Abstract Porgera is a ~974-metric ton (t) Au, low-sulfidation, alkalic, epithermal gold deposit located in Papua New Guinea. The deposit is spatially associated with 6 Ma stocks of the mafic alkalic Porgera Intrusive Complex, which were emplaced within Cretaceous carbonaceous mudstones in a transpressional orogenic setting linked to continent-island arc collision. As with many other major magmatic-hydrothermal ore deposits in New Guinea, deep-seated, arc-normal transfer structures have been suggested as controls on intrusion emplacement through the creation of a localized extensional environment favorable for magma ascent. Gold mineralization occurred in two distinct phases, both within ≤0.2 m.y. of emplacement of the Porgera Intrusive Complex. Stage 1 mineralization of intrusion-related carbonate-base metal association consists of extensional vein swarms dominated by coarse intergrown pyrite ± galena and sphalerite, generally hosted within or proximal to the intrusive bodies of the Porgera Intrusive Complex. These veins represent the lowest grade and economically least significant mineralization phase. Overprinted high-grade epithermal Stage 2 mineralization consists of roscoelite, pyrite, and quartz veins and breccia veins ± subordinate amounts of barite, marcasite, sphalerite, tetrahedrite, galena, hematite, and tellurides. Gold mineralization is commonly associated with the roscoelite-rich coatings on vein walls or breccia clasts. Stage 2 mineralization is controlled by a deposit-scale extensional fault-fracture mesh and displays a variety of textural styles including: (1) <5-mm veinlets dominated by roscoelite, pyrite, and gold; (2) thicker veins up to 10 cm wide with roscoelite, pyrite, and gold on the margins with central bands of alternating crustiform quartz and thin layers of roscoelite-pyrite-gold; (3) hydrothermal breccias with roscoelite, pyrite, and gold coating breccia margins and internal clasts, with crustiform quartz forming the matrix. The giant endowment of the Porgera gold system is attributed to its favorable tectonic location and local extensional setting, its vertical extent, the oxidized nature of the mineralizing fluids, and highly efficient gold precipitation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baker, T., S. Mckinley, S. Juras, Y. Oztas, J. Hunt, L. Paolillo, S. Pontual, M. Chiaradia, A. Ulianov, and D. Selby. "Chapter 23: Alteration, Mineralization, and Age Relationships at the Kışladağ Porphyry Gold Deposit, Turkey." In Geology of the World’s Major Gold Deposits and Provinces, 467–95. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.23.

Повний текст джерела
Анотація:
Abstract The Miocene Kışladağ deposit (~17 Moz), located in western Anatolia, Turkey, is one of the few global examples of Au-only porphyry deposits. It occurs within the West Tethyan magmatic belt that can be divided into Cretaceous, Cu-dominant, subduction-related magmatic arc systems and the more widespread Au-rich Cenozoic magmatic belts. In western Anatolia, Miocene magmatism was postcollisional and was focused in extension-related volcanosedimentary basins that formed in response to slab roll back and a major north-south slab tear. Kışladağ formed within multiple monzonite porphyry stocks and dikes at the contact between Menderes massif metamorphic basement and volcanic rocks of the Beydağı stratovolcano in the Uşak-Güre basin. The mineralized magmatic-hydrothermal system formed rapidly (<400 kyr) between ~14.75 and 14.36 Ma in a shallow (<1 km) volcanic environment. Volcanism continued to at least 14.26 ± 0.09 Ma based on new age data from a latite lava flow at nearby Emiril Tepe. Intrusions 1 and 2 were the earliest (14.73 ± 0.05 and 14.76 ± 0.01 Ma, respectively) and best mineralized phases (average median grades of 0.64 and 0.51 g/t Au, respectively), whereas younger intrusions host progressively less Au (Intrusion 2A: 14.60 ± 0.06 Ma and 0.41 g/t Au; Intrusion 2 NW: 14.45 ± 0.08 Ma and 0.41 g/t Au; Intrusion 3: 14.39 ± 0.06 and 14.36 ± 0.13 Ma and 0.19 g/t Au). A new molybdenite age of 14.60 ± 0.07 Ma is within uncertainty of the previously published molybdenite age (14.49 ± 0.06 Ma), and supports field observations that the bulk of the mineralization formed prior to the emplacement of Intrusion 3. Intrusions 1 and 2 are altered to potassic (biotite-K-feldspar-quartz ± magnetite) and younger but deeper sodic-calcic (feldspar-amphibole-magnetite ± quartz ± carbonate) assemblages, both typically pervasive with disseminated to veinlet-hosted pyrite ± chalcopyrite ± molybdenite and localized quartz-feldspar stockwork veinlets and sodic-calcic breccias. Tourmaline-white mica-quartz-pyrite alteration surrounds the potassic core both within the intrusions and outboard in the volcanic rocks. Tourmaline was most strongly developed on the inner margins of the tourmaline-white mica zone, particularly along the Intrusion 1 volcanic contact where it formed breccias and veins, including Maricunga-style veinlets. Field relationships show that the early magmatic-hydrothermal events were cut by Intrusion 2A, which was then overprinted by Au-bearing argillic (kaolinite-pyrite ± quartz) alteration, followed by Intrusion 3 and late-stage, low-grade to barren argillic and advanced argillic alteration (quartz-pyrite ± alunite ± dickite ± pyrophyllite). Gold deportment changes with each successive hydrothermal event. The early potassic and sodic-calcic alteration controls much of the original Au distribution, with the Au dominantly deposited with feldspar and lesser quartz and pyrite. Tourmaline-white mica and argillic alteration events overprinted and altered the early Au-bearing feldspathic alteration and introduced additional Au that was dominantly associated with pyrite. Analogous Au-only deposits such as Maricunga, Chile, La Colosa, Colombia, and Biely Vrch, Slovakia, are characterized by similar alteration styles and Au deportment. The deportment of Au in these Au-only porphyry deposits differs markedly from that in Au-rich porphyry Cu deposits where Au is typically associated with Cu sulfides.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ross, Colin, Jeremy P. Richards, and Ross Sherlock. "Geology, Alteration, and Geochronology of the Cerro Vetas Porphyry Gold-Copper Deposit, Middle Cauca Belt, Colombia." In Tectonomagmatic Influences on Metallogeny and Hydrothermal Ore Deposits: A Tribute to Jeremy P. Richards (Volume II), 311–32. Society of Economic Geologists, 2021. http://dx.doi.org/10.5382/sp.24.17.

Повний текст джерела
Анотація:
Abstract The Cerro Vetas porphyry deposit is part of the Titiribi district of the Middle Cauca porphyry-epithermal belt of western Colombia. The Cerro Vetas porphyry stock consists of a premineral diorite intruded by a late-mineral quartz monzonite, with intrusion and contact breccias. These units intrude pre-Cenozoic basement metabasalts and schists, Oligocene-Miocene Amagá Formation sedimentary rocks with intercalated andesite flows. Two phases of potassic alteration are recognized, a biotite-dominant phase in the diorite, and secondary K-feldspar in the quartz-monzonite intrusion. An overprinting and grade destructive, calcic-sodic alteration (actinolite + albite ± magnetite) affects both porphyries. Biotite alteration is overprinted by weak-moderate phyllic alteration in the upper 100 m in the deposit. Below 100 m, phyllic alteration assemblages are constrained to structural zones. Mineralization is dominated by a chalcopyrite-gold-pyrite assemblage associated with biotite that is hosted in a truncated stockwork in the apical portion of the deposit with metal ratios typical of a gold-rich copper-gold porphyry. The intrusions were dated, using U-Pb in zircon laser ablation inductively coupled plasma-mass spectroscopy, to between 7.65 to 7.24 Ma, consistent with other deposits in the Middle Cauca belt. Lithologic, alteration, and stratigraphic relationships at the deposit suggest that the Cerro Vetas porphyry was emplaced at shallow depths and that the upper portion of the deposit has been eroded.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kelley, Karen D., Eric P. Jensen, Jason S. Rampe, and Doug White. "Chapter 17: Epithermal Gold Deposits Related to Alkaline Igneous Rocks in the Cripple Creek District, Colorado, United States." In Geology of the World’s Major Gold Deposits and Provinces, 355–73. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.17.

Повний текст джерела
Анотація:
Abstract Cripple Creek is among the largest epithermal districts in the world, with more than 800 metric tons (t) Au (>26.4 Moz). The ores are associated spatially, temporally, and genetically with ~34 to 28 Ma alkaline igneous rocks that were emplaced into an 18-km2 diatreme complex and surrounding Proterozoic rocks. Gold occurs in high-grade veins, as bulk tonnage relatively low-grade ores, and in hydrothermal breccias. Pervasive alteration in the form of potassic metasomatism is extensive and is intimately associated with gold mineralization. Based on dating of intrusions and molybdenite and gangue minerals (primarily using 40Ar/39Ar and Re-Os techniques), the region experienced a protracted but intermittent history of magmatism (over a period of at least 5 m.y.) and hydrothermal activity (intermittent over the final ~3 m.y. of magmatic activity). Key factors that likely played a role in the size and grade of the deposit were (1) the generation of alkaline magmas during a transition between subduction and extension that tapped a chemically enriched mantle source; (2) a long history of structural preparation, beginning in the Proterozoic, which created deep-seated structures to allow the magmas and ore fluids to reach shallow levels in the crust, and which produced a fracture network that increased permeability; and (3) an efficient hydrothermal system, including effective gold transport mechanisms, and multiple over-printed hydrothermal events.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pilco, Richard, and Sean McCann. "Chapter 22: Gold Deposits of the Yanacocha District, Cajamarca, Peru." In Geology of the World’s Major Gold Deposits and Provinces, 451–65. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.22.

Повний текст джерела
Анотація:
Abstract The Yanacocha district of northern Peru has produced >37 million ounces (Moz) Au since production commenced in 1993. Recognized as one of the world’s most prolific high-sulfidation epithermal gold districts, its discovery was made over a four-year period (1984–1988) through a joint venture alliance operated by Newmont Corporation. Over the past 30 years the geologic understanding of the district has been enhanced by research and documentation by many academic and Newmont geoscientists. The gold deposits are hosted within Tertiary volcanic rocks consisting of pyroclastic sequences cut by several generations of breccias and intrusions, all of which have undergone silicic and advanced argillic alteration. A dominant NE-trending structural corridor bounds all deposits in the district, and local northwest fault intersections with this trend are complimentary controls on mineralization. There are 12 major deposits discovered and exploited at Yanacocha. The largest, Cerro Yanacocha, has produced >17.5 Moz Au, whereas the newest deposit to be delineated, Antonio, has a >1.0 Moz resource. The depletion of shallow, supergene-oxidized deposits has necessitated the current underground development to exploit deeper sulfide deposits. Significant potential remains within the Yanacocha district in both oxide and sulfide deposits, and ongoing exploration efforts, are leveraging learnings from mined deposits and advances in exploration technologies and tools to extend the mine life.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Souza De, Stéphane, Stéphane Perrouty, Benoît Dubé, Patrick Mercier-Langevin, Robert L. Linnen, and Gema R. Olivo. "Chapter 2: Metallogeny of the Neoarchean Malartic Gold Camp, Québec, Canada." In Geology of the World’s Major Gold Deposits and Provinces, 29–52. Society of Economic Geologists, 2020. http://dx.doi.org/10.5382/sp.23.02.

Повний текст джерела
Анотація:
Abstract The Malartic gold camp is located in the southern part of the Archean Superior Province and straddles the Larder Lake-Cadillac fault zone that is between the Abitibi and Pontiac subprovinces. It comprises the world-class Canadian Malartic deposit (25.91 Moz, including past production, reserves, and resources), and smaller gold deposits located along faults and shear zones in volcanic and metasedimentary rocks of the Abitibi subprovince. North of the Larder Lake-Cadillac fault zone, the Malartic camp includes 2714 to 2697 Ma volcanic rocks and ≤2687 Ma turbiditic sedimentary rocks overlain by ≤2679 to 2669 Ma polymictic conglomerate and sandstone of the Timiskaming Group. South of the fault, the Pontiac subprovince comprises ≤2685 Ma turbiditic graywacke and mudstone, and minor ultramafic to mafic volcanic rocks and iron formations of the Pontiac Group. These supracrustal rocks were metamorphosed at peak greenschist to lower amphibolite facies conditions at ~2660 to 2658 Ma, during D2 compressive deformation, and are cut by a variety of postvolcanic intrusions ranging from ~2695 to 2640 Ma. The Canadian Malartic deposit encompasses several past underground operations and is currently mined as a low-grade, open-pit operation that accounts for about 80% of the past production and reserves in the camp. It dominantly consists of disseminated-stockwork replacement-style mineralization in greenschist facies sedimentary rocks of the Pontiac Group. The mineralized zones are spatially associated with the Sladen fault and ~2678 Ma subalkaline to alkaline porphyritic quartz monzodiorite and granodiorite. Field relationships and isotopic age data for ore-related vein minerals indicate that gold mineralization in the Canadian Malartic deposit occurred at ~2665 to 2660 Ma and was contemporaneous with syn- to late-D2 peak metamorphism. The smaller deposits in the camp include auriferous disseminated-stockwork zones of the Camflo deposit (1.9 Moz) and quartz ± carbonate-pyrite veins and breccias (0.6 Moz) along faults in chemically and mechanically favorable rocks. The age of these deposits is poorly constrained, but ~2692 Ma postmineral dikes, and ~2625 Ma hydrothermal titanite and rutile from the Camflo deposit highlight a long and complex hydrothermal history. Crosscutting relationships and regional geochronological constraints suggest that an early episode of pre-Timiskaming mineralization occurred at >2692 Ma, shortly after the end of volcanism in the Malartic camp, and postmetamorphic fluid circulation may have contributed to concentration or remobilization of gold until ~2625 Ma. However, the bulk of the gold was concentrated in the Canadian Malartic deposit during the main phase of compressive deformation and peak regional metamorphism.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Breccia intrusions"

1

Hadiyanto, Imam Fikri, Dina Hanifah, and Wildan Nur Hamzah. "Distribution of Volcanic Rocks Porosity of Dissected Kromong Paleovolcano: Analogue of Volcanic Reservoir." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21240-ms.

Повний текст джерела
Анотація:
Abstract The potentiality of unconventional play on the volcanic reservoir was evaluated for the purpose to deliver an integrated evaluation of shallow reservoir target associated with the Northwest Java Basin (NWJB). This study provides basis discovery for further exploration and dissemination of volcanic reservoir by presenting an overview of geometric and porosity type analysis of Kromong paleo-volcano complex deposits associated with the NWJB comprehensively. Furthermore, reservoir lithofacies and pore space deployment of Kromong volcanic deposits were studied. The detailed lithofacies analysis was carried out based on field observations from several dissected- and obscure dipping-outcrops in Kromong area associated with NWJB. Following this, a set of outcrop samples were processed for megascopic description integrated with thin-section analysis by using the polarized light microscope and XRF, respectively to assess different types of reservoir pore spaces and structure. Subsequently, the physical properties-porosity measurement was conducted using ImageJ software tools to understand the potentiality of high-quality reservoir formation. The results of this study show that rocks in Kromong area associated with NWJB can be comprehensively classified into reefal limestone for carbonate deposit and into 4 categories, including volcaniclastic lava, sheeting joint lava, pyroclastic breccia, volcanic intrusion, for volcanic deposits. The proposed volcanic reservoirs of volcanic play in this study are lithologically composed of autobreccia lava, sheeting joint lava, pyroclastic breccia to andesitic- and andescitic-dikes, which comprises explosive facies and intrusive facies. Pyroclastic breccia reservoirs are primary pore-type reservoirs with devitrified micropores as main reservoir space. Whilst volcanic dikes reservoirs are mainly porous-fractured-type reservoirs with cooling fracture porosity. In conclusion, following factors that control the presence of a volcanic reservoir are lithology, lithofacies, tectonism and vulcanism. Despite worldwide discoveries of volcanic reservoirs, neither the detailed potentiality evaluation nor the postulated assumption of volcanic reservoir development in NWJB field has been examined sufficiently. This contribution offers knowledge benefits by discussing the potentiality of the Cenozoic-Quarternary volcanic reservoir of the NWJB field and providing a reference for future exploration in the petroleum industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schutz, J. Leroy. "Gold mineralization associated with alkaline intrusives at the Carache Canyon breccia pipe prospect, Ortiz Mountains, New Mexico." In 46th Annual Fall Field Conference. New Mexico Geological Society, 1995. http://dx.doi.org/10.56577/ffc-46.167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ohrmundt, Sierra C., Richard E. Hanson, and Lindsay R. Caves. "PEPERITES, STEAM-EXPLOSION BRECCIAS, INTRUSIVE PYROCLASTIC ROCKS AND PHREATOMAGMATIC DIATREMES FORMED DURING INTRUSION OF ANDESITIC MAGMA INTO WET LACUSTRINE STRATA IN A 1.2 GA INTRA-ARC BASIN (BARBY FORMATION, SW NAMIBIA)." In GSA Annual Meeting in Indianapolis, Indiana, USA - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018am-323842.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Breccia intrusions"

1

Katz, L. R., D. J. Kontak, B. Dubé, and V. J. McNicoll. The Archean Côté Gold intrusion-related Au(-Cu) deposit, Ontario: a large-tonnage, low-grade deposit centred on a magmatic-hydrothermal breccia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2015. http://dx.doi.org/10.4095/296635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії