Добірка наукової літератури з теми "Brain aging, MRI, machine learning"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Brain aging, MRI, machine learning".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Brain aging, MRI, machine learning"
Shamir, Lior, and Joe Long. "Quantitative Machine Learning Analysis of Brain MRI Morphology throughout Aging." Current Aging Science 9, no. 4 (October 14, 2016): 310–17. http://dx.doi.org/10.2174/1874609809666160413113711.
Повний текст джерелаVaranasi, Sravani, Roopan Tuli, Fei Han, Rong Chen, and Fow-Sen Choa. "Age Related Functional Connectivity Signature Extraction Using Energy-Based Machine Learning Techniques." Sensors 23, no. 3 (February 1, 2023): 1603. http://dx.doi.org/10.3390/s23031603.
Повний текст джерелаLee, Won Hee. "The Choice of Machine Learning Algorithms Impacts the Association between Brain-Predicted Age Difference and Cognitive Function." Mathematics 11, no. 5 (March 2, 2023): 1229. http://dx.doi.org/10.3390/math11051229.
Повний текст джерелаGómez-Ramírez, Jaime, Miguel A. Fernández-Blázquez, and Javier J. González-Rosa. "Prediction of Chronological Age in Healthy Elderly Subjects with Machine Learning from MRI Brain Segmentation and Cortical Parcellation." Brain Sciences 12, no. 5 (April 29, 2022): 579. http://dx.doi.org/10.3390/brainsci12050579.
Повний текст джерелаKnight, S., R. Boyle, L. Newman, J. Davis, R. Rizzo, E. Duggan, C. De Looze, R. Whelan, R. A. Kenny, and R. Romero-Ortuno. "78 HIGHER NEUROVASCULAR SIGNAL ENTROPY IS ASSOCIATED WITH ACCELERATED BRAIN AGEING." Age and Ageing 50, Supplement_3 (November 2021): ii9—ii41. http://dx.doi.org/10.1093/ageing/afab219.78.
Повний текст джерелаMadole, James, James W. Madole, Simon R. Cox, Colin R. Buchanan, Stuart J. Ritchie, Mark E. Bastin, Ian J. Deary, and Elliot M. Tucker-Drob. "PREDICTING TRANSDIAGNOSTIC PSYCHOPATHOLOGY FROM INDICES OF AGING IN THE HUMAN STRUCTURAL CONNECTOME." Innovation in Aging 3, Supplement_1 (November 2019): S348. http://dx.doi.org/10.1093/geroni/igz038.1261.
Повний текст джерелаGuo, Yingying, Xi Yang, Zilong Yuan, Jianfeng Qiu, and Weizhao Lu. "A comparison between diffusion tensor imaging and generalized q-sampling imaging in the age prediction of healthy adults via machine learning approaches." Journal of Neural Engineering 19, no. 1 (February 1, 2022): 016013. http://dx.doi.org/10.1088/1741-2552/ac4bfe.
Повний текст джерелаMassetti, Noemi, Mirella Russo, Raffaella Franciotti, Davide Nardini, Giorgio Maria Mandolini, Alberto Granzotto, Manuela Bomba, et al. "A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum." Journal of Alzheimer's Disease 85, no. 4 (February 15, 2022): 1639–55. http://dx.doi.org/10.3233/jad-210573.
Повний текст джерелаCole, James H., Jonathan Underwood, Matthan W. A. Caan, Davide De Francesco, Rosan A. van Zoest, Robert Leech, Ferdinand W. N. M. Wit, et al. "Increased brain-predicted aging in treated HIV disease." Neurology 88, no. 14 (March 3, 2017): 1349–57. http://dx.doi.org/10.1212/wnl.0000000000003790.
Повний текст джерелаBashyam, Vishnu M., Guray Erus, Jimit Doshi, Mohamad Habes, Ilya M. Nasrallah, Monica Truelove-Hill, Dhivya Srinivasan, et al. "MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide." Brain 143, no. 7 (June 27, 2020): 2312–24. http://dx.doi.org/10.1093/brain/awaa160.
Повний текст джерелаДисертації з теми "Brain aging, MRI, machine learning"
Mahbod, Amirreza. "Structural Brain MRI Segmentation Using Machine Learning Technique." Thesis, KTH, Skolan för teknik och hälsa (STH), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-189985.
Повний текст джерелаZarogianni, Eleni. "Machine learning and brain imaging in psychosis." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22814.
Повний текст джерелаAbdulkadir, Ahmed [Verfasser], and Thomas [Akademischer Betreuer] Brox. "Brain MRI analysis and machine learning for diagnosis of neurodegeneration." Freiburg : Universität, 2018. http://d-nb.info/117696805X/34.
Повний текст джерелаKim, Eun Young. "Machine-learning based automated segmentation tool development for large-scale multicenter MRI data analysis." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4998.
Повний текст джерелаO'Leary, Brian. "A Vertex-Based Approach to the Statistical and Machine Learning Analyses of Brain Structure." University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1576254162111087.
Повний текст джерелаGinsburger, Kévin. "Modeling and simulation of the diffusion MRI signal from human brain white matter to decode its microstructure and produce an anatomic atlas at high fields (3T)." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS158/document.
Повний текст джерелаDiffusion Magnetic Resonance Imaging of water in the brain has proven very useful to establish a cartography of brain connections. It is the only in vivo modality to study anatomical connectivity. A few years ago, it has been shown that diffusion MRI is also a unique tool to perform virtual biopsy of cerebral tissues. However, most of current analytical models (AxCaliber, ActiveAx, CHARMED) employed for the estimation of white matter microstructure rely upon a basic modeling of white matter, with axons represented by simple cylinders and extra-axonal diffusion assumed to be Gaussian. First, a more physically plausible analytical model of the human brain white matter accounting for the time-dependence of the diffusion process in the extra-axonal space was developed for Oscillating Gradient Spin Echo (OGSE) sequence signals. A decoding tool enabling to solve the inverse problem of estimating the parameters of the white matter microstructure from the OGSE-weighted diffusion MRI signal was designed using a robust optimization scheme for parameter estimation. Second, a Big Data approach was designed to further improve the brain microstructure decoding. All the simulation tools necessary to construct computational models of brain tissues were developed in the frame of this thesis. An algorithm creating realistic white matter tissue numerical phantoms based on a spherical meshing of cell shapes was designed, enabling to generate a massive amount of virtual voxels in a computationally efficient way thanks to a GPU-based implementation. An ultra-fast simulation tool of the water molecules diffusion process in those virtual voxels was designed, enabling to generate synthetic diffusion MRI signal for each virtual voxel. A dictionary of virtual voxels containing a huge set of geometrical configurations present in white matter was built. This dictionary contained virtual voxels with varying degrees of axonal beading, a swelling of the axonal membrane which occurs after strokes and other pathologies. The set of synthetic signals and associated geometrical configurations of the corresponding voxels was used as a training data set for a machine learning algorithm designed to decode white matter microstructure from the diffusion MRI signal and estimate the degree of axonal beading. This decoder showed encouraging regression results on unknown simulated data, showing the potential of the presented approach to characterize the microstructure of healthy and injured brain tissues in vivo. The microstructure decoding tools developed during this thesis will in particular be used to characterize white matter tissue microstructural parameters (axonal density, mean axonal diameter, glial density, mean glial cells diameter, microvascular density ) in short and long bundles. The simulation tools developed in the frame of this thesis will enable the construction of a probabilistic atlas of the white matter bundles microstructural parameters, using a mean propagator based diffeomorphic registration tool also designed in the frame of this thesis to register each individual
SALVATORE, CHRISTIAN. "Development and validation of a Decision Support System for the automatic diagnosis of medical images from brain MRI studies." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/94834.
Повний текст джерелаMagrì, Salvatore. "Characterization of cerebral cortex folding in humans through MRI: quality control and dementia prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21245/.
Повний текст джерелаOlešová, Kristína. "Klasifikace stupně gliomů v MR datech mozku." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413113.
Повний текст джерелаYAMIN, MUHAMMAD ABUBAKAR. "Investigating Brain Functional Networks in a Riemannian Framework." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1040663.
Повний текст джерелаЧастини книг з теми "Brain aging, MRI, machine learning"
Kodner, Boris, Shiri Gordon, Jacob Goldberger, and Tammy Riklin Raviv. "Atlas of Classifiers for Brain MRI Segmentation." In Machine Learning in Medical Imaging, 36–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67389-9_5.
Повний текст джерелаYu, Renping, Minghui Deng, Pew-Thian Yap, Zhihui Wei, Li Wang, and Dinggang Shen. "Learning-Based 3T Brain MRI Segmentation with Guidance from 7T MRI Labeling." In Machine Learning in Medical Imaging, 213–20. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-47157-0_26.
Повний текст джерелаChen, Xu, Chunfeng Lian, Li Wang, Pew-Thian Yap, James J. Xia, and Dinggang Shen. "Segmenting Bones from Brain MRI via Generative Adversarial Learning." In Machine Learning in Dentistry, 27–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71881-7_3.
Повний текст джерелаDong, Pei, Xiaohuan Cao, Jun Zhang, Minjeong Kim, Guorong Wu, and Dinggang Shen. "Efficient Groupwise Registration for Brain MRI by Fast Initialization." In Machine Learning in Medical Imaging, 150–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67389-9_18.
Повний текст джерелаValverde, Juan Miguel, Artem Shatillo, Riccardo De Feo, Olli Gröhn, Alejandra Sierra, and Jussi Tohka. "Automatic Rodent Brain MRI Lesion Segmentation with Fully Convolutional Networks." In Machine Learning in Medical Imaging, 195–202. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32692-0_23.
Повний текст джерелаBao, Dongxing, Xiaoming Li, and Jin Li. "Lorentzian Norm Based Super-Resolution Reconstruction of Brain MRI Image." In Machine Learning and Intelligent Communications, 326–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73447-7_36.
Повний текст джерелаTahir, Muhammad. "Brain MRI Classification Using Gradient Boosting." In Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology, 294–301. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-66843-3_29.
Повний текст джерелаRoy, Snehashis, Aaron Carass, Jerry L. Prince, and Dzung L. Pham. "Subject Specific Sparse Dictionary Learning for Atlas Based Brain MRI Segmentation." In Machine Learning in Medical Imaging, 248–55. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10581-9_31.
Повний текст джерелаHabib, Md Rawshan, Ahmed Yousuf Suhan, Abhishek Vadher, Md Ashiqur Rahman Swapno, Md Rashedul Arefin, Saiful Islam, Khan Anik Rahman, and Md Shahnewaz Tanvir. "Clustering of MRI in Brain Images Using Fuzzy C Means Algorithm." In Machine Learning and Autonomous Systems, 437–48. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7996-4_31.
Повний текст джерелаGuan, Hao, Erkun Yang, Li Wang, Pew-Thian Yap, Mingxia Liu, and Dinggang Shen. "Linking Adolescent Brain MRI to Obesity via Deep Multi-cue Regression Network." In Machine Learning in Medical Imaging, 111–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59861-7_12.
Повний текст джерелаТези доповідей конференцій з теми "Brain aging, MRI, machine learning"
Chaphekarande, Prachi, and Deepa Deshpande. "Machine Learning Based Brain MRI Estimation Method." In 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT). IEEE, 2019. http://dx.doi.org/10.1109/icicict46008.2019.8993363.
Повний текст джерелаDasanayaka, Sasmitha, Sanju Silva, Vimuth Shantha, Dulani Meedeniya, and Thanuja Ambegoda. "Interpretable Machine Learning for Brain Tumor Analysis Using MRI." In 2022 2nd International Conference on Advanced Research in Computing (ICARC). IEEE, 2022. http://dx.doi.org/10.1109/icarc54489.2022.9754131.
Повний текст джерелаQu, Yili, Chufu Deng, Wanqi Su, Ying Wang, Yutong Lu, and Zhiguang Chen. "Multimodal Brain MRI Translation Focused on Lesions." In ICMLC 2020: 2020 12th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3383972.3384024.
Повний текст джерелаYong Yang, Ni-Ni Rao, and Shu-Ying Huang. "A novel fuzzy approach for segmentation of brain MRI." In 2008 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2008. http://dx.doi.org/10.1109/icmlc.2008.4620871.
Повний текст джерелаB, Preetika, M. Latha, M. Senthilmurugan, and R. Chinnaiyan. "MRI Image based Brain Tumour Segmentation using Machine Learning Classifiers." In 2021 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2021. http://dx.doi.org/10.1109/iccci50826.2021.9402508.
Повний текст джерелаAfshar, Leila Keshavarz, and Hedieh Sajedi. "Age Prediction based on Brain MRI Images using Extreme Learning Machine." In 2019 7th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE, 2019. http://dx.doi.org/10.1109/cfis.2019.8692156.
Повний текст джерелаParveen, Afiya, and Prabha Selvaraj. "Machine Learning Techniques for analysis of AD Detection using brain MRI." In 2022 International Conference on Computer Communication and Informatics (ICCCI). IEEE, 2022. http://dx.doi.org/10.1109/iccci54379.2022.9740739.
Повний текст джерелаJayasuriya, Surani Anuradha, and Alan Wee-Chung Liew. "Fractal dimension as a symmetry measure in 3D brain MRI analysis." In 2012 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2012. http://dx.doi.org/10.1109/icmlc.2012.6359511.
Повний текст джерелаDonnelly Kehoe, P., G. Pascariello, M. Quaglino, J. Nagel, and J. C. Gómez. "The changing brain in healthy aging: a multi-MRI machine and multicenter surface-based morphometry study." In 12th International Symposium on Medical Information Processing and Analysis, edited by Eduardo Romero, Natasha Lepore, Jorge Brieva, and Ignacio Larrabide. SPIE, 2017. http://dx.doi.org/10.1117/12.2256894.
Повний текст джерелаAsodekar, Bhagyashri H., Sonal A. Gore, and A. D. Thakare. "Brain Tumor analysis Based on Shape Features of MRI using Machine Learning." In 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA). IEEE, 2019. http://dx.doi.org/10.1109/iccubea47591.2019.9129512.
Повний текст джерела