Дисертації з теми "Braid group"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Braid group".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Longrigg, Jonathan James. "Aspects of Braid group cryptography." Thesis, University of Newcastle Upon Tyne, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492947.
Повний текст джерелаFranko, Jennifer M. "Braid group representations via the Yang Baxter equation." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3278226.
Повний текст джерелаSource: Dissertation Abstracts International, Volume: 68-09, Section: B, page: 5995. Advisers: Zhenghan Wang; Kent Orr. Title from dissertation home page (viewed May 9, 2008).
Weinberger, Oskar. "The braid group, representations and non-abelian anyons." Thesis, KTH, Matematik (Inst.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-167993.
Повний текст джерелаDetta kandidatexamensarbete berör unitära linjära representationer av flätgruppen, med motivering av deras koppling till två dimensionell partikelstatistik och de kvasipartiklar som kallas icke-abelska anyoner. Partikelstatistik i två dimensioner är relaterat till flätgruppen via fundamental gruppen av konfigurationsrummet av icke-särskiljbara partiklar i två dimensioner, och icke-abelska anyoner svarar mot icke-kommutativa unitära representationerav flätgruppen. I syfte att förstå dessa kopplingar och studera de matematiska möjligheterna för icke-abelska anyoner presenteras och undersöks algebraiska och topologiska definitioner såväl som resultat för flätor och deras representationer. Fokus är på representationer med låg dimension, och en karaktärisering av lågdimensionella irreducibla komplexa representationer analyseras. Vidarebetraktas unitariserbarheten av sådana representationer och konsekvenserna för icke-abelska anyoner.
Cornwell, Christopher R. "On the Combinatorics of Certain Garside Semigroups." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1381.pdf.
Повний текст джерелаPuente, Philip C. "Crystallographic Complex Reflection Groups and the Braid Conjecture." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011877/.
Повний текст джерелаHenderson, Roger William. "Cryptanalysis of braid group cryptosystem and related combinatorial structures." Thesis, Royal Holloway, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440519.
Повний текст джерелаSweeney, Andrew. "A Study of Topological Invariants in the Braid Group B2." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3407.
Повний текст джерелаPenrod, Keith G. "Infinite Product Group." BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/976.
Повний текст джерелаEast, James Phillip Hinton. "On Monoids Related to Braid Groups and Transformation Semigroups." School of Mathematics and Statistics, 2006. http://hdl.handle.net/2123/2438.
Повний текст джерелаEast, James Phillip Hinton. "On Monoids Related to Braid Groups and Transformation Semigroups." Thesis, The University of Sydney, 2005. http://hdl.handle.net/2123/2438.
Повний текст джерелаMund, Jens. "Quantum field theory of particles with braid group statistics in 2+1 dimensions." [S.l. : s.n.], 1998. http://www.diss.fu-berlin.de/1999/7/index.html.
Повний текст джерелаMeiners, Justin. "Computing the Rank of Braids." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8947.
Повний текст джерелаSönnerlind, Erik, and Gustav Brage. "Braid group statistics and exchange matrices of non-abelian anyons : with representations in Clifford algebra." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231567.
Повний текст джерелаNär man lämnar klassisk fysik och övergår till den kvantfysikaliska världen introduceras många nya koncept. En av de mest grundläggande idéerna inom kvantmekaniken är att partiklar inte längre har exakta positioner, eftersom dessa ersatts av väntevärden och sannolikheter. Detta leder till fenomenet att partiklar kan vara verkligt identiska, eftersom de inte längre kan särskiljas med hjälp av sina positioner. En viktig egenskap som särskiljer olika typer av partiklar är hur ett system beter sig vid ett utbyte av två sådana identiska partiklar. Historiskt sett delade denna egenskap upp partiklar i bosoner och fermioner, som uppvisar symmetri respektive antisymmetri vid ett partikelutbyte. I två dimensioner uppstår dock en ny typ av partiklar. Dessa partiklar kallas anyoner och beter sig annorlunda vid ett partikelutbyte. Vidare kan de delas upp i abelska och icke-abelska anyoner, varav denna rapport kommer fokusera på de senare. Utbytena kan representeras av den fundamentala gruppen av partiklarnas konfigurationsrum, och i två dimensioner blir denna fundamentala grupp flätgruppen. Genom att använda rotorer från en Cliffordalgebra och studera excitationer av Majoranafermioner, så visar denna rapport ett sätt att beräkna utbytesmatriserna för icke-abelska anyoner och deras tillhörande egenvärden. Vidare ges förslag på en generalisering av detta ramverk, tillsammans med områden där det kan tillämpas.
Ison, Molly Elizabeth. "Two Aspects of Topology in Graph Configuration Spaces." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/29214.
Повний текст джерелаMaster of Science
Hartsell, Jack. "A Normal Form for Words in the Temperley-Lieb Algebra and the Artin Braid Group on Three Strands." Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/etd/3504.
Повний текст джерелаCalligaris, Pierpaolo. "Finite orbits of the action of the pure braid group on the character variety of the Riemann sphere with five boundary components." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/25536.
Повний текст джерелаBrien, Renaud. "Normal Forms in Artin Groups for Cryptographic Purposes." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/23145.
Повний текст джерелаPizarro, Pavel Jesus Henriquez. "Representações do grupo de tranças por automorfismos de grupos." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16042012-102241/.
Повний текст джерелаFrom a group H and a element h H, we define a representation : \' B IND. n\' Aut(\'H POT. n\'), where \'B IND. n\' denotes the braid group on n strands, and \'H POT. n\' denotes the free product of n copies of H. We call the Artin type representation associated to the pair (H, h). Here we study various aspects of such representations. Firstly, we associate to each braid a group \' IND. (H,h)\' () and prove that the operator \' IND. (H,h)\' determines a group invariant of oriented links. We then give a topological construction of the Artin type representations and of the link invariant \' iND. (H,h)\' , and we prove that the Artin type representations are faithful if and only if h is nontrivial
Chettih, Safia. "Dancing in the stars| Topology of non-k-equal configuration spaces of graphs." Thesis, University of Oregon, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10193648.
Повний текст джерелаWe prove that the non-k-equal configuration space of a graph has a discretized model, analogous to the discretized model for configurations on graphs. We apply discrete Morse theory to the latter to give an explicit combinatorial formula for the ranks of homology and cohomology of configurations of two points on a tree. We give explicit presentations for homology and cohomology classes as well as pairings for ordered and unordered configurations of two and three points on a few simple trees, and show that the first homology group of ordered and unordered configurations of two points in any tree is generated by the first homology groups of configurations of two points in three particular graphs, K1,3, K1,4, and the trivalent tree with 6 vertices and 2 vertices of degree 3, via graph embeddings.
Akueson, Anani. "Eléments de géométrie tressée." Valenciennes, 1998. https://ged.uphf.fr/nuxeo/site/esupversions/2b3a587c-d83e-4d2a-96f1-a05576bb88fb.
Повний текст джерелаGuichard, Christelle. "Les nombres de Catalan et le groupe modulaire PSL2(Z)." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM057/document.
Повний текст джерелаIn this thesis, we study a morphism of mono"id $mu$ between the free mono"id on the alphabet of integers $nb$and the modular group $PSL_2(zb)$ considered as a mono"id, defined for all integer $a$by $mu(a)=begin{pmatrix} 0 & -1 1 & a+1 end{pmatrix}.$ The Catalan Numbers arised naturally in the study ofsubsets of the kernel of the morphism $mu$.Firstly, we introduce two rewriting systems, one on the finite alphabet ${0,1}$, and the other on the infinite alphabet of integers $nb$. We proove that bothof these rewriting systems defines a mono"id presentation of $PSL_2(zb)$ by generators and relations.On another note, we introduce the morphism of loop associated to the abelianised of the universal covering group of $PSL_2(zb)$, the group $B_3$ ofbraid group on $3$ strands. In two different contexts, the morphism of loop is associated to the number of "half-turns".Then, in the fourth and the fifth parts, we numerate subsets of the kernel of $mu_{|{0,1}}$ and of the kernel of $mu$,bi-graduated by the morphism of lengthand the morphism of loop. The sequences of Catalan numbers and other diagonals of the Catalan triangle come into the results.Lastly, we present the geometrical origin of this research : we detail the connection between our first aim,which was the study of convex integer polygones ofminimal area, and our interest for the mono"id generated by these particular matrices of $PSL_2(zb)$
Gonzalez, Pagotto Pablo. "Sur les monoïdes des classes de groupes de tresses." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM049.
Повний текст джерелаHurwitz showed that a branched cover f:M→N of surfaces with branch locus P⊂N determines and is determined, up to inner automorphism of the symmetric group S_m, by a homomorphism π_1(NP, ∗) → S_m . This result reduces the questions of existence and uniqueness of branched covers to combinatorial problems. For a suitable set of generators for π_1(NP, ∗), a representation π_1(NP, ∗) → S_m determines and is determined by a sequence (a_1 , b_1 , . . . , a_g , b_g , z_1, . . . , z_k ) of elements of S_m satisfying [a_1, b_1 ] · · · [a_g , b_g ]z_1 · · · z_k = 1. Thesequence (a_1 , b_1 , . . . , a_g , b_g , z_1 , . . . , z_k ) of permutations is called a Hurwitz system for f .Therefore, to understand the classes of branched covers one need to study the orbits of Hurwitz systems by suitable actions on S^n_m, n = 2g+k. One of such actions is the simultaneous conjugation that leads to the study of the set of double cosets of symmetric groups.In Chapter 1 we bring an exposition of the recent work of Neretin on the multiplicative structure on the set S_∞S^n_∞/S_∞ .In Chapter 2 we aim at extending Neretin’s results to the group B_∞ of finitely supported braids on infinitely many strands. We prove that B_∞B^n_∞/B_∞ admits such a multiplicative structure and explain how this structure is related to similar constructions in Aut(F_∞ ) and GL(∞). We also define a one-parameter generalization of the usual monoid structure on the set of double cosets of GL(∞) and show that the Burau representation provides a functor between the categories of double cosets of B_∞ and GL(∞).The last chapter is dedicated to the study of homomorphisms π_1(NP, ∗) → G, G a discrete group. We give an exposition of the stable classification of such homomorphisms following the work of Samperton and some new results concerning the number of stabilizations necessary to make them equivalent with respect to Hurwitz moves. We also explore a generalization of the classification of finite branched covers by introducing the braid monodromy for surfaces embedded in codimension 2. Following ideas of Kamada we defined a braid monodromy associated to braided surfaces, which correspond to G = B_∞ and study the spherical functions associated to braid group representations
Cumplido, Cabello María. "Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S022/document.
Повний текст джерелаIn the first part of this thesis we study the genericity conjecture: In the Cayley graph of the mapping class group of a closed surface we look at a ball of large radius centered on the identity vertex, and at the proportion of pseudo-Anosov vertices among the vertices in this ball. The genericity conjecture states that this proportion should tend to one as the radius tends to infinity. We prove that it stays bounded away from zero and prove similar results for a large class of subgroups of the mapping class group. We also present analogous results for Artin--Tits groups of spherical type, knowing that in this case being pseudo-Anosov is analogous to being a loxodromically acting element. In the second part we provide results about parabolic subgroups of Artin-Tits groups of spherical type: The minimal standardizer of a curve on a punctured disk is the minimal positive braid that transforms it into a round curve. We give an algorithm to compute it in a geometrical way. Then, we generalize this problem algebraically to parabolic subgroups of Artin--Tits groups of spherical type. We also show that the intersection of two parabolic subgroups is a parabolic subgroup and that the set of parabolic subgroups forms a lattice with respect to inclusion. Finally, we define the simplicial complex of irreducible parabolic subgroups, and we propose it as the analogue of the curve complex for mapping class groups
Kell, Christian [Verfasser], Martin [Akademischer Betreuer] Kreuzer, and Vladimir [Akademischer Betreuer] Shpilrain. "A Structure-based Attack on the Linearized Braid Group-based Diffie-Hellman Conjugacy Problem in Combination with an Attack using Polynomial Interpolation and the Chinese Remainder Theorem / Christian Kell ; Martin Kreuzer, Vladimir Shpilrain." Passau : Universität Passau, 2019. http://d-nb.info/1190352699/34.
Повний текст джерелаStylianakis, Charalampos. "Braid groups, mapping class groups, and Torelli groups." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7466/.
Повний текст джерелаKalka, Arkadius G. "Linear representations of braid groups and braid-based cryptography." [S.l.] : [s.n.], 2007. http://www.gbv.de/dms/weimar/toc/58986095X_toc.pdf.
Повний текст джерелаKim, Djun Maximilian. "Braid groups, orderings, and algorithms." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0028/NQ38913.pdf.
Повний текст джерелаLawrence, Ruth Jayne. "Homology representations of braid groups." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236125.
Повний текст джерелаMcLeay, Alan. "Subgroups of mapping class groups and braid groups." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/9075/.
Повний текст джерелаBangert, Patrick David. "Algorthmic problems in the braid groups." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417929.
Повний текст джерелаRecio-Mitter, David. "Topological complexity of surface braid groups." Thesis, University of Aberdeen, 2018. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=237921.
Повний текст джерелаRodrigues, Lucas, and Daniel Karlsson. "Why Do We Hate Brands? : A qualitative study of how the dark side of branding is influenced by group identification." Thesis, Umeå universitet, Företagsekonomi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-111206.
Повний текст джерелаKwon, Oh Kang. "Irreducible representations of braid groups via quantized enveloping algebras." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/32624.
Повний текст джерелаGandolfi, Guillaume. "Résultats sur les extensions singulières des groupes d'Artin et de tresses virtuelles." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMC215.
Повний текст джерелаThis thesis offers to study two objects related to singular braid monoids, the desingularization map and the family of Vassiliev invariants, in the respective framework of the singular Artin monoids and the singular virtual braid monoids. In the first chapter, we recall the definitions of these two objects in their original setting, namely the setting of the singular braid monoids which are extensions of the braid groups, before stating the problems which are related to these objects, i.e. deciding whether the desingularization map is one-to-one and whether the Vassilev invariants separate the (classical or singular) braids, as well as the results that answer them. In the second chapter, we give the basics of the theory of Artin groups and the definition of the main families of Artin groups before recalling the definition of the singular extension of an Artin group. We prove a singular version of Van der Lek's theorem on parabolic subgroups of an Artin group for singular Artin monoids of FC type and of affine type. We recall that it is still possible to define in this new framework a desingularization map, Vassiliev invariants and to state the same problems as in the framework of braids, and after giving the results already known about these problems for right angle Artin groups and Artin groups of type I, we prove that the desingularization maps for Artin groups of type A affine are one-to-one and that the Vassiliev invariants respectively of Artin groups of type A affine and of type B separate the elements of these groups. In the third and furth chapter, we recall the definitions of the virtual braid groups, which are other extensions of braid groups, and the singular virtual braid monoids related to them. We show that the singular virtual braid monoids are indeed common extensions of the virtual braid groups and of the singular braid monoids. We then extend to singular virtual braids the combinatorial and topological interpretation (respectively in terms of Gauss diagrams and in terms of stable classes of abstract braids) which was already known for virtual braids. Finally, after defining the desingularization map and the Vassilev invariants for virtual braids, we show that the resolution of the problems related to these objects is equivalent to the resolution of the same problems for a family of Artin groups which appears to be subgroups of the virtual braid groups. We end the thesis with a study on the embeddability of a monoid in its enveloping group, on which several results of the thesis are based on
Tosello, Francesco. "Una presentazione dei gruppi delle trecce." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21278/.
Повний текст джерелаValeriani, D. "Improving group decision making with collaborative brain-computer interfaces." Thesis, University of Essex, 2017. http://repository.essex.ac.uk/19981/.
Повний текст джерелаCombe, Noémie. "On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0140.
Повний текст джерелаThis thesis mainly concerns two closely related classical objects: on the one hand, the variety of unitary complex polynomials of degree $ d> 1 $ with a variable, and with simple roots (hence with a non-zero discriminant), and on the other hand, the $d$ strand Artin braid groups. The work presented in this thesis proposes a new approach allowing explicit cohomological calculations with coefficients in any sheaf. In order to obtain explicit cohomological calculations, it is necessary to have a good cover in the sense of Čech. One of the main objectives of this thesis is to construct such a good covering, based on graphs that are reminiscent of the ''dessins d'enfants'' and which are associated to the complex polynomials. This decomposition of the space of polynomials provides a semi-algebraic stratification. The number of connected components in each stratum is counted in the last chapter of this thesis. Nevertheless, this partition does not immediately provide a ''good'' cover adapted to the computation of the cohomology of Čech (with any coefficients) for two related and obvious reasons: on the one hand the subsets of the cover are not open, and moreover they are disjoint since they correspond to different signatures. Therefore, the main purpose of Chapter 6 is to ''correct'' the cover in order to transform it into a good open cover, suitable for the calculation of the Čech cohomology. It is explicitly verified that there is an open cover such that all the multiple intersections are contractible. This allows an explicit calculation of cohomology groups of Čech with values in a locally constant sheaf
Ma, Zheng. "Probabilistic Boolean network modeling for fMRI study in Parkinson's disease." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/4172.
Повний текст джерелаEvens, Samuel R. (Samuel Robert). "Transfer for compact lie groups, induced representations, and braid relations." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/80453.
Повний текст джерелаDamiani, Céleste. "The topology of loop braid groups : applications and remarkable quotients." Caen, 2016. http://www.theses.fr/2016CAEN2021.
Повний текст джерелаIn this these we study loop braid groups, we explore some of their topological applications and some remarquable quotients. The thesis is composed by four parts:- Unifying the different approaches to loop braid groups. Several formulations are being used by researchers working with loop braid groups in different fields; we present these interpretations and prove their equivalence. - A topological version of Markov’s theorem for ribbon torus-links. Using the understanding of the interpretation of loop braids as knotted objects in the 4-dimensional space, we give a topological proof of a version of Markov theorem for loop braids with closure in a solid torus in the 4-dimensional space. - Alexander invariants for ribbon tangles. We define an Alexander invariant on ribbon tangles. From this invariant we extract a functorial generalization of the Alexander polynomial. This invariant has a deep topological meaning, but lacks a simple way of computation. To overcome this problem we establish a correspondence with Archibal’s multivariable Alexander polynomial for tangles. - Quotients of the virtual braid group. We study the groups of unrestricted virtual braids, a family of quotients of the loop braid groups, and describe their structure. As a consequence we show that any fused link admits as a representative the closure of a pure unrestricted virtual braid
Coles, Ben. "Conjugacy in braid groups and the LKB representation, and Bessis-Garside groups of rank 3." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/90207/.
Повний текст джерелаYurasovskaya, Ekaterina. "Homotopy string links over surfaces." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/2747.
Повний текст джерелаRepo, Jesper. "Brand Culture : Between consumers and brands." Thesis, Linnéuniversitetet, Ekonomihögskolan, ELNU, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-15220.
Повний текст джерелаJordan, David Andrew. "Quantized multiplicative quiver varieties and actions of higher genus braid groups." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67790.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 109-112).
In this thesis, a new class of algebras called quantized multiplicative quiver varieties A (Q), is constructed, depending upon a quiver Q, its dimension vector d, and a certain "moment map" parameter . The algebras Ad(Q) are obtained via quantum Hamiltonian reduction of another algebra D,(Matd(Q)) relative to a quantum moment map pq, both of which are also constructed herein. The algebras Dq(Matd(Q)) and A (Q) bear relations to many constructions in representation theory, some of which are spelled out herein, and many more whose precise formulation remains conjectural. When Q consists of a single vertex of dimension N with a single loop, the algebra Dq(MatA(Q)) is isomorphic to the algebra of quantum differential operators on G = GLN. In this case, for any n E Z>o, we construct a functor from the category of Dq-modules to representations of the type A double affine Hecke algebra of rank n. This functor is an instance of a more general construction which may be applied to any quasi-triangular Hopf algebra H, and yields representations of the elliptic braid group of rank n.
by David Andrew Jordan.
Ph.D.
Self, Megan. "Identifying the Physical Activity Needs of Outpatients with a Traumatic Brain Injury." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84274/.
Повний текст джерелаBeschin, Nicoletta. "Imagining half the world : investigation of representational neglect with group studies and single cases." Thesis, University of Aberdeen, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275060.
Повний текст джерелаPool, Jonathan. "Brief group music therapy for acquired brain injury : cognition and emotional needs." Thesis, Anglia Ruskin University, 2013. http://arro.anglia.ac.uk/312324/.
Повний текст джерелаMelocro, Letícia. "Uma ordenação para o grupo de tranças puras." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-11012017-142019/.
Повний текст джерелаIn this work, we present a geometric description of the braids groups of the disk Bpnq and its presentation in terms of generators and relations in the famous theorem of Artin\'s presentation. We also show that groups of pure braids, denoted by PBpnq, groups that have the trivial permutation of the strings, are bi-orderable, that is, we will present the explicit construction of a strict total ordering of pure braids PBpnq which is invariant under multiplying on both sides. This process is given from the combination of the techniques of combing Artin and Magnus expansion to free groups.
Moldrich, Randal Xavier Joseph 1975. "Functional roles of group II metabotropic glutamate receptors in injury and epilepsy." Monash University, Dept. of Pharmacology, 2002. http://arrow.monash.edu.au/hdl/1959.1/7710.
Повний текст джерелаThomas, Veronica L. "SECRET CONSUMPTION: RESPONSES TO SOCIAL GROUP INFLUENCE UNDER CONDITIONS OF CONFLICTING BRAND PREFERENCES." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1301945806.
Повний текст джерела