Дисертації з теми "Boundary element methods"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Boundary element methods".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Of, Günther, Gregory J. Rodin, Olaf Steinbach, and Matthias Taus. "Coupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods." Universitätsbibliothek Chemnitz, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-96885.
Повний текст джерелаOstrowski, Jörg. "Boundary element methods for inductive hardening." [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=973933941.
Повний текст джерелаOnyango, Thomas Tonny Mboya. "Boundary element methods for solving inverse boundary conditions identification problems." Thesis, University of Leeds, 2008. http://etheses.whiterose.ac.uk/11283/.
Повний текст джерелаShah, Nawazish A. "Boundary element methods for road vehicle aerodynamics." Thesis, Loughborough University, 1985. https://dspace.lboro.ac.uk/2134/26942.
Повний текст джерелаLeon, Ernesto Pineda. "Dual boundary element methods for creep fracture." Thesis, Queen Mary, University of London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435177.
Повний текст джерелаOLIVEIRA, MARIA FERNANDA FIGUEIREDO DE. "CONVENTIONAL, HYBRID AND SIMPLIFIED BOUNDARY ELEMENT METHODS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5562@1.
Повний текст джерелаApresentam-se as formulações, consolidando a nomenclatura e os principais conceitos dos métodos de elementos de contorno: convencional (MCCEC), híbrido de tensões (MHTEC), híbrido de deslocamentos (MHDEC) e híbrido simplificado de tensões (MHSTEC). proposto o método híbrido simplificado de deslocamentos (MHSDEC), em contrapartida ao MHSTEC, baseando-se nas mesmas hipóteses de aproximação de tensões e deslocamentos do MHDEC e supondo que a solução fundamental em termos de tensões seja válida no contorno. Como decorrência do MHSTEC e do MHSDEC, é apresentado também o método híbrido de malha reduzida dos elementos de contorno (MHMREC), com aplicação computacionalmente vantajosa a problemas no domínio da freqüência ou envolvendo materiais não-homogêneos. A partir da investigação das equações matriciais desses métodos, são identificadas quatro novas relações matriciais, das quais uma verifica-se como válida para a obtenção dos elementos das matrizes de flexibilidade e de deslocamento que não podem ser determinados por integração ou avaliação direta. Também é proposta a correta consideração, ainda não muito bem explicada na literatura, de que forças de superfície devem ser interpoladas em função de atributos de superfície e não de atributos nodais. São apresentadas aplicações numéricas para problemas de potencial para cada método mencionado, em que é verificada a validade das novas relações matriciais.
A consolidated, unified formulation of the conventional (CCBEM), hybrid stress (HSBEM), hybrid displacement (HDBEM) and simplified hybrid stress (SHSBEM) boundary element methods is presented. As a counterpart of SHSBEM, the simplified hybrid displacement boundary element method (SHDBEM) is proposed on the basis of the same stress and displacement approximation hypotheses of the HDBEM and on the assumption that stress fundamental solutions are also valid on the boundary. A combination of the SHSBEM and the SHDBEM gives rise to a provisorily called mesh-reduced hybrid boundary element method (MRHBEM), which seems computationally advantageous when applied to frequency domain problems or non-homogeneous materials. Four new matrix relations are identified, one of which may be used to obtain the flexibility and displacement matrix coefficients that cannot be determined by integration or direct evaluation. It is also proposed the correct consideration, still not well explained in the technical literature, that traction forces should be interpolated as functions of surface and not of nodal attributes. Numerical examples of potential problems are presented for each method, in which the validity of the new matrix relations is verified.
Zarco, Mark Albert. "Solution fo soil-structure interaction problems by coupled boundary element-finite element method /." This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06062008-164808/.
Повний текст джерелаVu, Thu Hang. "Enhancing the scaled boundary finite element method." University of Western Australia. School of Civil and Resource Engineering, 2006. http://theses.library.uwa.edu.au/adt-WU2006.0068.
Повний текст джерелаYan, Shu. "Efficient numerical methods for capacitance extraction based on boundary element method." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3230.
Повний текст джерелаHamina, M. (Martti). "Some boundary element methods for heat conduction problems." Doctoral thesis, University of Oulu, 2000. http://urn.fi/urn:isbn:951425614X.
Повний текст джерелаZarco, Mark Albert. "Solution of soil-structure interaction problems by coupled boundary element-finite element method." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/38298.
Повний текст джерелаEsterhuizen, Jacob J. B. "The evaluation of embankment stresses by coupled boundary element - finite element method." Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/42954.
Повний текст джерелаNumerical methods and specifically the finite element method have improved significantly since their introduction in the 60's. These advances were mainly in: 1) introducing higher-order elements, 2) developing effective solution schemes, 3) developing sophisticated means of modeling the constitutive behavior of geotechnical materials, and 4) introducing iteration techniques to model material non-linearity. This thesis, on the other hand, deals with the topic of modeling the boundary conditions of the finite element problem. Typically, the boundary conditions will be approximated by specifying displacement constraints. such as restraining the bottom boundary of the finite element mesh against displacements in the horizontal and vertical directions (x- and y-directions). Where bedrock or dense residual soils underlie the soft foundation soil at a relatively shallow depth, this is a good assumption. However. when soft soil is encountered for large depths, the assumption of zero movement constraints for a mesh boundary at a shallower depth than the actual bedrock will result in a serious underestimation of stresses and displacements. By coupling boundary elements to the finite elements and using them to model the infinite extent of the foundation soil, a more realistic answer is obtained. Employing the coupled boundary element - finite element method, four cases were analyzed and the results compared to values of the pure finite element method. The results show that the coupled method indeed yielded higher stress- and displacement-values, indicating that the pure finite element method underestimates stresses and displacements when modeling very deep soils.
Master of Science
Nesemann, Leo [Verfasser]. "Finite element and boundary element methods for contact with adhesion / Leo Nesemann." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2011. http://d-nb.info/1013365542/34.
Повний текст джерелаChidgzey, Steven R. "Advances in the development of the scaled boundary method for applications in fracture mechanics." University of Western Australia. School of Civil and Resource Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0176.
Повний текст джерелаPeng, Xuan. "Isogeometric boundary element methods for linear elastic fracture mechanics." Thesis, Cardiff University, 2016. http://orca.cf.ac.uk/92543/.
Повний текст джерелаVartiainen, Markku Juhani. "Singular boundary element methods for the hyperbolic wave equation." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621821.
Повний текст джерела雷哲翔 and Zhexiang Lei. "Time domain boundary element method & its applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233703.
Повний текст джерелаLei, Zhexiang. "Time domain boundary element method & its applications /." [Hong Kong : University of Hong Kong], 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13570365.
Повний текст джерелаPai, Ravindra. "Calculation of wave resistance and elevation of arbitrarily shaped bodies using the boundary integral element method." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-10222009-125057/.
Повний текст джерелаAzis, Mohammad Ivan. "On the boundary integral equation method for the solution of some problems for inhomogeneous media." Title page, contents and summary only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09pha995.pdf.
Повний текст джерелаArjunon, Sivakkumar. "P-version refinement studies in the boundary element method a dissertation presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=19&sid=2&srchmode=1&vinst=PROD&fmt=6&startpage=-1&clientid=28564&vname=PQD&RQT=309&did=1786737301&scaling=FULL&ts=1250860988&vtype=PQD&rqt=309&TS=1250861000&clientId=28564.
Повний текст джерелаSilveira, Richard John. "A dual boundary and finite element method for fluid flow." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708272.
Повний текст джерелаTang, W. "A generalized approach for transforming domain integrals into boundary integrals in boundary element methods." Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378981.
Повний текст джерелаChu, Chin-keung. "Parallel computation for time domain boundary element method /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20565574.
Повний текст джерелаWeggler, Lucy Verfasser], and Sergej [Akademischer Betreuer] [Rjasanow. "High order boundary element methods / Lucy Weggler. Betreuer: Sergej Rjasanow." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2012. http://d-nb.info/1051586801/34.
Повний текст джерелаBolton, Matthew Robert. "Acoustic scattering using boundary element methods with application to colloids." Thesis, University of East Anglia, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.514206.
Повний текст джерелаBerger, Hans-Uwe. "Inverse Problems in Soft Tissue Elastography using Boundary Element Methods." Thesis, University of Canterbury. Mechanical Engineering, 2009. http://hdl.handle.net/10092/4413.
Повний текст джерелаNOVELINO, LARISSA SIMOES. "APPLICATION OF FAST MULTIPOLE TECHNIQUES IN THE BOUNDARY ELEMENT METHODS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=37003@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Este trabalho visa à implementação de um programa de elementos de contorno para problemas com milhões de graus de liberdade. Isto é obtido com a implementação do Método Fast Multipole (FMM), que pode reduzir o número de operações, para a solução de um problema com N graus de liberdade, de O(N(2)) para O(NlogN) ou O(N). O uso de memória também é reduzido, por não haver o armazenamento de matrizes de grandes dimensões como no caso de outros métodos numéricos. A implementação proposta é baseada em um desenvolvimento consistente do convencional, Método de colocação dos elementos de contorno (BEM) – com conceitos provenientes do Hibrido BEM – para problemas de potencial e elasticidade de larga escala em 2D e 3D. A formulação é especialmente vantajosa para problemas de topologia complicada ou que requerem soluções fundamentais complicadas. A implementação apresentada, usa um esquema para expansões de soluções fundamentais genéricas em torno de níveis hierárquicos de polos campo e fonte, tornando o FMM diretamente aplicável para diferentes soluções fundamentais. A árvore hierárquica dos polos é construída a partir de um conceito topológico de superelementos dentro de superelementos. A formulação é inicialmente acessada e validada em termos de um problema de potencial 2D. Como resolvedores iterativos não são necessários neste estágio inicial de simulação numérica, podese acessar a eficiência relativa à implementação do FMM.
This work aims to present an implementation of a boundary element solver for problems with millions of degrees of freedom. This is achieved through a Fast Multipole Method (FMM) implementation, which can lower the number of operations for solving a problem, with N degrees of freedom, from O(N(2)) to O(NlogN) or O(N). The memory usage is also very small, as there is no need to store large matrixes such as required by other numerical methods. The proposed implementations are based on a consistent development of the conventional, collocation boundary element method (BEM) - with concepts taken from the variationally-based hybrid BEM - for large-scale 2D and 3D problems of potential and elasticity. The formulation is especially advantageous for problems of complicated topology or requiring complicated fundamental solutions. The FMM implementation presented in this work uses a scheme for expansions of a generic fundamental solution about hierarchical levels of source and field poles. This makes the FMM directly applicable to different kinds of fundamental solutions. The hierarchical tree of poles is built upon a topological concept of superelements inside superelements. The formulation is initially assessed and validated in terms of a simple 2D potential problem. Since iterative solvers are not required in this first step of numerical simulations, an isolated efficiency assessment of the implemented fast multipole technique is possible.
Reinarz, Anne. "Sparse space-time boundary element methods for the heat equation." Thesis, University of Reading, 2015. http://centaur.reading.ac.uk/49315/.
Повний текст джерелаPeake, Michael John. "Enriched and isogeometric boundary element methods for acoustic wave scattering." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10655/.
Повний текст джерела朱展強 and Chin-keung Chu. "Parallel computation for time domain boundary element method." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31220678.
Повний текст джерелаFronk, Thomas Harris. "Fully-coupled fluid-structure analysis of a baffled rectangular orthotropic plate using the boundary element and finite element methods." Diss., This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-07282008-134729/.
Повний текст джерелаZhang, Hui. "Image-based boundary element computation of three-dimensional potential problems." Online access for everyone, 2008. http://www.dissertations.wsu.edu/Thesis/Summer2008/h_zhang_072308.pdf.
Повний текст джерелаKEUM, BANGYONG. "ANALYSIS OF 3-D CONTACT MECHANICS PROBLEMS BY THE FINITE ELEMENT AND BOUNDARY ELEMENT METHODS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1054815631.
Повний текст джерелаBayliss, Martin. "The numerical modelling of elastomers." Thesis, Cranfield University, 2003. http://hdl.handle.net/1826/87.
Повний текст джерелаBen, Hamdin Hanya Abdusalam Mohamed. "Boundary element and transfer operator methods for multi-component wave systems." Thesis, University of Nottingham, 2012. http://eprints.nottingham.ac.uk/12446/.
Повний текст джерелаLindkvist, Gaute. "Indirect boundary element methods for modelling bubbles under three dimensional deformation." Thesis, Deaprtment of Engineering Systems and Management, 2009. http://hdl.handle.net/1826/3098.
Повний текст джерелаDruma, Calin. "Formulation of steady-state and transient potential problems using boundary elements." Ohio : Ohio University, 1999. http://www.ohiolink.edu/etd/view.cgi?ohiou1175886094.
Повний текст джерелаGolan, Lawrence P. "Thermal analysis of sliding contact systems using the boundary element method." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-11242009-020117/.
Повний текст джерелаSheng, Ni. "Trefftz boundary and polygonal finite element methods for piezoelectric and ferroelectric analyses." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B31483434.
Повний текст джерелаSheng, Ni, and 盛妮. "Trefftz boundary and polygonal finite element methods for piezoelectric and ferroelectric analyses." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B31483434.
Повний текст джерелаCooke, Tristrom Peter. "Some problems in anisotropic elasticity /." Title page, contents and summary only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phc773.pdf.
Повний текст джерелаMoody, R. O. "The numerical solution of moving-boundary problems using moving-finite-element methods." Thesis, University of Reading, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383463.
Повний текст джерелаGeraci, Giorgio. "Boundary element methods for cohesive thermo-mechanical damage and micro-cracking evolution." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/63826.
Повний текст джерелаUllah, Baseer. "Structural topology optimisation based on the boundary element and level set methods." Thesis, Durham University, 2014. http://etheses.dur.ac.uk/10659/.
Повний текст джерелаShah, Jimit. "Vibro-Acoustic Studies on Damped Panels Using Finite and Boundary Element Methods." The Ohio State University, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=osu1420207337.
Повний текст джерелаZakikhani, Mansour. "Study of flow and mass transport in multilayered aquifers using boundary integral method." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/20163.
Повний текст джерела金吳根 and Wugen Jin. "Trefftz method and its application in engineering." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31232255.
Повний текст джерелаJin, Wugen. "Trefftz method and its application in engineering /." [Hong Kong : University of Hong Kong], 1991. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13009540.
Повний текст джерелаZhao, Kezhong. "A domain decomposition method for solving electrically large electromagnetic problems." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1189694496.
Повний текст джерела