Добірка наукової літератури з теми "Bose-Einstein condensed state"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bose-Einstein condensed state".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Bose-Einstein condensed state"

1

HUTCHINSON, D. A. W., and P. B. BLAKIE. "PHASE TRANSITIONS IN ULTRA-COLD TWO-DIMENSIONAL BOSE GASES." International Journal of Modern Physics B 20, no. 30n31 (December 20, 2006): 5224–28. http://dx.doi.org/10.1142/s0217979206036302.

Повний текст джерела
Анотація:
We briefly review the theory of Bose-Einstein condensation in the two-dimensional trapped Bose gas and, in particular the relationship to the theory of the homogeneous two-dimensional gas and the Berezinskii-Kosterlitz-Thouless phase. We obtain a phase diagram for the trapped two-dimensional gas, finding a critical temperature above which the free energy of a state with a pair of vortices of opposite circulation is lower than that for a vortex-free Bose-Einstein condensed ground state. We identify three distinct phases which are, in order of increasing temperature, a phase coherent Bose-Einstein condensate, a vortex pair plasma with fluctuating condensate phase and a thermal Bose gas. The thermal activation of vortex-antivortex pair formation is confirmed using finite-temperature classical field simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Navez, Patric. "Macroscopic Squeezing in Bose–Einstein Condensate." Modern Physics Letters B 12, no. 18 (August 10, 1998): 705–13. http://dx.doi.org/10.1142/s0217984998000822.

Повний текст джерела
Анотація:
We study the ground state of a uniform Bose gas at zero temperature in the Hartree–Fock–Bogoliubov (HFB) approximation. We find a solution of the HFB equations which obeys the Hugenholtz–Pines theorem. This solution imposes a macroscopic squeezing to the condensed state and as a consequence displays large particle number fluctuations. Particle number conservation is restored by building the appropriate U(1) invariant ground state via the superposition of the squeezed states. The condensed particle number distribution of this new ground state is calculated as well as its fluctuations which present a normal behavior.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kudo, K., M. Yamazaki, T. Kawamata, T. Noji, Y. Koike, T. Nishizaki, N. Kobayashi, and H. Tanaka. "Thermal conductivity in the Bose–Einstein condensed state of TlCuCl3." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 214–15. http://dx.doi.org/10.1016/j.jmmm.2003.12.419.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pereira, Lucas Carvalho, and Valter Aragão do Nascimento. "Dynamics of Bose–Einstein Condensates Subject to the Pöschl–Teller Potential through Numerical and Variational Solutions of the Gross–Pitaevskii Equation." Materials 13, no. 10 (May 13, 2020): 2236. http://dx.doi.org/10.3390/ma13102236.

Повний текст джерела
Анотація:
We present for the first time an approach about Bose–Einstein condensates made up of atoms with attractive interatomic interactions confined to the Pöschl–Teller hyperbolic potential. In this paper, we consider a Bose–Einstein condensate confined in a cigar-shaped, and it was modeled by the mean field equation known as the Gross–Pitaevskii equation. An analytical (variational method) and numerical (two-step Crank–Nicolson) approach is proposed to study the proposed model of interatomic interaction. The solutions of the one-dimensional Gross–Pitaevskii equation obtained in this paper confirmed, from a theoretical point of view, the possibility of the Pöschl–Teller potential to confine Bose–Einstein condensates. The chemical potential as a function of the depth of the Pöschl–Teller potential showed a behavior very similar to the cases of Bose–Einstein condensates and superfluid Fermi gases in optical lattices and optical superlattices. The results presented in this paper can open the way for several applications in atomic and molecular physics, solid state physics, condensed matter physics, and material sciences.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Keeling, Jonathan, and Stéphane Kéna-Cohen. "Bose–Einstein Condensation of Exciton-Polaritons in Organic Microcavities." Annual Review of Physical Chemistry 71, no. 1 (April 20, 2020): 435–59. http://dx.doi.org/10.1146/annurev-physchem-010920-102509.

Повний текст джерела
Анотація:
Bose–Einstein condensation describes the macroscopic occupation of a single-particle mode: the condensate. This state can in principle be realized for any particles obeying Bose–Einstein statistics; this includes hybrid light-matter excitations known as polaritons. Some of the unique optoelectronic properties of organic molecules make them especially well suited for the realization of polariton condensates. Exciton-polaritons form in optical cavities when electronic excitations couple collectively to the optical mode supported by the cavity. These polaritons obey bosonic statistics at moderate densities, are stable at room temperature, and have been observed to form a condensed or lasing state. Understanding the optimal conditions for polariton condensation requires careful modeling of the complex photophysics of organic molecules. In this article, we introduce the basic physics of exciton-polaritons and condensation and review experiments demonstrating polariton condensation in molecular materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

ROUBTSOV, D., and Y. LÉPINE. "EXCITON-PHONON PACKETS WITH BOSE–EINSTEIN CONDENSATE." International Journal of Modern Physics B 17, no. 28 (November 10, 2003): 5289–93. http://dx.doi.org/10.1142/s0217979203020429.

Повний текст джерела
Анотація:
We discuss the possibility for a moving droplet of excitons and phonons to form a coherent state inside the packet. We describe such an inhomogeneous state in terms of Bose–Einstein condensation and prescribe it a macroscopic wave function. Existence and, thus, coherency of such a Bose-core inside the droplet can be checked experimentally if two moving packets are allowed to interact.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

LI, ZHIBING, and CHENGGUANG BAO. "SPINOR BEC IN THE LARGE-N LIMIT." International Journal of Modern Physics B 21, no. 23n24 (September 30, 2007): 4248–55. http://dx.doi.org/10.1142/s0217979207045487.

Повний текст джерела
Анотація:
The superfine structure of Bose-Einstein condensate of alkali atoms due to the spin coupling have been investigated in the mean field approximation. In the limit of large number of atoms, we obtained the analytical solution for the fully condensed states and the states with one-atom excited. It was found that the energy of the one-atom excited state could be smaller than the energy of the fully condensed state, even two states have similar total spin.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yukalov, V. I., and E. P. Yukalova. "Dynamics of Nonground-State Bose-Einstein Condensates." Journal of Low Temperature Physics 138, no. 3-4 (February 2005): 657–62. http://dx.doi.org/10.1007/s10909-005-2279-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

KASAMATSU, KENICHI, MAKOTO TSUBOTA, and MASAHITO UEDA. "VORTICES IN MULTICOMPONENT BOSE–EINSTEIN CONDENSATES." International Journal of Modern Physics B 19, no. 11 (April 30, 2005): 1835–904. http://dx.doi.org/10.1142/s0217979205029602.

Повний текст джерела
Анотація:
We review the topic of quantized vortices in multicomponent Bose–Einstein condensates of dilute atomic gases, with an emphasis on the two-component condensates. First, we review the fundamental structure, stability and dynamics of a single vortex state in a slowly rotating two-component condensates. To understand recent experimental results, we use the coupled Gross–Pitaevskii equations and the generalized nonlinear sigma model. An axisymmetric vortex state, which was observed by the JILA group, can be regarded as a topologically trivial skyrmion in the pseudospin representation. The internal, coherent coupling between the two components breaks the axisymmetry of the vortex state, resulting in a stable vortex molecule (a meron pair). We also mention unconventional vortex states and monopole excitations in a spin-1 Bose–Einstein condensate. Next, we discuss a rich variety of vortex states realized in rapidly rotating two-component Bose–Einstein condensates. We introduce a phase diagram with axes of rotation frequency and the intercomponent coupling strength. This phase diagram reveals unconventional vortex states such as a square lattice, a double-core lattice, vortex stripes and vortex sheets, all of which are in an experimentally accessible parameter regime. The coherent coupling leads to an effective attractive interaction between two components, providing not only a promising candidate to tune the intercomponent interaction to study the rich vortex phases but also a new regime to explore vortex states consisting of vortex molecules characterized by anisotropic vorticity. A recent experiment by the JILA group vindicated the formation of a square vortex lattice in this system.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

CRISAN, M., and I. GROSU. "BOSE–EINSTEIN QUASICONDENSATION IN 2D SYSTEMS." Modern Physics Letters B 19, no. 17 (July 30, 2005): 821–27. http://dx.doi.org/10.1142/s0217984905008852.

Повний текст джерела
Анотація:
We calculate the finite temperature correlation function, the coherence length and the critical temperature for a two-dimensional (2D) bosonic system, which presents the quasicondensation (a finite number of occupied states with p0≠0 momentum) effect at very low temperatures. This state, discovered experimentally, appear below a critical temperature for a finite number of particles.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Bose-Einstein condensed state"

1

Hechenblaikner, Gerald. "Mode coupling and superfluidity of a Bose-Einstein condensed gas." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kasprzak, Jacek. "Condensation of exciton polaritons." Phd thesis, Université Joseph Fourier (Grenoble), 2006. http://tel.archives-ouvertes.fr/tel-00118316.

Повний текст джерела
Анотація:
La condensation de Bose-Einstein est prédite par Einstein en 1925 pour des particules indiscernables de spin entier, les bosons. Il s'agit d'une transition de phase vers un état quantique de cohérence macroscopique, dont la température critique dépend directement de la masse des particules. Ce n'est qu'en 1995 qu'un condensat a pu être formé en phase gazeuse en refroidissant des atomes alcalins à la température ultra-basse de 10−6 degré Kelvin, provoquant ainsi une explosion d'activités de recherche dans le monde sur le sujet. Concernant la phase solide, les excitons dans les semi-conducteurs sont
considérés comme le candidat le plus prometteur pour la condensation de Bose-Einstein. En e_et leur masse est cent mille fois plus légère que celle des atomes alcalins, ce qui devrait permettre leur condensation
à une température voisine du degré Kelvin. Cependant malgré de nombreuses études depuis une trentaine d'années, aucune preuve convaincante de l'existence de condensat d'excitons n'avait été apportée à
ce jour. Récemment l'attention s'est portée sur les polaritons dans les microcavités semi-conductrices contenant des puits quantiques. Une microcavité semi-conductrice à puits quantiques est une hétérostructure
photonique destinée à exalter l'interaction matière-rayonnement entre les excitons con_nés dans le puits quantique et les photons con_nés dans la microcavité. Lorsque l'énergie de ces photons coïncide avec
celle des excitons, la microcavité peut entrer dans le régime de couplage fort d'oscillations de Rabi. Les nouveaux états propres du système (microcavité-puits quantique) sont appelés polaritons qui sont des états
mixtes exciton-photon. Par leur nature photonique, ces bosons possèdent une masse dix mille fois plus légère que celle des excitons, un avantage certain pour l'étude de la condensation de Bose-Einstein.
Nous avons observé l'occupation massive de l'état fondamental du polariton, qui se développe à partir d'un nuage de polaritons thermalisés à une température de (16-20) K. La formation du condensat est accompagn
ée par l'apparition spontanée de la cohérence temporelle et de la cohérence spatiale à longue portée, ainsi qu'une forte polarisation linéaire. La transition d'un état thermique à un état quantique est démontrée par des mesures de la fonction de corrélation d'ordre 2 en fonction de la densité des polaritons. L'ensemble de ces observations constitue la première évidence de la condensation de Bose-Einstein en phase solide.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ferreira, Arthur Gustavo de Araujo. "Aplicação do formalismo de dois modos de um condensado de Bose-Einstein em um sistema de ressonância magnética nuclear." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-08072014-100646/.

Повний текст джерела
Анотація:
Neste trabalho exploramos propriedades físicas dos cristais líquidos liotrópicos na sua fase lamelar e dentro desse utilizamos um sistema de spins quadrupolares para a criação e manipulação de estados coerentes de spin nuclear com técnicas de RMN. Os spins nucleares utilizados eram provenientes do núcleo de césio-133, com spin 7/2, presentes em uma molécula de pentadecafluoroctanoato de césio com estrutura líquido-cristalina. Sobre esse núcleo, aplicamos um novo conceito de pulsos fortemente modulados suaves para gerar os estados pseudo-puros correspondentes aos estados coerentes de spin nuclear. Com esses estados pudemos realizar experimentos de compressão de estado coerente, um conceito quântico muito importante quando vinculado ao conceito de emaranhamento. Outro estudo foi a observação de dinâmica clássica e efeitos de bifurcação nesse sistema quântico. Em ambas aplicações se destaca o controle dos spins nucleares no desenvolvimento dos protocolos tanto na implementação do conceito de estado coerente em sistemas de spin nuclear, quanto nas leituras dos estados quânticos via tomografia de estado quântico.
In this work we use a quadrupolar spin system inside a lyotropic liquid crystal in the lamellar phase and explore its physical properties to create and manipulate nuclear spin coherent states with NMR techniques. The nuclear spins come from the cesium-133 nucleus, spin 7/2, contained in the cesium-pentadecafluoroctanoate with liquid crystalline structure. On this nucleus, we apply a new concept of smooth strongly modulating pulses to create the pseudo-pure states corresponding to nuclear spin coherent states. With these coherent states we were able to perform coherent state squeezing, an important concept closely related to entanglement. In another study we observed the classical dynamics and bifurcation on this quantum system. Both applications highlight the quantum control of the nuclear spins in developing the protocols for the creation of nuclear spin coherent states as well as for performing the readout using the quantum state tomography procedure.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Invernizzi, Andrea. "Phase separation and spin domains in quasi-1D spinor condensates." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE030/document.

Повний текст джерела
Анотація:
Dans ce manuscrit, nous présentons une étude expérimentale d’un gaz de Bose de spin-1 avec des interactions antiferromagnétiques, réalisée pour des atomes de sodium ultra-froids dans l’état hyperfin F=1. Gr au refroidissement évaporatif, nous obtenons un condensat de Bose-Einstein (CBE) spineur, soit dans un piège très confinant (« piège 0D »), soit sous la forme d’un quasi-condensat quasi-unidimensionnel dans un piège très allongé. Les deux systèmes présentent un ordre magnétique a très basse température, qui résulte de la compétition entre les interactions d’échange et l’énergie Zeeman quadratique q dans un champ magnétique externe. Nous étudions dans un premier temps l’ordre magnétique se forme dans le piège 0D. À très bassetempérature deux phases magnétiques sont possible : une phase dite « antiferromagnétique » pour q < Us, ou une phase dite « à aimantation transverse » dans le cas inverse. Dans ce travail, nous nous plaçons près de la température critique. Nous mesurons plusieurs scénarios de condensation séquentielles en changeant la magnétisation et le champ magnétique externe, ou une composante Zeeman condense toujours en premier et ou l’ordre magnétique n’apparait qu’à une seconde température de condensation. Les résultats expérimentaux pour les températures critiques sont bien décrits par une théorie d’Hartree-Fock simplifiée dans les cas ou une seule composante Zeeman est condensée. Dans un second temps, nous étudions l’ordre magnétique du système quasi-unidimensionnel a basse température. On observe la formation de domaines de spin ou les composantes Zeeman se sépare spontanément en domaines disjoints en l’absence de force extérieure (par exemple, un gradient de champ magnétique). On étudie l’état d’équilibre du système en fonction de la magnétisation et du champ magnétique. On observe une transition de phase entre une phase miscible et une phase immiscible ou la composante Zeeman mF = 0 forme un domaine séparé de mF = ±1 dans le centre du piège. L’équation d’état d’un nuage polarisé (atomes dans l’état mF = +1) est utilisée pourmesurer la température du système. Enfin, nous mesurons la réponse mécanique a une force magnétique appliquée pour un système binaire mF = 0, +1. Nous mesures une exaltation de la réponse par rapport a l’attente na basée sur l’effet Zeeman habituel, d’un facteur qui peut varier de plusieurs dizaines a environ cent. La configuration spatiale des domaines est ainsi sensible a de très faibles gradients de champ magnétique inférieurs au mG/cm
In this thesis we present the experimental study of a spin-1 Bose gas of ultra-cold Na atoms with antiferromagnetic interactions in the F=1 manifold. Thanks to evaporative cooling in optical traps we obtain, depending on the trap geometry, quasi-pure spinor Bose-Einstein condensates (BEC) in 0D traps and quasi-condensates in quasi-1D traps. The quantum-statistical Bose enhancement, typical of BEC, allows inter-component interactions (between the different Zeeman components) to order the system just below the Bose-Einstein condensation temperature. The magnetic ordering of the system is set: by contact interactions, that do not change the Zeeman populations, by spin-exchange interactions (U_s spin-exchange energy), that do, and by the quadratic Zeeman energy q. In particular, for q < U_s the system is in the antiferromagnetic phase while, for q > U_s, is in the transverse magnetised phase. We study first in which order the magnetic ordering appears, in the 0D trap, near to the critical temperature for BEC. We experimentally study different condensations scenarii varying q and magnetisation. The condensation of the different components is sequential and strongly influenced by interactions. We find a good agreement between the experimental data and a simplified Hartree-Fock model.Then we study the magnetic ordering, at T=0, in a quasi-1D trap. The system presents the formation of spin domains. We study the ground state of the system varying magnetisation and q. We observe a transition from the miscible to the immiscible phase, associated with the transition from the antiferromagnetic to the transverse magnetised phase. This is due to the relative strengths of inter-species contact interaction. To measure the temperature of the system, we measure the equation of state for a polarised cloud (all atoms in m_F=+1). Finally, we prepare the system in the immiscible phase m_F=0,+1 and we measure the spin-dipole polarisability of the system
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mukhtar, Musawwadah. "State-dependent disordered potential for studies of Anderson transition with ultracold atoms." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO001/document.

Повний текст джерела
Анотація:
Dans ce manuscrit, nous présentons notre avancement pour réaliser une méthode spectroscopique pour étudier la transition d’Anderson avec des atomes froids. Cela repose sur la réalisation d'un potentiel désordonné sélectif en état de spin, le désordre n'étant significatif que pour l'un des deux états de spin impliqués. En combinant cela avec la technique de transfert par radiofréquence d’un état insensible au désordre à un état exclusivement sensible au désordre, il devient possible de charger une onde de matière dans le désordre dans des états d’énergie bien définies. Pour prouver le concept, nous avons effectué des mesures des fonctions spectrales d’atomes ultra-froids dans des potentiels désordonnés, qui sont directement proportionnels au taux de transfert des atomes. Nous présentons les résultats en montrant un excellent accord avec les calculs numériques. Cela a ouvert des perspectives pour d’autres études sur la transition d’Anderson. En particulier, nous cherchons à observer la transition entre les états diffusifs et les états localisés séparés par une énergie critique, appelée le seuil de mobilité. Une telle étude nécessite la réalisation d’un désordre sélectif en état de spin qui permet un long temps de propagation dans le désordre afin de distinguer les deux phases. À cette fin, nous présentons un nouveau schéma du désordre sélectif en état de spin avec deux lasers du speckle (speckle bichromatique). Cela ouvre la voie à une approche spectroscopique de la transition d’Anderson avec des atomes froids avec une résolution en énergie bien supérieure à celles des expériences précédentes
In this manuscript, we present our progress towards realizing a spectroscopic method to study of Anderson transition with ultracold atoms. This relies on the realization of state-dependent disordered potential whereby the disorder is significant only for one of two involved spin-states. Combined with technique of radio-frequency transfer from the disorder-free state to the state with controlled disorder, it becomes possible to load a matter wave in the disorder in a well-defined energy states. As a proof of principle, we have performed measurements of the spectral functions of ultracold atoms in disordered potentials, which are directly proportional to the transfer rate of the atoms. We present the results showing excellent agreement with numerical calculations. This has opened up prospects for further studies of the Anderson transition. In particular we seek to observe transition between the diffusive and the localized states separated by a critical energy, the so-called mobility edge. Such study requires realization of state-dependent disorder which allows long propagation time in the disorder in order to distinguish the two phases. For this purpose, we present a new scheme of the state-dependent disorder with two laser speckles (bichromatic laser speckle). This paves the way towards spectroscopic approach of Anderson transition with ultracold atoms with energy resolution much higher than those in the previous experiments
Стилі APA, Harvard, Vancouver, ISO та ін.
6

(7046690), Chuan-Hsun Li. "Bose-Einstein Condensates in Synthetic Gauge Fields and Spaces: Quantum Transport, Dynamics, and Topological States." Thesis, 2019.

Знайти повний текст джерела
Анотація:

Bose-Einstein condensates (BECs) in light-induced synthetic gauge fields and spaces can provide a highly-tunable platform for quantum simulations. Chapter 1 presents a short introduction to the concepts of BECs and our BEC machine. Chapter 2 introduces some basic ideas of how to use light-matter interactions to create synthetic gauge fields and spaces for neutral atoms. Three main research topics of the thesis are summarized below.

Chapter 3: Recently, using bosonic quasiparticles (including their condensates) as spin carriers in spintronics has become promising for coherent spin transport over macroscopic distances. However, understanding the effects of spin-orbit (SO) coupling and many-body interactions on such a spin transport is barely explored. We study the effects of synthetic SO coupling (which can be turned on and off, not allowed in usual materials) and atomic interactions on the spin transport in an atomic BEC.

Chapter 4: Interplay between matter and fields in physical spaces with nontrivial geometries can lead to phenomena unattainable in planar spaces. However, realizing such spaces is often impeded by experimental challenges. We synthesize real and curved synthetic dimensions into a Hall cylinder for a BEC, which develops symmetry-protected topological states absent in the planar counterpart. Our work opens the door to engineering synthetic gauge fields in spaces with a wide range of geometries and observing novel phenomena inherent to such spaces.

Chapter 5: Rotational properties of a BEC are important to study its superfluidity. Recent studies have found that SO coupling can change a BEC's rotational and superfluid properties, but this topic is barely explored experimentally. We study rotational dynamics of a SO-coupled BEC in an effective rotating frame induced by a synthetic magnetic field. Our work may allow for studying how SO coupling modify a BEC's rotational and superfluid properties.

Chapter 6 presents some possible future directions.

Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Bose-Einstein condensed state"

1

Kenyon, Ian R. Quantum 20/20. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198808350.001.0001.

Повний текст джерела
Анотація:
This text reviews fundametals and incorporates key themes of quantum physics. One theme contrasts boson condensation and fermion exclusivity. Bose–Einstein condensation is basic to superconductivity, superfluidity and gaseous BEC. Fermion exclusivity leads to compact stars and to atomic structure, and thence to the band structure of metals and semiconductors with applications in material science, modern optics and electronics. A second theme is that a wavefunction at a point, and in particular its phase is unique (ignoring a global phase change). If there are symmetries, conservation laws follow and quantum states which are eigenfunctions of the conserved quantities. By contrast with no particular symmetry topological effects occur such as the Bohm–Aharonov effect: also stable vortex formation in superfluids, superconductors and BEC, all these having quantized circulation of some sort. The quantum Hall effect and quantum spin Hall effect are ab initio topological. A third theme is entanglement: a feature that distinguishes the quantum world from the classical world. This property led Einstein, Podolsky and Rosen to the view that quantum mechanics is an incomplete physical theory. Bell proposed the way that any underlying local hidden variable theory could be, and was experimentally rejected. Powerful tools in quantum optics, including near-term secure communications, rely on entanglement. It was exploited in the the measurement of CP violation in the decay of beauty mesons. A fourth theme is the limitations on measurement precision set by quantum mechanics. These can be circumvented by quantum non-demolition techniques and by squeezing phase space so that the uncertainty is moved to a variable conjugate to that being measured. The boundaries of precision are explored in the measurement of g-2 for the electron, and in the detection of gravitational waves by LIGO; the latter achievement has opened a new window on the Universe. The fifth and last theme is quantum field theory. This is based on local conservation of charges. It reaches its most impressive form in the quantum gauge theories of the strong, electromagnetic and weak interactions, culminating in the discovery of the Higgs. Where particle physics has particles condensed matter has a galaxy of pseudoparticles that exist only in matter and are always in some sense special to particular states of matter. Emergent phenomena in matter are successfully modelled and analysed using quasiparticles and quantum theory. Lessons learned in that way on spontaneous symmetry breaking in superconductivity were the key to constructing a consistent quantum gauge theory of electroweak processes in particle physics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Bose-Einstein condensed state"

1

"Theory of the condensed state." In Bose–Einstein Condensation in Dilute Gases, 146–64. Cambridge University Press, 2001. http://dx.doi.org/10.1017/cbo9780511755583.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Bose-Einstein condensed state"

1

Ravisankar, R., T. Sriraman, and P. Muruganandam. "Ground state phases in Rashba-Dresselhaus spin-orbit-coupled Bose-Einstein condensates." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Walraven, J. T. M., and Van der Waals. "Bose-Einstein Condensation." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.tutb.

Повний текст джерела
Анотація:
As was shown by Einstein in 1924, Bose-Einstein statistics gives rise to a phase transition in which a macroscopic part of a gaseous state condenses into a phase with ground state properties, offering a unique view on the behavior of matter at zero temperature. From the very start the nature of Bose-Einstein condensation (BEC) has provoked statements concerning its relation with respect to superconductivity in electron gases (Einstein 1925) and the superfluidity of liquid helium (London 1938), but this connection is not easily grasped experimentally. Remarkably, although the concept of BEC appears routinely in very different contexts, ranging from excitons in semiconductors to nuclear matter, it had never been observed in its pure form, i.e., in a gaseous phase, until in 1995 BEC in ultracold Rb vapor was reported by Cornell and Wieman. Bose-Einstein condensation is probably the most exciting phenomenon currently under experimental investigation in ultracold atomic gases. In the tutorial the physics will be addressed which is at the roots of the current interest of BEC in atomic gases.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії