Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Bodily symmetrie.

Книги з теми "Bodily symmetrie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-17 книг для дослідження на тему "Bodily symmetrie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Norbury, John W. Symmetry considerations in the scattering of identical composite bodies. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Priyono, Eddy. An investigation of the transonic pressure drag coefficient for axi-symmetric bodies. Monterey, Calif: Naval Postgraduate School, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Collins, J. D. A combined finite element-boundary element formulation for solution of axially symmetric bodies. Ann Arbor, Mich: University of Michigan, Radiation Laboratory, Dept. of Electrical Engineering and Computer Science, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gainer, Thomas G. Discrete-vortex model for the symmetric-vortex flow on cones. Hampton, Va: Langley Research Center, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gainer, Thomas G. Discrete-vortex model for the symmetric-vortex flow on cones. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gainer, Thomas G. Discrete-vortex model for the symmetric-vortex flow on cones. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gainer, Thomas G. Discrete-vortex model for the symmetric-vortex flow on cones. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

D. I. T. P. Llewelyn-Davies. An investigation into the interface between three closely spaced axi-symmetric bodies at subsonic speed. Cranfield, Bedford, England: Cranfield Institute of Technology, College of Aeronautics, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Chao-Chen. Field Equations for Thermoelastic Bodies with Uniform Symmetry: Acceleration Waves in Isotropic Thermoelastic Bodies. Springer London, Limited, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Harte, Jerram. Soothing Symmetry: Abstract Coloring Book. Harte Doodles, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mann, Peter. Energy and Work. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0002.

Повний текст джерела
Анотація:
This chapter discusses the work–energy theorem, which is developed from Newton’s second law, and defines the kinetic and potential energies of the system. While there is some vector calculus involved, it has been kept to the bare minimum and the reader should not require in-depth knowledge to understand the salient points. If there is a net force on the particle, it accelerates in the direction of the unbalanced force. The force is a central force if it depends only on the distance between the point on which the force acts and the coordinate origin. Using Stokes’s theorem, potential energies are thoroughly discussed. The chapter also discusses spherically symmetric potentials, isotropic force, force on systems of particles, centre of mass coordinates and rigid bodies.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Deruelle, Nathalie, and Jean-Philippe Uzan. The two-body problem: an effective-one-body approach. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0056.

Повний текст джерела
Анотація:
This chapter presents the basics of the ‘effective-one-body’ approach to the two-body problem in general relativity. It also shows that the 2PN equations of motion can be mapped. This can be done by means of an appropriate canonical transformation, to a geodesic motion in a static, spherically symmetric spacetime, thus considerably simplifying the dynamics. Then, including the 2.5PN radiation reaction force in the (resummed) equations of motion, this chapter provides the waveform during the inspiral, merger, and ringdown phases of the coalescence of two non-spinning black holes into a final Kerr black hole. The chapter also comments on the current developments of this approach, which is instrumental in building the libraries of waveform templates that are needed to analyze the data collected by the current gravitational wave detectors.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Limaye, Vidya Sadanand. Overview and epidemiology. Edited by Hector Chinoy and Robert Cooper. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198754121.003.0001.

Повний текст джерела
Анотація:
The term idiopathic inflammatory myopathies (IIM) encompasses a heterogeneous group of muscle-dominant systemic autoimmune syndromes, including polymyositis (PM), dermatomyositis (DM), sporadic inclusion body myositis (sIBM), and immune-mediated necrotizing myopathy (IMNM). The reported incidence of IIM ranges from 5 to 10 × 10–6. Patients with PM, DM, and IMNM characteristically present with the insidious onset of symmetric proximal weakness, while in sIBM the weakness can be asymmetric, and involve the distal upper limbs and quadriceps. Dermatomyositis may also be accompanied by a range of cutaneous manifestations. Raised serum creatine kinase levels, the presence of characteristic myositis-specific antibodies, myopathic triad on electromyography, and myoedema on muscle magnetic resonance imaging are helpful in supporting a diagnosis of IIM. Muscle biopsy is the definitive diagnostic test and serves to distinguish subsets of disease, which each have characteristic histopathological changes reflecting underlying differences in pathogenesis. Mortality remains elevated in patients with IIM, despite the advent of immunosuppressive therapies.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bohigas, Oriol, and Hans Weidenmuller. History – an overview. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.2.

Повний текст джерела
Анотація:
This article discusses the first four decades of the history of random matrix theory (RMT), that is, until about 1990. It first considers Niels Bohr's formulation of the concept of the compound nucleus, which is at the root of the use of random matrices in physics, before analysing the development of the theory of spectral fluctuations. In particular, it examines the Wishart ensemble; Dyson's classification leading to the three canonical ensembles — Gaussian Orthogonal Ensemble (GOE), Gaussian Unitary Ensemble (GUE), and Gaussian Symplectic Ensemble (GSE); and the breaking of a symmetry or an invariance. It also describes how random matrix models emerged from quantum physics, more specifically from a statistical approach to the strongly interacting many-body system of the atomic nucleus. The article concludes with an overview of data on nuclear resonances, many-body theory, chaos, number theory, scattering theory, replica trick and supersymmetry, disordered solids, and interacting fermions and field theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Prescott, Tony J. Biomimetic systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0038.

Повний текст джерела
Анотація:
So far in this volume we have considered the nature of living things and some of their key building blocks and capabilities. This has set the stage for the current section and the next where we will describe some exemplar integrated biomimetic and biohybrid systems—living machines. To place these contributions in some additional context this introduction briefly reviews the history of life and of its variety, noting some of the critical branching points in the phylogenetic tree, identifying some of the organisms that have been the focus of research on biomimetic systems, and exploring why they might be seen to be important or pivotal. We begin with the first replicators, then consider bacterial colonies, the emergence of multicellularity and of bilateral symmetry, and conclude with a brief discussion of biomimetics applied to vertebrate brain and body plans including those of humans.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Brezin, Edouard, and Sinobu Hikami. Beta ensembles. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.20.

Повний текст джерела
Анотація:
This article deals with beta ensembles. Classical random matrix ensembles contain a parameter β, taking on the values 1, 2, and 4. This parameter, which relates to the underlying symmetry, appears as a repulsion sβ between neighbouring eigenvalues for small s. β may be regarded as a continuous positive parameter on the basis of different viewpoints of the eigenvalue probability density function for the classical random matrix ensembles - as the Boltzmann factor for a log-gas or the squared ground state wave function of a quantum many-body system. The article first considers log-gas systems before discussing the Fokker-Planck equation and the Calogero-Sutherland system. It then describes the random matrix realization of the β-generalization of the circular ensemble and concludes with an analysis of stochastic differential equations resulting from the case of the bulk scaling limit of the β-generalization of the Gaussian ensemble.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Integrability, Quantization, and Geometry. American Mathematical Society, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії