Добірка наукової літератури з теми "Blood cell imaging"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Blood cell imaging".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Blood cell imaging"

1

GUZE, BARRY H., RANDALL A. HAWKINS, and CAROL S. MARCUS. "Technetium-99m White Blood Cell Imaging." Clinical Nuclear Medicine 14, no. 2 (February 1989): 104–6. http://dx.doi.org/10.1097/00003072-198902000-00007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tishko, Tatyana V., Dimitrij Tishko, and Vladimir Titar. "Holographic Method for Blood Cell Imaging." Imaging & Microscopy 11, no. 3 (August 2009): 46–48. http://dx.doi.org/10.1002/imic.200990063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

KURTULDU, Hüseyin, Aynur Didem OKTAN, Hatice CANDAN, and Beste Sahra CİHANGİROĞLU. "Red Blood Cell Analysis by Hyperspectral Imaging." Natural and Applied Sciences Journal 1, no. 2 (December 29, 2018): 1–7. http://dx.doi.org/10.38061/idunas.442490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mittelbrunn, María, Gloria Martínez del Hoyo, María López-Bravo, Noa B. Martín-Cofreces, Alix Scholer, Stéphanie Hugues, Luc Fetler, Sebastián Amigorena, Carlos Ardavín, and Francisco Sánchez-Madrid. "Imaging of plasmacytoid dendritic cell interactions with T cells." Blood 113, no. 1 (January 1, 2009): 75–84. http://dx.doi.org/10.1182/blood-2008-02-139865.

Повний текст джерела
Анотація:
Abstract Plasmacytoid dendritic cells (pDCs) efficiently produce type I interferon and participate in adaptive immune responses, although the molecular interactions between pDCs and antigen-specific T cells remain unknown. This study examines immune synapse (IS) formation between murine pDCs and CD4+ T cells. Mature pDCs formed canonical ISs, involving relocation to the contact site of the microtubule-organizing center, F-actin, protein kinase C-θ, and pVav, and activation of early signaling molecules in T cells. However, immature pDCs were less efficient at forming conjugates with T cells and inducing IS formation, microtubule-organizing center translocation, and T-cell signaling and activation. Time-lapse videomicroscopy and 2-photon in vivo imaging of pDC–T-cell interactions revealed that immature pDCs preferentially mediated transient interactions, whereas mature pDCs promoted more stable contacts. Our data indicate that, under steady-state conditions, pDCs preferentially establish transient contacts with naive T cells and show a very modest immunogenic capability, whereas on maturation, pDCs are able to form long-lived contacts with T cells and significantly enhance their capacity to activate these lymphocytes.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Loeffler, Dirk, and Timm Schroeder. "Understanding cell fate control by continuous single-cell quantification." Blood 133, no. 13 (March 28, 2019): 1406–14. http://dx.doi.org/10.1182/blood-2018-09-835397.

Повний текст джерела
Анотація:
Abstract Cells and the molecular processes underlying their behavior are highly dynamic. Understanding these dynamic biological processes requires noninvasive continuous quantitative single-cell observations, instead of population-based average or single-cell snapshot analysis. Ideally, single-cell dynamics are measured long-term in vivo; however, despite progress in recent years, technical limitations still prevent such studies. On the other hand, in vitro studies have proven to be useful for answering long-standing questions. Although technically still demanding, long-term single-cell imaging and tracking in vitro have become valuable tools to elucidate dynamic molecular processes and mechanisms, especially in rare and heterogeneous populations. Here, we review how continuous quantitative single-cell imaging of hematopoietic cells has been used to solve decades-long controversies. Because aberrant cell fate decisions are at the heart of tissue degeneration and disease, we argue that studying their molecular dynamics using quantitative single-cell imaging will also improve our understanding of these processes and lead to new strategies for therapies.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Yi-Yi, Jia-Chen Wu, Ran Hao, Shang-Zhong Jin, and Liang-Cai Cao. "Digital holographic microscopy for red blood cell imaging." Acta Physica Sinica 69, no. 16 (2020): 164201. http://dx.doi.org/10.7498/aps.69.20200357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hanssen, E., C. Knoechel, P. Carlton, J. Sedat, C. Larabell, and L. Tilley. "Whole Cell Imaging of Plasmodium Falciparum Blood Stages." Microscopy and Microanalysis 15, S2 (July 2009): 866–67. http://dx.doi.org/10.1017/s143192760909268x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Debatin, J�rg F., and Erol M. Beytas. "Indium 111 white blood cell imaging of epididymitis." European Journal of Nuclear Medicine 17, no. 5 (1990): 286–89. http://dx.doi.org/10.1007/bf00812372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Al-Janabi, M. A., P. J. Maltby, M. Critchley, and K. E. Britton. "5. Radiolabelled white blood cell imaging. Is it a blood pool effect?" Nuclear Medicine Communications 11, no. 12 (December 1990): 890. http://dx.doi.org/10.1097/00006231-199012000-00011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vynckier, Jan, Jelle Demeestere, and Julie Lambert. "Black-blood Magnetic Resonance Imaging in Giant Cell Arteritis." Journal of Rheumatology 48, no. 2 (February 2021): 301–2. http://dx.doi.org/10.3899/jrheum.190286.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Blood cell imaging"

1

Eilken, Hanna. "Blood Generation from Hemogenic Endothelium Proven by Continuous Single Cell Imaging." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-98438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lim, Brian. "Modeling ultrasound imaging of red blood cell aggregation in shear flow." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0006/NQ41213.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nunez, Munoz Juan Antonio. "Utilising high resolution imaging to interrogate blood vessel and bone cell interactions." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/422899/.

Повний текст джерела
Анотація:
Fragility fractures represent a socio-economic burden, yet effective systematic treatments for the prevention of osteoporotic fractures are still lacking. Bone is a dynamic and highly vascularised tissue. Evidence suggests that with ageing, low bone mass and disruption of the microstructure and mechanical properties could be driven by reduced vascular supply and blood vessel attracting signals. However, it remains unclear whether alterations in the intracortical vasculature occur with age and if preservation of the cortical vasculature could prevent bone fractures. The main objective of this PhD was to develop and utilise high resolution micro-computed tomography (μCT) imaging ex-vivo of cortical bone microstructure to test the hypothesis that bone vascular networks are altered with age. The following aims have been addressed i) To develop an image processing and analysis framework that allows for systematic measurement of the 3D architecture of cortical porosity comprising vascular canal networks and osteocyte lacunae in murine cortical bone ii) Application and validation of developed methodology to assess the effects of age on vascular canal phenotype iii) Extension of methodology to a unique transgenic mouse strain were osteoblast-derived vascular endothelial growth factor (VEGF) has been deleted iv) Application of phase-contrast enhanced X-ray tomography imaging to visualise soft tissue within vascular canal networks. Using both desktop μCT (1.7 μm) and synchrotron X-ray tomography (0.65 μm), cortical bone microstructure was assessed at a sufficient spatial resolution to detect and extract cortical porosity. Extracted porosity measurements from synchrotron X-ray tomography were classified into vascular canals and osteocyte lacunae and 3D spatial relationships computed. First, the tibiofibular junction from 15-week and 10-month-old female C57BL/6J mice (n=6) was selected and vascular networks compared. It was found that the posterior region of the tibiofibular junction had a higher vascular canal volume than the anterior, lateral and medial regions (+127.62%, 693.08% and 659.64% respectively, p < 0.05) at 15 weeks of age. By 10 months, bone cortices were thinner (-13.04%, p < 0.01) and reduction in vascular density was evident in the posterior region (-46.54%, p < 0.01) providing the first evidence for location of the intracortical vasculature impacting age related effects on bone porosity. To explore the effect of osteoblast-derived VEGF on the intracortical microstructure, VEGF was knocked out (KO) in mature osteocalcin (Ocn) expressing osteoblasts. Again, the tibiofibular junctions of aged (1 year) wildtype (WT) and transgenic (VEGF Ocn KO) female mice (n=5) were imaged, analysed and compared. Results revealed that the lack of osteoblast-derived VEGF increased total porosity (vascular networks and osteocyte lacunae combined) in the tibiofibular junction (+39.92%, p < 0.01) with changes evident in the anterior and posterior compartments. Attempts to extend the use of the developed methodology to separate osteocyte lacunae from vascular canals was unsuccessful in the VEGF Ocn KO model due to low mineralised matrix in the VEGF Ocn KO bones. Finally, an approach that allows the 3D visualisation and assessment of the soft tissues in calcified bone using phase contrast-enhanced X-ray tomography has been reported. Using this technique, vascular structures were detected within 95.77% of the intracortical canals of the murine tibiofibular junction, supporting the theory that the intracortical network is the living space of the bone vasculature. This project has developed novel methodology which has allowed demonstration of an age-related reduction in the intracortical vasculature associated with reduced cortical bone thickness and deleterious changes in bone porosity due to the lack of VEGF, thus supporting further investigations into targeting the blood supply to treat age-related bone disease.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Miller, Brandon Lee. "Quantitative, Multiparameter Analysis of Fluorescently Stained, Negatively Enriched, Peripheral Blood from Cancer Patients." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1386005404.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chen, Miao. "Endothelial Cell-Specific Knockout of Meis1 Protects Ischemic Hindlimb Through Vascular Remodeling." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/96188.

Повний текст джерела
Анотація:
Peripheral artery disease (PAD) affects more than 200 million people worldwide. PAD refers to illness due to a reduction or complete occlusion of blood flow in the artery, especially to the extremities in disease conditions, such as atherosclerosis or diabetes. Critical limb ischemia (CLI) is a severe form of PAD associated with high morbidity and mortality. Currently, no effective and permanent treatments are available for this disease. The current endovascular medications (e.g., angioplasty or stents) only relieve the clinical symptoms while the surgical therapies (e.g., bypass or endarterectomy) require grafting vessels from a healthy organ to the diseased limb of the patient. However, even with these therapeutic techniques, 30% of patients still undergo limb amputation within a year. Thus, understanding of disease mechanism and development of new therapeutic approaches are in urgent needs. Meis1 (myeloid ecotropic viral integration site 1) gene belongs to the three-amino-acid loop extension subclass of homeobox gene families, and it is a highly conserved transcription factor in all eukaryotes. Up to date, little is known about the role of Meis1 in regulating vascular remodeling under ischemic condition. In this study, we aim to investigate the role and underlying mechanism of Meis1 in the regulation of arteriogenesis and angiogenesis using hindlimb ischemia model of transgenic neonatal mice. The long-term goal is to develop a new treatment for patients with PAD. Three separate but related studies were planned to complete the proposed research aims. To better understand the role of Meis1, we reviewed, in the first chapter, all literature relevant to the recent advances of the Meis1 in normal hematopoiesis, vasculogenesis, and heart developments, which were mostly studied in zebrafish and mouse. Briefly, Meis1 is found to be highly expressed in the brain and retina in zebrafish and additional in the heart, nose, and limb in mouse during the very early developmental stage, and remains at a low level quickly after birth. Meis1 is necessary for both primitive and definitive hematopoiesis and required for posterior erythroid differentiation. The absence of Meis1 results in a severe reduction of the number of mature erythrocytes and weakens the heart beats in zebrafish. Meis1 deficiency mouse is dead as early as E11.5 due to the severe internal hemorrhage. In addition, Meis1 is essential in heart development. Knock-down of Meis1 can promote angiotensin II-induced cardiomyocytes (CMs) hypertrophy or CMs proliferation, which can be repressed by a transcription factor Tbx20. Meis1 appears to play a complicated role in the blood vessels. Although the major blood vessels are still normal when global deletion of Meis1, the intersegmental vessel cannot be formed in Meis1 morphants in the zebrafish, and the small vessels are either too narrow or form larger sinuses in Meis1 deficient mouse. The effects of Meis1 on the vascular network under normal and disease (ischemia) condition remain largely unknown, and the existing data in this field is limited. In the second chapter, we developed a method protocol to identify mice of all ages, especially neonates that we faced methodological difficulties to easily and permanently label prior to our major experiments. In this study, single- or 2-color tattooing (ear, tail, or toe or combinations) was performed to identify a defined or unlimited number of mice, respectively. Tail tattooing using both green and red pastes was suitable for identifying white-haired neonatal mice as early as postnatal day (PND) 1, whereas toe tattooing with green paste was an effective alternative approach for labeling black-haired mouse pups. In comparison, single-color (green) or 2-color (green and red) ear tattooing identified both white and black adult mice older than three weeks. Ear tattooing can be adapted to labeling an unlimited number of adult mice by adding the cage number. Thus, tattooing various combinations of the ears, tail, and toes provides an easy and permanent approach for identifying mice of all ages with minimal disturbance to the animals, which shows a new approach than any existing method to identify mouse at all ages, especially the neonatal pups used in the present study (Chapter 4). Various formation of hindlimb ischemia with ligations of femoral artery or vein or both have been reported in the literature. The ischemic severity varies dependent on mouse strains and ligation methods. Due to the tiny body size of our experimental neonatal mice (PND2), it is technically challenging to separate the femoral artery from femoral vein without potential bleeding. In the third chapter, we aimed to explore a suitable surgical approach that can apply to neonatal mice. To this end, we compared the effects of femoral artery/vein (FAV) excision vs. femoral artery (FA) excision on hindlimb model using adult CD-1 mice. We showed during the 4-week period of blood reperfusion, no statistically significant differences were found between FAV and FA excision-induced ischemia regarding the reduction of limb blood flow, paw size, number of necrotic toes, or skeletal muscle cell size. We conclude that FAV and FA excision in CD-1 mice generate a comparable severity of hindlimb ischemia. In other words, FAV ligation is no more severe than FA ligation. These findings provide valuable information for researchers when selecting ligation methods for their neonate hindlimb models. Based on these findings, we selected FAV ligation of hindlimb ischemia approach to study the function of Meis1 in vascular remodeling of neonatal mice. In the fourth chapter (the main part of my dissertation), we investigated the roles of Meis1 in regulating arteriogenesis and angiogenesis of neonatal mouse under the ischemic condition. To this end, endothelial cell-specific deletion of Meis1 was generated by cross-breeding Meis1flox/flox mice with Tie2-Cre mice. Wild-type (WT, Meis1f/f) and endothelial cell-specific knock-out (KO, Meis1ec-/-Tie2-Cre+) C57BL/6 mice at the age of PND2 were used. Under the anesthesia, the pups were subject to hindlimb ischemia by excising FAV. Laser Doppler Imager was used to measure the blood flow pre- and post-surgery up to 28 days. Toe necrosis, skeletal regeneration, and vascular distributions were examined at the end of experiments (PND28 post-ischemia). Surprisingly, during 4-week periods after ischemia, the blood flow ratios (ischemic vs. control limb) in KO mice significantly increased compared to WT on PND14 and PND28, suggesting the inhibitory effects of Meis1 on blood flow recovery under ischemic condition. Meanwhile, WT mice showed more severe necrotic limb (lower ratio of limb length and area, and higher necrotic scores at PND7) than those in the KO mice. Furthermore, significant increases in diameters of Dil-stained arterioles of the skin vessel and the vessels on the ligation site were observed in KO mice, indicating the enhanced arteriogenesis in KO mice. To investigate the underlying mechanism, RNA from the ischemia and control limb was extracted and q-PCR was used to study the potential genes involved in the mechanism. Casp3 and Casp8 were found downregulated showing less apoptosis in the KO mice. On the other hand, endothelial cells (ECs) were isolated from the lungs of 3-5 WT and KO neonates using CD31 Microbeads. CD31+ cells were plated and treated with 0, 0.5, and 1μM doxorubicin for 24 hours and analyzed with various assays. Meis1-KO ECs demonstrated higher cell viability and formed a higher number of vascular tubes than those in WT ECs following 0.5μM Dox treatment, presenting the potential ability of angiogenesis in KO-ECs. Furthermore, the increased viability in KO ECs may be due to the decreased expression or activities of Casp8 and Casp3. In conclusion, my present studies have developed a new methodology to easily and permanently identify all mice at any ages. The insignificant differences between FAV and FA ligations suggest that a relative-easy surgical approach could be used to generate hindlimb ischemic model, which potentially reduces the cost, decreases the surgical time and prevents damage of femoral nerve from surgical tools. More importantly, by using transgenic mice, we found that Meis1-KO dramatically increased blood flow and protected the ischemic hindlimb through vascular remodeling. Obviously, the molecular and cellular mechanisms underlying the above beneficial effects appear complicated and likely to involve multiple cellular remodeling processes and molecular signaling pathways to enhance arteriogenesis and angiogenesis and/or reduce cellular apoptosis through Meis1-mediated pathways. Our study demonstrated that under ischemic condition, knockout of Meis1 increases expression of Hif1a, which then activates Agt or VEGF, thus enhances arteriogenesis or angiogenesis; In addition, knockout of Meis1 activates Ccnd1, which subsequently promotes regeneration of skeletal muscle, and reduces expression of Casp8 and Casp3, thus preventing limb tissue from ischemia-induced apoptosis. Our innovative findings offer great potential to ultimately lead to new drug discovery or therapeutic approaches for prevention or treatment of PAD.
PHD
Стилі APA, Harvard, Vancouver, ISO та ін.
6

PILLAI, Vinoshene. "Intravital two photon clcium imaging of glioblastoma mouse models." Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/109211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chinchilla, Lenin. "Quantitative ultrasound techniques to characterize soft tissue anisotropy." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0154.

Повний текст джерела
Анотація:
Les techniques quantitatives ultrasonores basées sur la paramétrisation du coefficient de rétrodiffusion (BSC) supposent généralement que le tissu étudié est homogène et isotrope. Cependant, certains tissus tels que les agrégats des globules rouges, le myocarde ou les muscles du biceps présentent des propriétés acoustiques dépendantes de l'angle (BSC et/ou coefficient d'atténuation). L'objectif de cette thèse était d'intégrer l'anisotropie dans l'analyse de la rétrodiffusion tissulaire. Dans un premier temps, un modèle de rétrodiffusion ultrasonore est proposé et évalué numériquement pour caractériser les structures anisotropes des agrégats des globules rouges. Ensuite, une procédure expérimentale a été évaluée pour mesurer l'anisotropie du BSC dans des fantômes des tissus. Plus précisément, une comparaison des performances est effectuée entre une sonde à transducteur ultrasonore micro-usiné capacitif et une sonde piézoélectrique commerciale pour mesurer l'anisotropie de rétrodiffusion en utilisant la stratégie d'imagerie par orientation du faisceau focalisé
Quantitative ultrasound techniques based on the parameterization of the backscatter coefficient (BSC) generally assume that the tissue under investigation is homogeneous and isotropic. However, some tissues such as flowing red blood cell (RBC) aggregates, myocardium or bicep muscles exhibit angle-dependent acoustic properties (BSC and/or attenuation coefficient). The objective of this thesis was to incorporate anisotropy in tissue backscatter analysis. First, an ultrasonic backscattering model is proposed and evaluated numerically to characterize the anisotropic structures of RBC aggregates. Then, an experimental procedure was evaluated to measure BSC anisotropy in tissue-mimicking phantoms. More specifically, a performance comparison is carried out between a capacitive micromachined ultrasonic transducer probe and a commercial piezoelectric probe to measure backscatter anisotropy by using the focused beam steering imaging strategy
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nazerzadeh-Yazdi, Arvin. "Lensless imaging of red blood cells using coherent soft x-ray scattering." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/32151.

Повний текст джерела
Анотація:
I am reporting on lensless imaging of human red blood cell using coherent x-ray scattering (CXS) technique. The successful microfabrication of a sample-mask structure using focused ion beam (FIB) milling was the key element in this imaging technique. The sample-mask structure is 600 - 800 nm gold films deposited using sputtering or electron beam evaporation on Si₃N₄ membrane windows. We used commercially available 100 nm thick Si₃N₄ membranes held by 3 mm diameter silicon frames that are designed for use in transmission electron microscopy. The red blood cell (RBC) sample was mounted in front of a 3 μm hole milled through both gold and Si₃N₄ layers on the opposite side. Three smaller reference apertures with diameters 300, 250 and 200 nm on the gold side were milled all the way through both layers at a distance of 9 am center-to center from the sample aperture. These holes are used for holographic lensless x-ray imaging. It was found that a gold surface roughens during ion milling due to a sputter instability and which produces cup-like features with a characteristic length up to few hundred nm. We found apertures milled through gold films deposited by sputtering show good circularity and sidewall roughness of 20 nm. We present result on CXS measurements in transmission geometry near Fe L₃₋ and C K-absorption edges on a single RBC. We captured high resolution images of the sample by simple Fourier inversion of the recorded far-field scattered intensity. We found 8.5 % reduction in the transmission intensity near Fe L₃₋edge due to presence of Fe in the form of hemoglobin molecules inside RBC. This absorption agrees with estimated agrees well with the estimated value of 9 % within experimental uncertainty. From limited data measured below C K-edge we measured a presence of at least 300 nm thick carbon inside RBC which lies in the range of the estimated value of 1.8 μm. The resolution of our lensless imaging technique is about 55 nm near Fe L₃₋edge and 78 nm near C K-edge.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dhaya, Ibtihel. "Study of the blood-brain interface and glial cells during sepsis-associated encephalopathy : from imaging to histology." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0966/document.

Повний текст джерела
Анотація:
L'encéphalopathie associée au sepsis (EAS) est définie comme un dysfonctionnement cérébral diffus induit par une réponse systémique à une infection. Chez les patients septiques, l'imagerie par résonance magnétique (IRM) a indiqué à la fois des anomalies de la substance grise (SG) et blanche (SB) associées à des troubles cognitifs graves, y compris le delirium. Pour améliorer notre compréhension des changements hémodynamiques, métaboliques et structuraux associés au sepsis, différentes séquences d'IRM ont été réalisées chez des rats ayant subi une injection ip de solution saline ou de lipopolysaccharide bactérien (LPS) 2,5h plus tôt ou une ligature et ponction caecale 24h plus tôt. Après ip LPS, l'IRM de contraste de phase a été réalisée pour étudier le flux des artères cérébrales antérieures et moyennes et le marquage des spins artériels (ASL) pour étudier la perfusion des structures cérébrales de la SB et SG. Des séquences d'imagerie par diffusion pondérée (DWI) ont été utilisées pour évaluer les changements structurels. Après la chirurgie CLP, ASL a été utilisé pour étudier les changements de la microcirculation. L'imagerie pondérée en T2, l'imagerie du tenseur de diffusion (DTI) et les statistiques spatiales basées sur les faisceaux (TBSS) ont été réalisées pour caractériser les événements structurels dans différentes structures cérébrales. Après imagerie, les animaux ont été sacrifiés et leur cerveau a été traité pour l'histologie afin de détecter l'enzyme synthétisant les prostaglandines vasoactives cyclooxygénase-2 (COX-2) et le canal hydrique astrocytaire aquaporin-4 (AQP4) dont l'expression peut être régulée à la hausse, évaluer la présence d'immunoglobulines périvasculaires (Ig) indiquant une rupture de la barrière hémato-encéphalique (BHE) et étudier la morphologie des glies puisque la microglie et l’astroglie changent de morphologie lors des conditions inflammatoires. L'IRM n'a indiqué aucun changement hémodynamique dans la substance grise après l'administration de ip LPS, alors qu'une perfusion cérébrale accrue a été montrée au niveau du corps calleux comme indiqué par l'ASL. DTI a indiqué une augmentation de la diffusion des molécules d’eau parallèlement aux fibres du corps calleux. Ces changements étaient accompagnés d'une dégradation de BHE dans la SB ainsi que la substance grise corticale et striatale adjacente tel est indiqué par la présence périvasculaire d'IgG, sans aucun changement majeur de COX-2 vasculaire ou de morphologie des glies du coprs calleux. Le dysfonctionnement du SNC induit par le sepsis a résulté en une augmentation du contraste pondéré en T2 dans le cortex, le striatum et la base du cerveau, une diminution de la perfusion sanguine dans le cortex et une augmentation de la diffusion hydrique du corps calleux et du striatum ventral. Ces changements ont été associés dans la SB à des modifications de la morphologie des glies et dans la substance grise à une expression constitutive de COX-2 et AQP4 plus faible dans le cortex cérébral. La comparaison entre CLP ayant subit ou non une IRM sous anesthésie à l'isoflurane a montré une réponse inflammatoire réduite tel est indiqué par l'expression de COX- 2, une activation réduite des glies ainsi qu’une lésion réduite de la BHE dans le CLP subissant une IRM sous anesthésie. Collectivement, nos résultats suggèrent que des changements hémodynamiques peuvent survenir en l'absence de flux altéré dans les artères irriguant le cerveau antérieur. Ensuite, l'altération de la structure de la SB est une étape précoce de la pathogenèse de l’EAS qui peut résulter soit de la dégradation de la BHE, soit de l'activation des glies. Cette étude sous-tend l'effet délétère d'une seule exposition à l'anesthésie à l'isoflurane qui peut être atténuée par une seconde exposition chez les rats ayant subi une laparotomie ainsi que les effets de l'inflammation systémique induite par le CLP sur les glies pouvant être atténués par imagerie sous anesthésie à l'isoflurane
Sepsis-associated encephalopathy (SAE) refers to central nervous system dysfunction during the systemic inflammatory response to infection. In septic patients with encephalopathy MRI has indicated both gray and white matter abnormalities that were associated with worse cognitive outcome including delirium. To improve our understanding of sepsis-associated hemodynamic, metabolic, and structural changes, different MRI sequences were performed in rats that either underwent an i.p injection of saline or bacterial lipopolysaccharide (LPS) 2.5h earlier or cecal ligation and puncture (CLP) 24h earlier. After ip LPS, phase contrast MRI was performed to study anterior and middle cerebral arteries flow and Arterial Spin Labeling (ASL) to study perfusion of white and grey matter brain structures. Diffusion Weighted Imaging (DWI) sequences was used to assess structural changes. After CLP surgery, ASL was used to study microcirculation changes. T2-Weighted Imaging, Diffusion Tensor Imaging (DTI) and tract-based spatial statistics (TBSS) were performed to characterize structural events in different brain structures. After imaging, animals were sacrificed and their brains processed for histology to detect the vasoactive prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2) and the astrocytic aquaporin-4 water channel (AQP4) the expression of which can be upregulated during inflammation, to assess the presence of perivascular immunoglobulins (Ig) indicating blood-brain barrier (BBB) leakage and to study glia cell morphology as both microglia and astrocytes are known to change their morphology in inflammatory conditions. Magnetic resonance rat brain imaging indicated no hemodynamic changes in the grey matter after ip LPS administration while an increased CBF was shown in corpus callosum white matter as indicated by ASL. DTI indicated increased water diffusion parallel to fibers of the corpus callosum white matter. These changes were accompanied by BBB breakdown in the white matter and adjacent cortical and striatal grey matter as indicated by the perivascular presence of IgG, but no major changes in vascular COX-2 or white matter glia cell morphology. CLP induced sepsis-associated CNS dysfunction resulted in higher T2-weighted contrast intensities in the cortex, striatum and base of the brain, decreased blood perfusion distribution to the cortex and increased water diffusion in the corpus callosum and ventral striatum compared to sham surgery. These changes were associated in the white matter with modifications in glia cells morphology and in the grey matter with lower expression of constitutive COX-2 expression and AQP4 in the cerebral cortex. The comparison between CLP that underwent or not MRI under isoflurane anesthesia indicated reduced inflammatory response as indicated by COX-2 expression, reduced glia activation and reduced BBB damage in CLP that underwent MRI under isoflurane anesthesia. Collectively, our results suggest that hemodynamic changes may occur in the absence of altered flow in forebrain irrigating arteries. Then, altered white matter structure is an early step in SAE pathogenesis that may result either from BBB breakdown or glial cells activation. This study underlies the deleterious effects of a single exposure to isoflurane anesthesia that may be mitigated by a second exposure in sham-operated rats and the effects of CLP-induced systemic inflammation on glial cells that can be attenuated by imaging under isoflurane anesthesia
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mauricio, Claudio Roberto Marquetto. "Contador de células vermelhas baseado em imagens para múltiplas espécies de animais silvestres e domésticos." Universidade Tecnológica Federal do Paraná, 2017. http://repositorio.utfpr.edu.br/jspui/handle/1/2314.

Повний текст джерела
Анотація:
A contagem de células vermelhas do sangue desempenha um papel importante no diagnóstico de animais silvestres e domésticos. Apesar da existência de muitas tecnologias em diferentes contadores automatizados para análise de sangue, quando se trata do sangue de animais silvestres ainda é difícil encontrar uma solução simples e economicamente viável para múltiplas espécies. O objetivo deste estudo é desenvolver um contador automático de células vermelhas. Amostras de sangue (1 jaguatirica - Leopardus pardalis, 1 macaco - Cebus apella, 1 quati - Nasua nasua, 62 cães - Canis familiaris e 5 cavalos - Equus caballus) foram analisadas usando três métodos: 1-contagem manual, 2-contagem automática por imagem e 3-contagem semiautomática por imagem; as amostras de cães e cavalos foram analisadas por um quarto método: 4-contagem automática por impedância. As contagens dos métodos 2 e 3 foram obtidas usando o contador de células vermelhas proposto. Os resultados foram comparados usando a correlação de Pearson e gráficos com diferentes métodos como valor de referência. As contagens dos métodos 1, 2 e 3 correlacionaram muito bem com as contagens do método 4 (r ≥ 0.94). As contagens produzidas pelo método 2 apresentaram alta correlação com o método 3 (r = 0.998). Os resultados indicam que o contador proposto pode ser usado como um método de contagem automática ou semiautomática em clínicas que usam o método manual para contagem de células vermelhas do sangue de animais.
A RBC count plays an important role in the diagnostic of wild and domestic animals. Despite the many technologies available in different automated hematology analyzers, when it comes to blood of wild animals it is still difficult to find an easy and affordable solution for multiple species. This study aims to develop an automatic red blood cell counter. Blood samples (1 ocelot - Leopardus pardalis, 1 monkey - Cebus apella, 1 coati - Nasua nasua, 62 dogs - Canis familiaris and 5 horses - Equus caballus) were analyzed using three methods: 1-manual count, 2automatic count by image and 3-semi-automatic count by image; blood from dogs and horses were also analyzed by a fourth method: 4-automatic count by impedance. The counts of methods 2 and 3 were produced by the proposed red blood cell counter. Results were compared using Pearson’s correlation and plots with different methods as the criterion standard. RBC counts of methods 1, 2 and 3 correlated very well with those on the method 4 (r ≥ 0.94). RBC counts produced by method 2 were highly correlated with method 3 (r = 0.998). The results indicate that the proposed method can be used as an automatic or semi-automatic counting method in clinics that are currently using the manual method for RBC assessment.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Blood cell imaging"

1

International Symposium on Radiolabelled Cellular Blood Elements (5th 1989 Vienna, Austria). Radiolabelled cellular blood elements: Proceeding of the 5th International Symposium on Radiolabelled Cellular Blood Elements, held in Vienna, September 10-14, 1989. Edited by Sinzinger H and Thakur M. L. New York: Wiley-Liss, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

H, Sinzinger, and Thakus M. L, eds. R adiolabelled cellular blood elements: Proceedings of the 5th International Symposium on Radiolabelled Cellular Blood Elements, held in Vienna, September 10-14, 1989. New York: Wiley-Liss, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

NATO Advanced Study Institute on Radiolabeled Cellular Blood Elements (1983 Maratea, Italy). Radiolabeled cellular blood elements ; pathophysiology, techniques, and scintigraphic applications. Edited by Thakur M. L, Ezikowitz M. D, Hardeman Max R, and North Atlantic Treaty Organization. Scientific Affairs Division. New York: Plenum, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

J, Martin-Comin, North Atlantic Treaty Organization. Scientific Affairs Division., and NATO Advanced Research Workshop on Radiolabeled Blood Elements: Recent Advances in Techniques and Applications (1992 : Barcelona, Spain), eds. Radiolabeled blood elements: Recent advances in techniques and applications. New York: Plenum Press, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Radiolabelled Cell Bld Elem. Plenum Press, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lim, Brian. Modeling ultrasound imaging of red blood cell aggregation in shear flow. 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

van Hinsbergh, Victor W. M. Physiology of blood vessels. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198755777.003.0002.

Повний текст джерела
Анотація:
This chapter covers two major fields of the blood circulation: ‘distribution’ and ‘exchange’. After a short survey of the types of vessels, which form the circulation system together with the heart, the chapter describes how hydrostatic pressure derived from the heartbeat and vascular resistance determine the volume of blood that is locally delivered per time unit. The vascular resistance depends on the length of the vessel, blood viscosity, and, in particular, on the diameter of the vessel, as formulated in the Poiseuille-Hagen equation. Blood flow can be determined in vivo by different imaging modalities. A summary is provided of how smooth muscle cell contraction is regulated at the cellular level, and how neuronal, humoral, and paracrine factors affect smooth muscle contraction and thereby blood pressure and blood volume distribution among tissues. Subsequently the exchange of solutes and macromolecules over the capillary endothelium and the contribution of its surface layer, the glycocalyx, are discussed. After a description of the Starling equation for capillary exchange, new insights are summarized(in the so-called glycocalyx cleft model) that led to a new view on exchange along the capillary and on the contribution of oncotic pressure. Finally mechanisms are indicated in brief that play a role in keeping the blood volume constant, as a constant volume is a prerequisite for adequate functioning of the circulatory system.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wilson, John W., and Lynn L. Estes. Osteomyelitis. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199797783.003.0107.

Повний текст джерела
Анотація:
•Clinical: Localized pain and tenderness of involved bone; systemic signs and symptoms of acute hematogenous osteomyelitis•Radiology: Bone destruction or sequestrum in chronic cases; use of nuclear scanning, magnetic resonance imaging, or computed tomography may aid diagnosis and staging•Laboratory: White blood cell count is often normal; erythrocyte sedimentation rate and C-reactive protein are usually elevated...
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Petzold, Axel. Tissue Biomarkers and Neuroprotection. Edited by David L. Reich, Stephan Mayer, and Suzan Uysal. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190280253.003.0004.

Повний текст джерела
Анотація:
This chapter reviews the evidence for using biomarkers to measure damage to the central nervous system (CNS) in neurocritical care and perioperative medicine. A conceptual framework is provided to guide the optimal timing of blood, cerebrospinal fluid, and structural imaging biomarker assessment in relation to the onset of injury. A selection of well-validated, cell type–specific biomarkers of CNS tissue damage are reviewed, including their composition, biokinetics, and specificity for neurons, axons, astrocytes, and microglia. Each of these biomarkers will be reviewed in the pertinent clinical settings of stroke, traumatic brain injury, cardiac arrest, Guillain-Barré syndrome, and neurological complications of critical illness and surgery.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

(Editor), J. Martin-Comin, M. L. Thakur (Editor), C. Piera (Editor), M. Roca (Editor), and F. Lomena (Editor), eds. Radiolabeled Blood Elements:: Recent Advances in Techniques and Applications (Nato Science Series: A:). Springer, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Blood cell imaging"

1

Hoefnagel, Cornelis A. "Red Blood Cell Imaging with SPECT-CT." In Atlas of SPECT-CT, 187–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15726-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stewen, Jonas, and Maria Gabriele Bixel. "Intravital Imaging of Blood Flow and HSPC Homing in Bone Marrow Microvessels." In Stem Cell Mobilization, 109–21. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9574-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Palestro, Christopher J. "Nuclear Medicine Imaging of Osteomyelitis: White Blood Cell, Monoclonal Antibody, or Bacterial Imaging?" In Diagnostic Imaging of Infections and Inflammatory Diseases, 168–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118484388.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, HuaLei, and Rong Zhou. "Noninvasive Imaging of Myocardial Blood Flow Recovery in Response to Stem Cell Intervention." In Imaging and Tracking Stem Cells, 89–99. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/7651_2013_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Das, Bhargab, Swati Bansal, Girish C. Mohanta, Sanjit K. Debnath, and Prateek Bhatia. "Fluorescence Imaging-Based System for Performing White Blood Cell Counts." In Springer Proceedings in Physics, 617–20. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9259-1_142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shi, Jun, and Yin Cai. "Joint Sparse Coding Spatial Pyramid Matching for Classification of Color Blood Cell Image." In Machine Learning in Medical Imaging, 235–42. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02267-3_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bradbury, Joshua J., Holly E. Lovegrove, Marta Giralt-Pujol, and Shane P. Herbert. "Analysis of mRNA Subcellular Distribution in Collective Cell Migration." In Cell Migration in Three Dimensions, 389–407. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2887-4_22.

Повний текст джерела
Анотація:
AbstractThe movement of groups of cells by collective cell migration requires division of labor between group members. Therefore, distinct cell identities, unique cell behaviors, and specific cellular roles are acquired by cells undergoing collective movement. A key driving force behind the acquisition of discrete cell states is the precise control of where, when, and how genes are expressed, both at the subcellular and supracellular level. Unraveling the mechanisms underpinning the spatiotemporal control of gene expression in collective cell migration requires not only suitable experimental models but also high-resolution imaging of messenger RNA and protein localization during this process. In recent times, the highly stereotyped growth of new blood vessels by sprouting angiogenesis has become a paradigm for understanding collective cell migration, and consequently this has led to the development of numerous user-friendly in vitro models of angiogenesis. In parallel, single-molecule fluorescent in situ hybridization (smFISH) has come to the fore as a powerful technique that allows quantification of both RNA number and RNA spatial distribution in cells and tissues. Moreover, smFISH can be combined with immunofluorescence to understand the precise interrelationship between RNA and protein distribution. Here, we describe methods for use of smFISH and immunofluorescence microscopy in in vitro angiogenesis models to enable the investigation of RNA and protein expression and localization during endothelial collective cell migration.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Hongbo, Libo Zeng, Hengyu Ke, Hong Zheng, and Qiongshui Wu. "A Novel Multispectral Imaging Analysis Method for White Blood Cell Detection." In Lecture Notes in Computer Science, 210–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539117_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Willis, Colin L. "Imaging In Vivo Astrocyte/Endothelial Cell Interactions at the Blood–Brain Barrier." In Methods in Molecular Biology, 515–29. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-452-0_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eke, A. "Imaging of Red Blood Cell and Plasma Dispersion in the Brain Cortex." In Oxygen Transport to Tissue IX, 21–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-7433-6_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Blood cell imaging"

1

Won, Chee Sun, Jae Yeal Nam, and Yoonsik Choe. "Extraction of leukocyte in a cell image with touching red blood cells." In Electronic Imaging 2005, edited by Edward R. Dougherty, Jaakko T. Astola, and Karen O. Egiazarian. SPIE, 2005. http://dx.doi.org/10.1117/12.593335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Berge, Heidi, Dale Taylor, Sriram Krishnan, and Tania S. Douglas. "Improved red blood cell counting in thin blood smears." In 2011 8th IEEE International Symposium on Biomedical Imaging (ISBI 2011). IEEE, 2011. http://dx.doi.org/10.1109/isbi.2011.5872388.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ran, Qiong, Lan Chang, Wei Li, and Xiaofeng Xu. "Spatial-spectral blood cell classification with microscopic hyperspectral imagery." In Optical Spectroscopy and Imaging, edited by Tsutomu Shimura, Mengxia Xie, Bing Zhao, Jin Yu, Zhe Wang, Wei Hang, and Xiandeng Hou. SPIE, 2017. http://dx.doi.org/10.1117/12.2281268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sheeba, Feminna, Robinson Thamburaj, Joy J. Mammen, Hannah M. Thomas Thevarthundiyil, and Atulya K. Nagar. "White Blood Cell Segmentation and Reversible Watermarking." In Imaging and Signal Processing in Healthcare and Technology. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.737-021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Theera-Umpon, Nipon, and Paul D. Gader. "Automated white blood cell counting via classification-free granulometric methods." In Electronic Imaging '99, edited by Edward R. Dougherty and Jaakko T. Astola. SPIE, 1999. http://dx.doi.org/10.1117/12.341092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Su, Ting-Wei, Sungkyu Seo, Anthony Erlinger, and Aydogan Ozcan. "High-Throughput Cell Imaging, Counting and Characterization on a Chip." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-193255.

Повний текст джерела
Анотація:
We introduce a lensfree on chip imaging platform that enables high-throughput monitoring, counting, and identification of several different microscopic objects such as different cell types within a heterogeneous solution. This imaging platform can in principle be miniaturized to a hand-held device that can be used by minimally trained health care providers at the point-of-care to measure the cell count of e.g., red blood cells from whole blood samples with a counting speed of >100,000 cells/sec. This novel optical imaging platform can also be merged with microfluidic systems to be able to rapidly monitor and count hundreds of thousand of cells within a field-of-view (FOV) of ∼10 cm2 in vitro. The immediate impact of this lensfree on chip cell counting approach is its improved speed, significantly larger field-of-view and simplified design that permits considerable miniaturization of the entire cell counting device.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hoelen, Christoph G., Richard Pongers, G. Hamhuis, Frits F. M. de Mul, and Jan Greve. "Photoacoustic blood cell detection and imaging of blood vessels in phantom tissue." In BiOS Europe '97, edited by Hans-Jochen Foth, Renato Marchesini, Halina Podbielska, and Abraham Katzir. SPIE, 1998. http://dx.doi.org/10.1117/12.297931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Qi, Xin, Rebekah H. Gensure, David J. Foran, and Lin Yang. "Content-based white blood cell retrieval on bright-field pathology images." In SPIE Medical Imaging, edited by Metin N. Gurcan and Anant Madabhushi. SPIE, 2013. http://dx.doi.org/10.1117/12.2006439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baghli, Ismahan, Amir Nakib, Elie Sellam, Mourtada Benazzouz, Amine Chikh, and Eric Petit. "Hybrid framework based on evidence theory for blood cell image segmentation." In SPIE Medical Imaging, edited by Robert C. Molthen and John B. Weaver. SPIE, 2014. http://dx.doi.org/10.1117/12.2042142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Davies, Heather S., Natalia S. Baranova, Nouha El Amri, Liliane Coche-Guérente, Claude Verdier, Lionel Bureau, Ralf P. Richter, and Delphine Débarre. "Blood cell - vessel wall interactions probed by reflection interference contrast microscopy." In Advances in Microscopic Imaging, edited by Francesco S. Pavone, Emmanuel Beaurepaire, and Peter T. So. SPIE, 2019. http://dx.doi.org/10.1117/12.2527058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Blood cell imaging"

1

Deng, Chun, Zhenyu Zhang, Zhi Guo, Hengduo Qi, Yang Liu, Haimin Xiao, and Xiaojun Li. Assessment of intraoperative use of indocyanine green fluorescence imaging on the number of lymph node dissection during minimally invasive gastrectomy: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2021. http://dx.doi.org/10.37766/inplasy2021.11.0062.

Повний текст джерела
Анотація:
Review question / Objective: Whether is indocyanine green fluorescence imaging-guided lymphadenectomy feasible to improve the number of lymph node dissections during radical gastrectomy in patients with gastric cancer undergoing curative resection? Condition being studied: Gastric cancer was the sixth most common malignant tumor and the fourth leading cause of cancer-related death in the world. Radical lymphadenectomy was a standard procedure in radical gastrectomy for gastric cancer. The retrieval of more lymph nodes was beneficial for improving the accuracy of tumor staging and the long-term survival of patients with gastric cancer. Indocyanine green(ICG) near-infrared fluorescent imaging has been found to provide surgeons with effective visualization of the lymphatic anatomy. As a new surgical navigation technique, ICG near-infrared fluorescent imaging was a hot spot and had already demonstrated promising results in the localization of lymph nodes during surgery in patients with breast cancer, non–small cell lung cancer, and gastric cancer. In addition, ICG had increasingly been reported in the localization of tumor, lymph node dissection, and the evaluation of anastomotic blood supply during radical gastrectomy for gastric cancer. However, it remained unclear whether ICG fluorescence imaging would assist surgeons in performing safe and sufficient lymphadenectomy.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії