Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Blade channel.

Статті в журналах з теми "Blade channel"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Blade channel".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Tao, Ran, and Zhengwei Wang. "Comparative modeling and analysis of the flow asymmetricity in a centrifugal pump impeller at partial load." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, no. 2 (May 29, 2019): 237–47. http://dx.doi.org/10.1177/0957650919851921.

Повний текст джерела
Анотація:
Undesirable flow regime occurs at partial-load conditions of the centrifugal pump. Flow separates at the leading edge and pulses in the blade channel with complex stall cell transfer law. The passing capability of the blade channel becomes important when rotating stall happens. In this study, the blade channel number influence on the flow stability in a centrifugal pump impeller was studied by unsteady flow simulations after numerical-experimental verification. The 5-, 6-, and 7-blade impellers were discussed under the same partial-load flow rate condition and the same rotating speed. Results show that the internal flow pattern was strongly influenced by the blade channel number. Periodic half-blockage was observed in the 5-blade impeller. Alternating stall with three stalled and three well-behaved channels existed in the 6-blade impeller. Complex aperiodic flow pattern occurred in the 7-blade impeller with the well-behaved, half-blocked, and fully stalled passages were all observed with stall cell transfer. The different flow regime caused different pressure pulsations. In the 5-blade impeller, the inter-channel flow frequencies, which were induced by the fluid extruded from blocked channels flowed into other channels, dominated. In the 6-blade impeller, the pressure pulsations performed low-in-amplitude and high-in-frequency. The flow regime was stable even under the rotating stall. In the 7-blade impeller, the rotating stall frequency dominated. The inter-channel flow frequencies were also obvious. The stable rotating stall pattern does not strongly influence the pressure pulsation and impeller axial and radial forces. The transferring stall cell induces extra mild pressure pulsation and impeller forces. The inter-channel flow adds strong pressure pulsation and impeller forces. When centrifugal pumps are operating at partial-load conditions, the flow characters especially the inter-channel flow caused by half-channel-blockage should be checked to avoid operation instability and security.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gribin, Vladimir, Ilya Gavrilov, Aleksandr Tishchenko, Victor Tishchenko, Vitaliy Popov, Sergey Khomyakov, and Roman Alexeev. "Features of liquid phase movement in the inter-blade channel of nozzle blade cascade." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, no. 5 (September 13, 2017): 452–60. http://dx.doi.org/10.1177/0957650917730947.

Повний текст джерела
Анотація:
The experimental results of wet steam flow in the blade channel of flat nozzle blade cascade have been considered in the paper. The aim of this work is to study the motion of liquid droplets inside the inter-blade channel. Experimental studies were performed on installation circuit of wet steam. In order to obtain velocity fields of droplets in investigated channel, the laser diagnostics system was used. It carries out the cross-correlation method—particle tracking velocimetry. Numerical simulation of wet steam flow in studied channel was performed. According to the obtained data, the main features of the droplets motion in the blade channel have been revealed. Basic droplets streams and the sources of their appearance have been determined. The process of deposition and breakdown of the droplets on the surface of the blades have been studied. It is shown that reflected region of droplets (“fountain”) is formed around the leading edge. The experimental data were compared with the results of numerical simulation of the droplets motion in the flat nozzle blade cascade.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, Meng-Hui, Shiue-Der Lu, Cheng-Che Hsieh, and Chun-Chun Hung. "Fault Detection of Wind Turbine Blades Using Multi-Channel CNN." Sustainability 14, no. 3 (February 4, 2022): 1781. http://dx.doi.org/10.3390/su14031781.

Повний текст джерела
Анотація:
This study utilized the multi-channel convolutional neural network (MCNN) and applied it to wind turbine blade and blade angle fault detection. The proposed approach automatically and effectively captures fault characteristics from the imported original vibration signals and identifies their state in multiple convolutional neural network (CNN) models. The result obtained from each model is sent to the output layer, which is a maximum output network (MAXNET), to compute the most accurate state. First, in terms of wind turbine blade state detection, this paper builds blade models based on the normal state and three common fault types, including blade angle anomaly, blade surface damage, and blade breakage. Vibration signals are employed for fault detection. The proposed wind turbine fault diagnosis approach adopts a triaxial vibration transducer and frame grabber to capture vibration signals and then applies the new MCNN algorithm to identify the state. The test results show that the proposed approach could deliver up to 87.8% identification accuracy for four fault types of large wind turbine blades.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ben-Mansour, R., and L. Al-Hadhrami. "Effect of Reynolds Number and Property Variation on Fluid Flow and Heat Transfer in the Entrance Region of a Turbine Blade Internal-Cooling Channel." International Journal of Rotating Machinery 2005, no. 1 (2005): 36–44. http://dx.doi.org/10.1155/ijrm.2005.36.

Повний текст джерела
Анотація:
Internal cooling is one of the effective techniques to cool turbine blades from inside. This internal cooling is achieved by pumping a relatively cold fluid through the internal-cooling channels. These channels are fed through short channels placed at the root of the turbine blade, usually called entrance region channels. The entrance region at the root of the turbine blade usually has a different geometry than the internal-cooling channel of the blade. This study investigates numerically the fluid flow and heat transfer in one-pass smooth isothermally heated channel using the RNGk−εmodel. The effect of Reynolds number on the flow and heat transfer characteristics has been studied for two mass flow rate ratios (1/1and1/2) for the same cooling channel. The Reynolds number was varied between10 000and50 000. The study has shown that the cooling channel goes through hydrodynamic and thermal development which necessitates a detailed flow and heat transfer study to evaluate the pressure drop and heat transfer rates. For the case of unbalanced mass flow rate ratio, a maximum difference of8.9% in the heat transfer rate between the top and bottom surfaces occurs atRe=10 000while the total heat transfer rate from both surfaces is the same for the balanced mass flow rate case. The effect of temperature-dependent property variation showed a small change in the heat transfer rates when all properties were allowed to vary with temperature. However, individual effects can be significant such as the effect of density variation, which resulted in as much as9.6% reduction in the heat transfer rate.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Jinfeng, Guidong Li, Jieyun Mao, Shouqi Yuan, Yefei Qu, and Jing Jia. "Effects of the outlet position of splitter blade on the flow characteristics in low-specific-speed centrifugal pump." Advances in Mechanical Engineering 10, no. 7 (July 2018): 168781401878952. http://dx.doi.org/10.1177/1687814018789525.

Повний текст джерела
Анотація:
To elucidate the influences of the outlet position of splitter blades on the performance of a low-specific-speed centrifugal pump, two different splitter blade schemes were proposed: one located in the middle of the channel and the other having a deviation angle at the trailing edge of splitter blade toward the suction side of the main blade. Experiments on the model pump with different splitter blade schemes were conducted, and numerical simulations on internal flow characteristics in the impellers were studied by means of the shear stress transport k- ω turbulence model. The results suggest that there is a good agreement between the experimental and numerical results. The splitter blade schemes can effectively optimize the structure of the jet-wake pattern and improve the internal flow states in the impeller channel. In addition, the secondary flow and inlet circulation on the pressure surface of main blade, the flow separation on the suction side of splitter blade, the pressure coefficient distributions on blade surface can achieve an evident amelioration when the trailing edge of splitter blade toward the suction side of the main blade is mounted at an appropriate position.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhao, Wenbin, Jianbin Hu, and Kai Wang. "Influence of Channel-Diffuser Blades on Energy Performance of a Three-Stage Centrifugal Pump." Symmetry 13, no. 2 (February 5, 2021): 277. http://dx.doi.org/10.3390/sym13020277.

Повний текст джерела
Анотація:
In order to improve hydraulic efficiency, influence of inlet angle, outlet angle, wrap angle, inlet shape and outer edge camber lines of channel-diffuser blades on the energy performance of a three-stage centrifugal pump were studied and the pressure distributions on the blade of the first-stage channel-diffuser were particularly analyzed. The result shows that the efficiency of the pump is maximal when the blade inlet angle is 12°. The pressure variation in the model with the inlet angle of 12° was small and the amplitude of fluctuation was also not large. When the outlet angle was 90°, the pressure distribution in the outlet of the blades that are symmetrically distributed along the center of the diffuser shell was significantly better than that with other outlet angles. The effect of the blade wrap angle of the channel-diffuser on the energy performance of the pump was relatively small. The internal flow in the diffuser with the diffusion inlet shapes was steady for both the convex surface and concave surface. The diffusion inlet of the channel-diffuser blade corresponded to the outlet region of the impeller blade, which reflected a good matching. The fluctuation amplitude and the distribution range of the models with a uniform transition were smaller than those with non-uniform transition. In order to verify the effectiveness of the research results, an experimental test was carried out on the pump. The results show that when the flow rate is 850 m3/h, the head of the pump is 138.67 m and the efficiency of pump is 69.48%.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Khalatov, A. A., A. S. Kovalenko, and S. B. Reznik. "FEATURES OF ORGANIZATION OF FILM COOLING OF HIGH TEMPERATURE GAS TURBINES BLADES." Industrial Heat Engineering 39, no. 4 (March 24, 2017): 11–20. http://dx.doi.org/10.31472/ihe.4.2017.02.

Повний текст джерела
Анотація:
The features of the release of the cooling air in the interscapular channel high temperature gas turbines at the film cooling are considered. Possibilities of its local distribution on contour of an entrance edge of the perforated blades are investigated. The presented calculations show that the substantial increase in the cooling efficiency can be attained due to channels of small dimension in the blade wall.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Peng, Xinyu Zhu, and Yi Li. "Analysis of Flow and Wear Characteristics of Solid–Liquid Two-Phase Flow in Rotating Flow Channel." Processes 8, no. 11 (November 21, 2020): 1512. http://dx.doi.org/10.3390/pr8111512.

Повний текст джерела
Анотація:
To study the flow characteristics and the wear distribution of pumps at different rotation speeds, a rotating disc with three blades was designed for experiments. Numerical simulations were conducted using a computational fluid dynamics-discrete phase model (CFD–DPM) approach. The experimental and numerical results were compared, and the flow characteristics and wear behaviors were determined. As the speed increased, the particles at the blade working surface aggregated. The particle velocity gradually increased at the outlet of the channel. The severe wear areas were all located in the outlet area of the blade working surface, and the wear area extended toward the inlet area of the blade with increasing speed. The wear rate of the blade surface increased as the speed increased, and an area with a steady wear rate appeared at the outlet area of the blade. When the concentration was more than 8%, the severe wear areas were unchanged at the same speed. When the speed increased, the severe wear areas of the blade produced wear ripples, and the area of the ripples increased with increasing speed. The height difference between the ripples along the flow direction on the blade became larger as the speed increased.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Shi, Lijian, Changxin Wu, Li Wang, Tian Xu, Yuhang Jiang, Yao Chai, and Jun Zhu. "Influence of Blade Angle Deviation on the Hydraulic Performance and Structural Characteristics of S-Type Front Shaft Extension Tubular Pump Device." Processes 10, no. 2 (February 8, 2022): 328. http://dx.doi.org/10.3390/pr10020328.

Повний текст джерела
Анотація:
When the axial-flow pump is running, the blade angle is not fully adjusted or there are errors in the manufacture of the blades, which will lead to inconsistent blade placement angles during operation, and which will reduce the efficiency of the axial-flow pump. This paper uses the research methods of numerical simulation and model experiments to analyze the hydraulic performance and impeller structure characteristics of each flow components under different schemes when the angles of each blade of the S-type front shaft extension tubular pump device are inconsistent. The research phenomenon is that the guide vane greatly recovers the flow velocity circulation at the impeller outlet, reduces the hydraulic loss of guide vane, and widens the best efficiency range with an increase in guide vane blade angle. When the blade angle deviation occurs, the flow field of each blade channel affects each other, and the maximum decrease in the best efficiency is up to 7.78%, mainly due to the increased hydraulic loss in the outlet channel. The blade angle deviation will also affect the maximum equivalent stress and maximum deformation of the impeller, which is more obvious in large flow conditions. Inconsistent blade angles seriously affect the operating efficiency of the water pump and water pump device, and make the structural characteristics of the impeller worse.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Luxa, Martin. "The Sonic Surface in the Inter-Blade Channel of the Last Stage Rotor Wheel in the Steam Turbine of Large Output." MATEC Web of Conferences 168 (2018): 02006. http://dx.doi.org/10.1051/matecconf/201816802006.

Повний текст джерела
Анотація:
The paper deals with sonic surface in a modern turbine wheel consisting of non-prismatic ultra long blades. The whole inter-blade channel is choked. Different positions and shapes of the sonic line in particular cross-sections along the span are observed. The sensitivity of sonic line formation to small changes of effective shape of the inter-blade channel in the root section and the influence of inlet angle, stagger angle and pitch/chord ratio in the tip section are discussed. The problematic of sonic line development in the case of supersonic inlet flow filed is also described. The presented work is based on results of theoretical, experimental and numerical approaches.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Vasudevan, B., A. Prabhu, and R. Narasimha. "Blade manipulators in turbulent channel flow." Experiments in Fluids 12, no. 3 (January 1992): 200–208. http://dx.doi.org/10.1007/bf00188259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Zhang, Bo, Quan Hong, Yuanyuan Dou, Honghu Ji, and Rui Chen. "Experimental investigation of flow and heat transfer characteristics on matrix ribbed channel." Thermal Science 24, no. 3 Part A (2020): 1593–600. http://dx.doi.org/10.2298/tsci190702026z.

Повний текст джерела
Анотація:
The effect of the rib width to height ratio t/e and width to pitch ratio t/p on the local heat transfer distribution in a rectangular matrix ribbed channel with two opposite in line 45? ribs are experimentally investigated for Reynolds numbers from 54000 to 150000. The rib height to channel height ratio e/H is 0.5, t/p and t/e both varies in range of 0.3-0.5. To simulate the actually situation in turbine blades, and provide useful direct results for turbine blade designers, the parameters are same with the blade. The experiments results show that, in comparison to fully developed flow in a smooth pipe of equivalent hydraulic diameter, the Nusselt number inside the matrix-ribbed rectangular channel is increased up to 5 to 9 times higher, while total pressure drop is enlarged by up to significant magnitude. The Nusselt number ratio increases with t/p and t/e increased. Semi-empirical heat transfer is developed for designing of cooling channel.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Суббота, Анатолий Максимович, та Виталий Георгиевич Джулгаков. "ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ВЕТРОЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ С ВЕРТИКАЛЬНОЙ ОСЬЮ ВРАЩЕНИЯ". RADIOELECTRONIC AND COMPUTER SYSTEMS, № 1 (23 лютого 2018): 77–86. http://dx.doi.org/10.32620/reks.218.1.10.

Повний текст джерела
Анотація:
The questions connected with increase of efficiency of functioning of a wind power plant with a vertical axis of rotation are considered.Such plants convert the energy of the wind flow into rotational energy of the generator shaft, pump or other actuators. An overview of the design options for wind turbines of this type is presented. For vertically-axial wind power plants, in comparison with horizontally-propeller ones, it is possible to increase their efficiency by providing insensitivity to wind direction change. This is possible provided that the angular position of the blades with respect to the wind flow is continuously and purposefully changed as the wind turbine rotates. The principle of increasing the efficiency of the wind power plant is proposed due to the synchronous control of the position of the blades, depending on the direction and speed of the wind flow. The implementation of this principle is considered in detail for a four-bladed wind turbine. Depending on the direction and magnitude of the wind flow, as well as the angular velocity of rotation of the turbine, the value of the angle of the initial installation of the blades was analytically obtained, which ensures the maximum efficiency of using the wind plant. The functional scheme of the control system of the orientation of the four blades is formed. This system uses information about the current power of the generator, the rotation speed of the wind turbine, the direction and speed of the wind flow, obtained from the respective sensors. A detailed functional diagram of one channel of the control system has been constructed taking into account the initial exposure of the blade, which additionally uses information about the current angular position of the blade and the speed of its turn. Each such channel contains a proportional-differential controller or fuzzy logic controller. The proposed fuzzy controller has two inputs of linguistic variables - the angle of rotation of the blade and the speed of its rotation. As a kind of membership functions, a triangular distribution is chosen. A system of rules for adjusting the fuzzy controller has been developed. The computer simulation of the channel functioning of the control system with two types of regulators for the mode of initial setting of the blades with a change in wind direction was performed. Comparison of the quality of the control system with a proportional-differential and fuzzy controller is performed
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Miyauchi, Sunao, Hironori Horiguchi, Jun-ichirou Fukutomi, and Akihiro Takahashi. "Optimization of Meridional Flow Channel Design of Pump Impeller." International Journal of Rotating Machinery 10, no. 2 (2004): 115–19. http://dx.doi.org/10.1155/s1023621x04000120.

Повний текст джерела
Анотація:
The meridional flow channel design of a pump impeller affects its performance. However, since so many design parameters exist, a new design method is proposed in which a meridional and blade-to-blade flow channel is designed by the parallel use of the circulation distribution provided by the designer. Thus, an optimization method was used to design an axis-symmetrical meridional flow channel from the circulation distribution. In addition, the inverse design method proposed by Zangeneh et al. (1996) was employed to design a three-dimensional blade-to-blade flow channel from the circulation distribution and the optimized meridional shape. In this article, a few design examples and these Computational Fluid Dynamics (CFD) validations are also given.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Zhang, Fan, Martin Böhle, and Shouqi Yuan. "Experimental investigation on the performance of a side channel pump under gas–liquid two-phase flow operating condition." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 231, no. 7 (June 2, 2017): 645–53. http://dx.doi.org/10.1177/0957650917713090.

Повний текст джерела
Анотація:
Side channel pump is a kind of small volume vane pump with low flow rate but high head and most side channel pumps can transport gas–liquid two-phase flow. In order to investigate the performance of this type of pump depending on the blade suction angle under gas–liquid two-phase flow operating condition, an experimental study has been carried out. The head and efficiency curves, and the influence of blade suction angle changes on these curves for different inlet gas volume fraction states are analyzed in detail. Moreover, the gas transporting capability of the impeller with three different blade suction angles (10°, 20°, 30°) are also compared. The results show that the head and efficiency performances of the three impellers decrease a large value when the side channel pump operates with a little gas inside, and the operating range narrows as well. With the increasing of inlet gas volume fraction, the performance of the side channel pump worsens. The head and efficiency performances in the single-phase state improve by increasing the blade suction angle, but decrease by increasing the blade suction angle in the gas–liquid two-phase flow state. The maximum gas transporting capability of the impeller with a small blade suction angle is better than a large blade suction angle. Analysis on the measured data allows a better understanding of the effect of inlet gas quantity on the performance of the side channel pump with different blade suction angles, and it could supply the design reference for two-phase flow side channel pumps.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Zhou, Lingjiu, Meng Liu, Zhengwei Wang, Demin Liu, and Yongzhi Zhao. "Numerical simulation of the blade channel vortices in a Francis turbine runner." Engineering Computations 34, no. 2 (April 18, 2017): 364–76. http://dx.doi.org/10.1108/ec-10-2015-0302.

Повний текст джерела
Анотація:
Purpose This study analyzes the blade channel vortices inside Francis runner with a particular focus on the identification of different types of vortices and their causes. Design/methodology/approach A single-flow passage of the Francis runner with refined mesh and periodic boundary conditions was used for the numerical simulation to reduce the computational resource. The steady-state Reynolds-averaged Navier–Stokes equations closed with the k-ω shear–stress transport (SST) turbulence model were solved by ANSYS CFX to determine the flow field. The vortices were identified by the second largest eigenvalue of velocity. Findings Four types of vortices were identified inside the runner. Three types were related to the inlet flow. The last one (Type 4) was caused by the reversed flow near the runner crown and had the lowest pressure inside the core near the runner outlet. Thus, in the blade channel vortex inception line, Type 4 vortex would appear earlier than the other three ones. Besides, the Type 4 vortex emerged from the crown and shed toward the blade-trailing edge. And its location moved from near the crown down to near the band when the unit speed increased or unit discharge decreased. Research limitations/implications Although the refined mesh was used and the main vortices in the Francis runner were well predicted, the current mesh is not enough to accurately predict the lowest pressure in the channel vortex core. Practical/implications This knowledge is instructive in the runner blade design and troubleshooting related to the channel vortex. Originality/value This study gives an overview of the main observed blade channel vortices and their causes, and points out the important role the reversed flow plays in the formation of blade channel vortices. This knowledge is instructive in the runner blade design and troubleshooting related to blade channel vortices.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zhang, Hong Ming, and Li Xiang Zhang. "Numerical Simulation of Blade Channel Vortex in a Low Head Francis Turbine." Applied Mechanics and Materials 291-294 (February 2013): 1958–62. http://dx.doi.org/10.4028/www.scientific.net/amm.291-294.1958.

Повний текст джерела
Анотація:
The paper presents numerical simulation of blade channel vortex in a low head Francis turbine using OpenFoam code. A mixture assumption and a finite rate mass transfer model were introduced to analyze blade channel vortex. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that using cavitation model to analyze blade channel vortex is very effective.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ji, Chunjun, Chunyang Li, Junyi Fang, and Qi Sun. "Loss Mechanism of Static Interstage Components of Multistage Centrifugal Compressors for Integrated Blade Design." Mathematical Problems in Engineering 2018 (December 5, 2018): 1–16. http://dx.doi.org/10.1155/2018/9025650.

Повний текст джерела
Анотація:
Although centrifugal compressors are widely used in construction, they consume a large amount of energy; in existing multistage centrifugal compressors, there is a serious pressure loss of ~15.13% when gas flows through the diffuser, bend, and return channel. In this study, we analyze the loss mechanisms of these stages in detail, using computational fluid dynamics. Based on this analysis, we present a new type of integrated blade, connecting the diffuser, bend, and return channels, which can eliminate the airflow stall phenomenon. Through effective control of the airflow spreading process, we minimized losses in the component, which improved its efficiency by 4.39% and increased the pressure ratio by 2.86% relative to a compressor without the newly-designed integrated blade. The concepts used in the creation of this component can provide a reference for the future design of blades for flow through parts of multistage compressors.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Abdullah, Bestoon, Vadim Varsegov, and Adolf Limansky. "CENTRIFUGAL COMPRESSOR HEAD CHARACTERISTIC OF A MICRO TURBOJET ENGINE BASED ON NUMERICAL SIMULATION." Perm National Research Polytechnic University Aerospace Engineering Bulletin, no. 62 (2020): 5–11. http://dx.doi.org/10.15593/2224-9982/2020.62.01.

Повний текст джерела
Анотація:
Shown the possibility of using the standard ANSYS CFX hydrodynamic software package for calculating the gasdynamic characteristics of the centrifugal compressor impeller of micro turbojet engines with different options for profiling blades which based on physical and numerical modeling. Presented a methodology for designing the impeller of a centrifugal compressor based on solving the inverse problem of gas dynamics. As a result of a numerical study, the head coefficient of various forms of the impeller was obtained and presented the dependences of the head coefficient and efficiency on the blade back sweep angle 2 β . b The article discusses the effect of the blade back sweep angle 2 β b on the compressor efficiency and the head characteristic for three different values of the blade back sweep angle 2 β b for example, the impeller with the back sweep angle  2 β b and with the radial blades  2 β 90 b and with blades bent forward  2 β b The centrifugal compressor was designed using Vista CCD programs in one-dimensional computing and Fluid flow CFX in three-dimensional computing. For blade profiling, the BladeGend program was used with different profiling options in order to improve compressor efficiency. The computational grid and the construction of a structured hexahedral mesh for the impeller was carried out in Ansys Turbogrid and the SST model of turbulence was selected in the calculation, which, with sufficient grinding of the mesh at the walls, adequately simulates separated flows at the channel walls, as well as the flow in the flow core. When constructing a grid along the walls between the channel blades, the parameter y + was controlled, which should not exceed 2. It is permissible to use a coarser grid in the flow core compared to the grid near the walls. The design grid of the impeller consists of 350000 elements.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

McMillin, R. D., and S. C. Lau. "Effect of Trailing-Edge Ejection on Local Heat (Mass) Transfer in Pin Fin Cooling Channels in Turbine Blades." Journal of Turbomachinery 116, no. 1 (January 1, 1994): 159–68. http://dx.doi.org/10.1115/1.2928271.

Повний текст джерела
Анотація:
Experiments are conducted to study the local heat transfer distribution and pressure drop in a pin fin channel that models the cooling passages in modern gas turbine blades. The detailed heat/mass transfer distribution is determined via the naphthalene sublimation technique for flow through a channel with a 16-row, staggered 3 × 2 array of short pin fins (with a height-to-diameter ratio of 1.0, and streamwise and spanwise spacing-to-diameter ratios of 2.5) and with flow ejection through holes in one of the side walls and at the straight flow exit (to simulate ejection through holes along the trailing edges and through tip bleed holes of turbine blades). The pin fin heat/mass transfer and the channel wall heat/mass transfer are obtained for the straight-flow-only and the ejection-flow cases. The results show that the regional pin heat/mass transfer coefficients are generally higher than the corresponding regional wall heat/mass transfer coefficients in both cases. When there is side wall flow ejection, a portion of the flow turns to exit through the ejection holes and the rate of heat/mass transfer decreases in the straight flow direction as a result of the reducing mass flow rate along the channel. The rate of cooling air flow through a pin fin channel in a gas turbine blade must be increased to compensate for the “loss” of the cooling air through trailing edge ejection holes, so that the blade tip is cooled sufficiently.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Liu, Jia Zeng, Jian Min Gao, Tie Yu Gao, and Jiao Jun Shi. "Heat Transfer in Narrow Rectangular Channels with Rib Turbulators." Advanced Materials Research 354-355 (October 2011): 1245–51. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.1245.

Повний текст джерела
Анотація:
An experimental study of heat transfer characteristics of narrow rectangular channels with rib turbulators for Re in the range of 10000-60000 was performed. To simulate the actual geometry and heat transfer structure of blade/vane internal cooling passage, each of the test channels was welded by four stainless steel plates. Because of the three dimensional heat conduction in the walls and heat conduction between the ribbed and smooth walls, the measured temperature distribution along the axial direction of the test channel is a smooth continuous curve, and when the Re is low, the average Nu of the ribbed and smooth walls are nearly the same. For each aspect ratio channels, the average Nu for the channel of α=45° is about 15 to 25 percent higher than that of α=60°. In addition, we have developed the semi-empirical correlations, covering the range of Re, to predict heat transfer coefficient of the channels. The correlations can be used in the design of turbine blade/vane cooling channels.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Fan, Hong-Zhou, Shang-Jin Wang, Guang Xi, and Yan-Long Cao. "A novel tool-path generation method for five-axis flank machining of centrifugal impeller with arbitrary surface blades." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231, no. 1 (August 8, 2016): 155–66. http://dx.doi.org/10.1177/0954405415599943.

Повний текст джерела
Анотація:
The centrifugal impeller with arbitrary surface blades is a very important component in automobile, ships, and aircraft industry, and it is one of the most difficult parts to process. Focusing on the machining efficiency improvement, combining the geometric advantages of ruled surface and arbitrary surface, and utilizing the efficient and accurate advantages of flank machining and point machining, this article presents a novel and targeted tool-path generation method and algorithm for five-axis flank machining of centrifugal impeller with arbitrary surface blades. In light of specific characters of different surfaces, the analyses of two different impeller blades are proposed first, the more characteristic and complex geometrical structures of the arbitrary blade are achieved. In rough machining, an approximate ruled surface blade is obtained, and a simple channel is achieved; the flank milling of the centrifugal impeller with ruled surface blades is achieved relative to the point milling of the centrifugal impeller with arbitrary surface blades; and the triangle tool path planning method is added in this process to save the machining time and cost collectively. Furthermore, in semi-finish machining, the approximate sub-ruled blade surfaces are calculated, and a new flank milling method of the sub-ruled blade surfaces is achieved; a new solution for tool interference is achieved in this process and the generation of non-interference tool paths becomes easy. Machining experiments of two different impellers are presented as a test of the proposed methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chen, Bo, Xiaowu Chen, Zuchao Zhu, and Xiaojun Li. "Correlation between the Internal Flow Pattern and the Blade Load Distribution of the Centrifugal Impeller." Machines 10, no. 1 (January 5, 2022): 40. http://dx.doi.org/10.3390/machines10010040.

Повний текст джерела
Анотація:
The blade load distributions reflect the working characteristics of centrifugal impellers, and the vortexes in the impeller channel affect the blade load distribution, but the mechanism of this phenomenon is still unclear. In this study, particle image velocimetry (PIV) was adopted to clarify the correlation between the internal flow pattern and the blade load distribution. The internal flow pattern and the blade load distribution were presented under different working conditions to study the influence of the internal flow pattern on the blade load. Results showed that the vortexes in the flow channel redistributed the blade load. The clockwise vortex made the position of the maximum blade load closer to the outlet, while the counterclockwise vortex had the opposite effect. Meanwhile, the vortexes caused the blade load distribution to be steeper, which reduced energy conversion efficiency. Moreover, the mean absolute flow angle was introduced to explain the mechanism of the effects of vortexes on blade load. The results can be used as a theoretical basis for the design of high-performance impellers.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Quan, Hui, Yanan Li, Lei Kang, Xinyang Yu, Kai Song, and Yongkang Wu. "Influence of Blade Type on the Flow Structure of a Vortex Pump for Solid-Liquid Two-Phase Flow." Machines 9, no. 12 (December 15, 2021): 353. http://dx.doi.org/10.3390/machines9120353.

Повний текст джерела
Анотація:
Vortex pumps have good non-clogging performance owing to their impellers being retracted into retraction cavities, but they are much less efficient than ordinary centrifugal pumps. In this paper, numerical simulations were performed on a model of the 150WX200-20 vortex pump for four different blade types, and the influence of blade structure on pump performance was determined. The simulations revealed the existence of axial vortices in the flow passage between the blades in the impeller region. The geometric characteristics of these axial vortices were more regular in two-phase solid-liquid flow than single-phase liquid flow. The presence of the solid phase reduced the vortex strength compared with the single-phase flow and suppressed the increase in size of the secondary circulation vortex. It was found, however, that the blade shape had a greater influence on the circulating flow than the presence of the solid phase. The flow state of the medium flowing out of the impeller domain had a direct effect on the circulating flow with this effect being related to the law governing the flow of the medium in the flow channel between the blades. It was found that the performance of a front-bent blade was the best and that of a curved blade the worst. This influence of blade type on the internal flow structure was used to further explain the relationship between the internal flow structure and the external characteristics of the vortex pump, the understanding of which is crucial for blade selection and hydraulic optimization.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Frąckowiak, Andrzej, Aleksander Olejnik, Agnieszka Wróblewska, and Michał Ciałkowski. "Application of the Protective Coating for Blade’s Thermal Protection." Energies 14, no. 1 (December 24, 2020): 50. http://dx.doi.org/10.3390/en14010050.

Повний текст джерела
Анотація:
This paper presents an algorithm applied for determining temperature distribution inside the gas turbine blade in which the external surface is coated with a protective layer. Inside the cooling channel, there is a porous material enabling heat to be transferred from the entire volume of the channel. This algorithm solves the nonlinear problem of heat conduction with the known: heat transfer coefficient on the external side of the blade surface, the temperature of gas surrounding the blade, coefficients of heat conduction of the protective coating and of the material the blade is made of as well as of the porous material inside the channel, the volumetric heat transfer coefficient for the porous material and the temperature of the air flowing through the porous material. Based on these data, the distribution of material porosity is determined in such a way that the temperature on the boundary between the protective coating and the material the blade is made of is equal to the assumed distribution To. This paper includes results of calculations for various thicknesses of the protective coating and the given constant values of temperature on the boundary between the protective coating and the material the blade is made of.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Münsterjohann, Sven, and Stefan Becker. "Wall Pressure and Blade Surface Pressure in a Side Channel Blower." International Journal of Rotating Machinery 2018 (June 3, 2018): 1–17. http://dx.doi.org/10.1155/2018/2308759.

Повний текст джерела
Анотація:
In side channel blowers, the pressure field is the result of complex, inner flow mechanisms. While there are already experimental investigations on the wall pressure distributions, little is known about the pressure in the rotating system, i.e., on the blade surface. In this work, we present an experimental setup for measuring the unsteady blade surface pressure in several positions. The acquired data will be complemented by and compared to the additionally measured wall pressure on the side channel housing. Miniature pressure sensors are integrated into the impeller. It is modified to ensure flush mounted membranes of the sensors and to avoid impacting on the flow field. A telemetric system is used for a wireless transfer of the data from the rotating system to the data recorder. As a result, we show the time-resolved pressure distribution as well as its phase-locked ensemble average. The variations of the pressure field are related to the integral pressure difference across the turbomachine and to its rotational speed. Due to the high temporal resolution of the measurement data, an exact spatial localization of crucial flow phenomena is achieved. Low integral pressure differences show a nearly linear increase of the pressure in circumferential direction, while greater integral pressure differences evolve exponentially over the azimuth. The results confirm the circulatory flow theory. Different rotational speeds elicit a comparable behavior. The stripper is a dominant source for pressure fluctuations. Its individual geometric discontinuities are correlated to the flow field. Our results provide a deeper understanding of the flow phenomena in side channel blowers and the theory of pressure generation. Although the measurements were performed for only one type of side channel blower with a double-flow configuration and open blades, the energy transfer mechanism is the same for other modifications like single flow or closed blade versions.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Bi, Chenyu, and Jiawen Li. "Effect of Radial Height of Helical Static Blade on the Cavitation Performance of Inducer." Applied Sciences 12, no. 8 (April 12, 2022): 3897. http://dx.doi.org/10.3390/app12083897.

Повний текст джерела
Анотація:
Cavitation is a major concern in liquid rocket engine turbopumps, and as an effective measure to improve cavitation quality, an inducer with helical static blades has attracted attention in recent years. In order to study the effect of the radial height of helical static blades on the cavitation performance of the inducer, CFD methods based on the Reynolds-averaged N-S equation, the standard k-ε turbulent model, and the Schnerr and Sauer cavitation model are employed to analyze the cavitation flow characteristics of a certain inducer with different helical static blades. The results show that with the increase in radial height, the backflow in the flow field is enhanced. Affected by this situation, the head is improved, the efficiency is reduced, and the low-pressure zone on the suction surface at entrance is enlarged. The helical static blade can delay the channel blocking of cavitation by providing an extra channel for the extension of bubbles. However, the effectiveness is restricted because the cavitation area enlarges with the radial height of the helical static blade. Although the effect of radial height on the head and the cavitation performance is opposite, there is an optimal radial height from 0.05 to 0.125 that improves both at the same time.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Boldyrev, Aleksei V., Sergei V. Boldyrev, and Dmitrii L. Karelin. "THE EFFECT OF BLADE PROFILE ON THE PERFORMANCE OF A SIDE CHANNEL PUMP." Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy 6, no. 3 (2020): 23–37. http://dx.doi.org/10.21684/2411-7978-2020-6-3-23-37.

Повний текст джерела
Анотація:
This article presents the results of a numerical modeling of a steady turbulent flow of an incompressible fluid in an open-type vortex pump with an open side channel, comparing the generalized simulation results with the existing experimental data. The mathematical model is based on the Reynolds-averaged Navier — Stokes and continuity equations, as well as on the equations of the two-layer Realizable k-ε turbulence model that accounts for the curvature of streamlines. The authors have estimated the grid independence of the solution and studied the influence of 14 blade profiles on the head and efficiency of the vortex pump. The solution of the model equations was achieved by the finite volume method using a sequential algorithm in three calculation areas (“feeder channel”, “blade wheel”, “open hull side channel and diverter channel”) with the evaluation of grid independence of the solution. The result of the solution between the calculated areas was transmitted at the corresponding points of the interface surfaces. The authors have studied the influence of 14 profiles of a blade on pressure and efficiency of the vortex pump: the initial profile of the blade with the installation in the wheel coaxial shaft of the ring plate of different width, the initial profile of the blade with a bevel on the discharge side, a profile in the form of an isosceles triangle, a profile in the form of a quadrangle, the initial profile with a rounded blade on the suction side, and a profile in the form of a rectangular triangle with a rounded blade on the suction side, among others. The simulation results have aided in proposing the blade profiles: in the form of a rectangle with a convex rounding of the blade on the suction side with a 10 mm radius and a right-angled triangle with a concave rounding of the blade on the suction side with a 52 mm radius and without rounding, giving a significant increase in pressure — more than 20%. Nevertheless, none of the considered cases have revealed any significant increase in the vortex pump hydraulic efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Li, Zhehong, Xinxue Ye, and Yikun Wei. "Investigation on Vortex Characteristics of a Multi-Blade Centrifugal Fan near Volute Outlet Region." Processes 8, no. 10 (October 2, 2020): 1240. http://dx.doi.org/10.3390/pr8101240.

Повний текст джерела
Анотація:
The origins and effects of the complex vortex structure near the volute outlet of a multi-blade centrifugal fan are investigated in this paper. Due to the wide blade and short blade channel, the airflow maintains a large radial velocity during the blade channel. This continuous radial partial velocity causes vortices to be generated at the region of volute outlet. Then, the secondary flow close to the impeller generate from the center to the sides in volute. It is obtained that the streamlines are divided into two parts (backflow and outflow) at volute outlet. Although the vortices near volute outlet region are complex, the main features of flow behavior caused by the vortex are understandable.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Bouregba, Fatima, Mustapha Belkadi, Mohammed Aounallah, and Lahouari Adjlout. "Effect of the blade number on the marine propeller performance." EPJ Web of Conferences 213 (2019): 02007. http://dx.doi.org/10.1051/epjconf/201921302007.

Повний текст джерела
Анотація:
This paper deals with numerical simulation of stationary flow around a marine propeller. The aim is to reproduce the hydrodynamic turbulent flow around the Wageningen B serie propellers in open water using the ANSYS FLUENT code and the RANS approach. The computational domain consists of an inter-blade channel with periodic boundaries, meshed with tetrahedral cells. The turbulence is modeled with the k-ω. The obtained results provide good agreement with the available experimental data and show that the blades number affects considerably the marine propellers performances. It is interesting to notice that the six blades propeller is the best adapted one for the open water flows.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Zhang, Delong, Yu Wang, Junjie Sha, and Yuguang He. "Performance Prediction of a Turbodrill Based on the Properties of the Drilling Fluid." Machines 9, no. 4 (March 31, 2021): 76. http://dx.doi.org/10.3390/machines9040076.

Повний текст джерела
Анотація:
High-temperature geothermal well resource exploration faces high-temperature and high-pressure environments at the bottom of the hole. The all-metal turbodrill has the advantages of high-temperature resistance and corrosion resistance and has good application prospects. Multistage hydraulic components, consisting of stators and rotors, are the key to the turbodrill. The purpose of this paper is to provide a basis for designing turbodrill blades with high-density drilling fluid under high-temperature conditions. Based on the basic equation of pseudo-fluid two-phase flow and the modified Bernoulli equation, a mathematical model for the coupling of two-phase viscous fluid flow with the turbodrill blade is established. A single-stage blade performance prediction model is proposed and extended to multi-stage blades. A Computational Fluid Dynamics (CFD) model of a 100-stage turbodrill blade channel is established, and the multi-stage blade simulation results for different fluid properties are given. The analysis confirms the influence of fluid viscosity and fluid density on the output performance of the turbodrill. The research results show that compared with the condition of clear water, the high-viscosity and high-density conditions (viscosity 16 mPa∙s, density 1.4 g/cm3) will increase the braking torque of the turbodrill by 24.2%, the peak power by 19.8%, and the pressure drop by 52.1%. The results will be beneficial to the modification of the geometry model of the blade and guide the on-site application of the turbodrill to improve drilling efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Dumitrache, Constantin, Ioan Calimanescu, and Corneliu Comandar. "Naval Centrifugal Compressor Design Using CAD Solutions." Applied Mechanics and Materials 658 (October 2014): 59–64. http://dx.doi.org/10.4028/www.scientific.net/amm.658.59.

Повний текст джерела
Анотація:
Centrifugal compressors of turbochargersoperate in a wide range of rotational speeds, which depends on the load of the supercharged engine. Current designs of turbocharger compressors exhibit high efficiencies accompanied by high flow capacities [1]. Consequences of aerodynamic optimization are high mean stress values in the blades due to centrifugal loading as well as dynamic stresses due to blade vibrations. Blade vibrations in a turbocharger compressor are assumed to be predominantly excited by unsteady aerodynamic forces [2]. These forces are caused by a variety of sources influencing the flow. Examples include the geometry of the flow channel, elbows, the diffuser vanes or struts. Therefore, an understanding of FSI is essential for further design optimizations.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Rianti, Desy, Dwi Anung Nindito, and Raden Haryo Saputra. "PENGARUH KEMIRINGAN STRAIGHT BLADE TERHADAP PENINGKATAN KEMAMPUAN SELF-STARTING TURBIN HIDROKINETIK ARTICULATING H-ROTOR." Teknika 16, no. 2 (December 30, 2021): 78. http://dx.doi.org/10.26623/teknika.v16i2.3981.

Повний текст джерела
Анотація:
<em>The Articulating of H-Rotor is a development of the turbine from H-Darrieus which has a straight blade tilted with the aim of correcting poor self-starting due to the dominance of lift force. How likely is the influence of straight blade slope on turbine performance and it is important to be examined. The aim of this study was to find out the effect of the straight blade slope of the Articulating H-Rotor turbine to increase the self-starting ability. Hydrokinetic turbine experimental test method was carried out in a water channel (flume) using 3 NACA 0018 profile blades with varying inclination angles of 0<sup>o</sup> (vertical blade), 30<sup>o</sup> (inflated blade) and -30<sup>o</sup> (cupped blade). The result indicated that the Articulating H-Rotor hydrokinetic turbine with a blade slope of 0<sup>o</sup> had a larger RPM value and it was more dominant in working with lift force. The Articulating H-Rotor hydrokinetic turbine with a blade tilted of 30<sup>o</sup> provides higher torque and increases drag, increasing self-starting for rotation. The shape of the turbine frontal area with a blade slope of 30<sup>o</sup> was better able to respond the kinetic energy that raised from the flow velocity distribution profile of the water flow. The results of this study can contribute to the design of the tilted blade H-Darrieus turbine.</em>
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Münsterjohann, Sven, Florian Zenger, and Stefan Becker. "Efficient and Noise Reduced Design of a Side Channel Blower Considering Psychoacoustic Evaluation Criteria." Applied Mechanics and Materials 856 (November 2016): 174–80. http://dx.doi.org/10.4028/www.scientific.net/amm.856.174.

Повний текст джерела
Анотація:
Commonly used turbo machines like axial fans or side channels blowers have a large impact on their environment: Large demand for electrical power and production of strong aeroacoustic sound sources, generating a significant noise emission, lead to a environmental footprint. The current work addresses both tasks: improvement of efficiency and reduction of noise emission. In this work a side channel blower is in the focus of the investigations. Since the noise emission of side channel blowers mainly occurs in the region of the stripper, pressure measurements on the blade surface are performed. The pressure trend during the blade passage along the stripper provides information on the exact location of and the contribution to the acoustic noise generation. Modifications of the stripper geometry with the objective of pressure drop linearization along the stripper are evaluated with respect to efficiency, pressure rise and noise reduction. All acoustic measurements are also evaluated with psychoacoustic quantities, like loudness and sharpness, to account for the human perception.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kyshkan, Pavlo, and Ivan Savka. "3D-modeling of an experimenal wound channel caused by a piercing-cutting object with bilateral blade grinding." Forensic-medical examination, no. 2 (November 25, 2021): 74–83. http://dx.doi.org/10.24061/2707-8728.2.2021.9.

Повний текст джерела
Анотація:
The research deals with the possibility to use up-to-date methods of 3D-modeling for diagnostics of piercing-cutting objects causing injuries with bilateral blade grinding. A virtual element of the wound channel is shown to be printed on 3D-printer and given to investigating bodies in order to increase the effective and objective search of a traumatic instrument. Aim of the work. To apply the method of photogrammetry with further 3D-modeling of the wound channel formed by a piercing-cutting object with bilateral blade grinding for further examination of its morphological peculiarities and receiving its linear size with high accuracy in the space of graphics editor «3DsMax». Materials and methods. Fifteen experimental wound channels were made by means of alginate impression mass with rubber-like effect «Hydrogum 5» (firm «Zhermack», Italy), which becomes hard rapidly, remains elastic after polymerization, allows impresses to be obtained with an extremely smooth surface, most accurately preserves and reproduces characteristics of an immersed blade of the knife examined. To make experimental injury a piercing-cutting object was used – a knife with bilateral grinding of the blade 6,16 cm long, 2,6 cm wide in the base of the blade, and the blade in its middle part 0,3 cm thick. These sizes of the piercing-cutting instrument were obtained by means of sliding calipers with the error ±0,03-0,15 cm. The wound channel obtained was divided into fragments with a pitch about 3,5 cm. Every fragment of the wound channel was contrasted with a dye using 1 % brilliant green alcohol solution. All the fragments of the wound channel were opened parallel to its length and were placed on a rotary table located in a light cube to provide adequate illumination and photos were taken. The digital camera SONY RX 10 II was used for shooting. The object of shooting was labeled with a number, a fragment of a plotting scale 1,0 cm long was placed on it to calibrate the scale and control the sizes of the object examined in computer programs. The photos obtained in JPEG format were loaded into the computer program «Agisoft Photoscan», and 3D-textured models of a wound channel fragment were created in it. The model obtained and the texture was exported in «OBJ» format. The next stage of the work was to transfer 3D-models obtained into the graphic space of «3DsMax» program, where the scale of the model was calibrated. After that the wound channel was reconstructed in the graphics editor by means of 3D models of the wound channel fragments. Results. To compare differences between classical and new methods of examination at first linear dimensions of injuries were measured by means of a ruler. The depth of the wound channel was obtained consisting of two fragments according to the method of measuring the wound channel depth in the dead body by means of joining of its separate parts due to immersion and passing the blade in the victim’s body (in the skin, subcutaneous tissue with muscles, in the wall of the cavity and inside of it, in the internal organ and other anatomical structures). The width and length of the wound channel on various levels of immersion were registered in the similar way, which is an important diagnostic component during forensic expertise in case of piercing-cutting injuries. The next stage in our research was to examine and get linear dimensions of injuries by means of up-to-date technologies using 3D-models with the help of the graphics editor «3DsMax». In this case the computer program enabled to get the above results with a higher accuracy to 0.001 cm. Conclusions. The results obtained are indicative of high information value of the three dimensional methods to identify a traumatic piercing-cutting object by means of a spatial reconstruction of the wound channel fragments, which provides high accuracy in solving applied tasks in modern forensic practice and criminal law science. The method with the use of the graphics editor «3ds max» allows retrospective diagnostics of the wound channel fragments to be obtained followed by further comparison with an expected traumatic object.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Ding, Bi-Rong, Yuan-long Chen, Ji Zhou, and Pei-xuan Chen. "Research on Key Process Technology for Profile Electrolytic Finishing of Large Marine Propeller Impeller." Polish Maritime Research 25, s2 (August 1, 2018): 158–63. http://dx.doi.org/10.2478/pomr-2018-0087.

Повний текст джерела
Анотація:
Abstract An electrolysis process method for free-form blade surface finishing is proposed for a free-form surface impeller, and a stepwise method is used to process the inter-blade channel of the overall impeller. The forming cathode is then used to finish the blade to meet the blade processing requirements. In the design, the forming cathode structure was improved by using motion simulation software, and the flow field simulation software was used to simulate and analyze the cathode flow channel. The cathode shape and the electrolyte flow rate between the electrodes meet the processing requirements. In the process of processing experiments, the motion path of the cathode was analyzed and optimized. The effect of the feed direction on the uneven distribution of the blade machining gap was reduced through optimization, and high-frequency pulse power processing was used to reduce the machining gap and improve the machining accuracy of the blade. The experimental results show that the process scheme is feasible and the precision of the processed impeller free-form surface is significantly improved. The material is a monolithic turbine disk of high-temperature alloys, and its large twisted blade processing has always been a problem in the manufacturing industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Chen, Naixing, Fengxian Zhang, and Weihong Li. "An Inverse (Design) Problem Solution Method for the Blade Cascade Flow on Streamsurface of Revolution." Journal of Turbomachinery 108, no. 2 (October 1, 1986): 194–99. http://dx.doi.org/10.1115/1.3262037.

Повний текст джерела
Анотація:
On the basis of the fundamental equations of aerothermodynamics a method for solving the inverse (design) problem of blade cascade flow on the blade-to-blade streamsurface of revolution is suggested in the present paper. For this kind of inverse problem the inlet and outlet flow angles, the aerothermodynamic parameters at the inlet, and the other constraint conditions are given. Two approaches are proposed in the present paper: the suction-pressure-surface alternative calculation method (SSAC) and the prescribed streamline method (PSLM). In the first method the metric tensor (blade channel width) is obtained by alternately fixing either the suction or pressure side and by revising the geometric form of the other side from one iteration to the next. The first step of the second method is to give the geometric form of one of the streamlines. The velocity distribution or the mass flow rate per unit area on that given streamline is estimated approximately by satisfying the blade thickness distribution requirement. The stream function in the blade cascade channel is calculated by assuming initial suction and pressure surfaces and solving the governing differential equations. Then, the distribution of metric tensor on the given streamline is specified by the stream function definition. It is evident that the square root of the metric tensor is a circumferential width of the blade cascade channel for the special nonorthogonal coordinate system adopted in the present paper. The iteration procedure for calculating the stream function is repeated until the convergence criterion of the metric tensor is reached. A comparison between the solutions with and without consideration of viscous effects is also made in the present paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Acharya, S., F. Zhou, J. Lagrone, G. Mahmood, and R. S. Bunker. "Latticework (Vortex) Cooling Effectiveness: Rotating Channel Experiments." Journal of Turbomachinery 127, no. 3 (March 1, 2004): 471–78. http://dx.doi.org/10.1115/1.1860381.

Повний текст джерела
Анотація:
The heat transfer and pressure drop characteristics of latticework coolant blade passages have been investigated experimentally under conditions of rotation. Stationary studies with the latticework configuration have shown potential advantages including spatially-uniform streamwise distributions of the heat transfer coefficient, greater blade strength, and enhancement levels comparable to conventional rib turbulators. In the present study, a latticework coolant passage, with orthogonal-ribs, is studied in a rotating heat transfer test-rig for a range of Reynolds numbers (Res), Rotation numbers (Ros), and density ratios. Measurements indicate that for Res⩾20,000, the latticework coolant passage provides very uniform streamwise distributions of the Nusselt number (Nus) with enhancement levels (relative to smooth-channel values) in the range of 2.0–2.5. No significant dependence of Nus on Ros and density ratio is observed except at lower Res values (⩽10,000). Nusselt numbers are highest immediately downstream of a turn indicating that bend-effects play a major role in enhancing heat transfer. Friction factors are relatively insensitive to Ros, and thermal performance factors at higher Res values appear to be comparable to those obtained with conventional rib-turbulators. The present study indicates that latticework cooling geometry can provide comparable heat transfer enhancements and thermal performance factors as conventional rib-turbulators, with potential benefits of streamwise uniformity in the heat transfer coefficients and added blade strength.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Potapov, V. A., and A. A. Sanko. "Performance simulation of multi-stage axial-flow compressor of turbo-shaft engine with account for erosive wear nonlinearity of its blades." Civil Aviation High Technologies 23, no. 5 (October 28, 2020): 39–53. http://dx.doi.org/10.26467/2079-0619-2020-23-5-39-53.

Повний текст джерела
Анотація:
The construction and useful practice of gas-turbine engine diagnosis systems depend largely on the availability of the engine mathematical models and its certain components in their structure. Utilization of multi-stage axial flow compressor performance with account for erosive wear of its parts during the operation fundamentally raises possibilities of such systems as erosive wear of flow channel, blade rings of impellers and vane rings of multi-stage compressor is a common cause of preschedule gas-turbine engine detaching from an aircraft. As evidenced by various contributions presented in the article, special emphasis on abrasive wear impact assessment on axial flow compressor performance is placed upon rotor-wing turbo-shaft engine due to their particular operating conditions. One of the main tasks in the process of mathematic simulation of an axial flow compressor blade ring is consideration of its wear type that again has a nonlinear distribution along the level of the blade. In addition, wear rate at entry and exit blade edges often have different principles. Detecting of these principles and their consideration when constructing the compressor mathematical model is a crucial task in diagnostic assessment and integrity monitoring of rotor-wing turbo-shaft engine in operation. The article represents a concept to an estimate nonlinear erosive wear effect of axial flow compressor blades on its performance based on the three-dimensional flow approach in the gas-air flow duct of compressor with a formulation of the blade rings. This approach renders possible to take into account the nonlinearity of the compressor blades wear during their operation. Through the example of the inlet compressor stage of a rotor-wing aircraft gas-turbine engine, the engine pump properties predictions with different kind of rotor blade wear have been presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Шманенко, Андрей Иванович, та Сергей Иванович Сербин. "ТЕПЛООБМЕН ВО ВРАЩАЮЩЕМСЯ ГЛАДКОМ КРУГЛОМ КАНАЛЕ И ВЛИЯНИЕ НА ЕГО ИНТЕНСИВНОСТЬ ВИХРЕВОГО ТЕЧЕНИЯ". Aerospace technic and technology, № 2 (22 квітня 2019): 30–35. http://dx.doi.org/10.32620/aktt.2019.2.03.

Повний текст джерела
Анотація:
The paper deals with the analysis of heat transfer intensity in a rotating smooth channel, which simulates a cooling channel of rotating blade of the gas turbine engine. A circle cross-section channel with a diameter of 6 mm and length of 80 mm was chosen as the base variant. The calculations of heat transfer in rotating and stationary channels were carried out, which allows estimating the influence of vortex flow on the intensity of heat transfer. Rotation of the channel was simulated by means of domain rotating. The rotation speed of the test channel is 7400 rev/min. Axis of rotation is at a distance of 0.49 m from the inlet section of the channel. Pressure and temperature were specified as inlet boundary conditions: 1040000 Pa and 733 K, respectively. The mass flow rate of 0.02 kg/s was specified as outlet boundary conditions. The computations were performed by solving the Reynolds-averaged Navier-Stokes equations (RANS method) using an SST (Shear Stress Transport) turbulence model. The air ideal gas was used as the working medium. The calculation was performed taking into consideration the Buoyancy effect. Verification of heat exchange calculation model in the rotary channel of the gas turbine engine rotor blade according to experimental data is carried out. The boundary conditions at the input and output of the channel were set in such a way that the flow parameters in the calculation corresponded to the experimental characteristics. The resulting numerical calculations of the temperature distribution and Nusselt Numbers are qualitatively and quantitatively consistent with the experiment. The distribution of Nusselt Numbers on the front and back walls for rotating and non-rotating channels, as well as the dependences of the relative tangential velocity on the relative channel length, were estimated. It has been shown that average Nusselt Number on the leading wall of the rotating channel is the same with the wall of the static channel, but detail Nu distribution over rotating leading wall undergoes considerable modification. Average Nusselt Number on the trailing wall of the rotating channel is higher than on the wall of the static channel, but the detail Nu distribution pattern on the rotating trailing wall generally follows the static result.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Xu, Liang, Qingyun Shen, Qicheng Ruan, Lei Xi, Jianmin Gao, and Yunlong Li. "Optimization Design of Lattice Structures in Internal Cooling Channel of Turbine Blade." Applied Sciences 11, no. 13 (June 23, 2021): 5838. http://dx.doi.org/10.3390/app11135838.

Повний текст джерела
Анотація:
Recently, the inlet temperatures in gas turbine units have been drastically increased, which extremely affects the lifespan of gas turbine blades. Traditional cooling structures greatly improve the high temperature resistance of the blade; however, these structures scarcely concern both heat transfer and mechanical performances. Lattice structure (LS) can realize these requirements because of its characteristics of light weight, high strength, and porosity. Although the topology of LS is complex, it can be manufactured with the 3D metal printing technology. In this study, an integral optimization method of lattice cooling structure, used at the trailing edge of turbine blades, concerned with heat transfer and mechanical performance, was presented. Firstly, functions between the first-order natural frequency (freq1), elasticity modulus (E), relative density (ρ¯), and Nusselt number (Nu), and the geometric variables of pyramid type LS (PLS) and X-type LS (XLS) were established, and the reliability of these functions was verified. Then, a mathematical optimization model was developed based on these functions which contained two selected optimization problems. Finally, relations among objectives were analyzed; influence law of geometric variables to objectives were discussed, and the accuracy of the optimal LS was proved by experiment and numerical simulation. The optimization results suggest that, compared to the initial LS, Nu increases by 24.1% and ρ¯ decreases by 31% in the optimal LS of the first selected problem, and the Nu increases by 28.8% while freq1 and ρ¯ are almost unchanged in the optimal LS of the second selected problem compared to the initial LS. This study may provide a guidance for functions integration design of lattice cooling structures used at turbine blades based on 3D printing.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Schröder, Dominic, Jorge Aguilar-Cabello, Thomas Leweke, Ralf Hörnschemeyer, and Eike Stumpf. "Experimental investigation of a rotor blade tip vortex pair." CEAS Aeronautical Journal 13, no. 1 (October 20, 2021): 97–112. http://dx.doi.org/10.1007/s13272-021-00555-1.

Повний текст джерела
Анотація:
AbstractThis paper presents the results of an experimental study of two closely spaced vortices generated by a rotating blade with a modified tip geometry. The experiments are carried out in two water channel facilities and involve a generic one-bladed rotor operating in a regime near hover. It is equipped with a parametric fin placed perpendicular to the pressure surface near the tip, which generates a co-rotating vortex pair having a helical geometry. Based on previous results obtained with a fixed wing, a series of small-scale experiments is first carried out, to validate the method of vortex pair generation also for a rotating blade, and to obtain a qualitative overview of its evolution going downstream. A more detailed quantitative study is then performed in a larger facility at three times the initial scale. By varying the fin parameters, it was possible to obtain a configuration in which the two vortices have almost the same circulation. In both experiments, the vortex pair is found to merge into a single helical wake vortex within one blade rotation. Particle image velocimetry measurements show that the resulting vortex has a significantly larger core radius than the single tip vortex from a blade without fin. This finding may have relevance in the context of blade–vortex interactions, where noise generation and fatigue from fluid–structure interactions depend strongly on the vortex core size.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Taslim, M. E., L. A. Bondi, and D. M. Kercher. "An Experimental Investigation of Heat Transfer in an Orthogonally Rotating Channel Roughened With 45 deg Criss-Cross Ribs on Two Opposite Walls." Journal of Turbomachinery 113, no. 3 (July 1, 1991): 346–53. http://dx.doi.org/10.1115/1.2927882.

Повний текст джерела
Анотація:
Turbine blade cooling is imperative in advanced aircraft engines. The extremely hot gases that operate within the turbine section require turbine blades to be cooled by a complex cooling circuit. This cooling arrangement increases engine efficiency and ensures blade materials a longer creep life. One principle aspect of the circuit involves serpentine internal cooling passes throughout the core of the blade. Roughening the inside surfaces of these cooling passages with turbulence promoters provides enhanced heat transfer rates from the surface. The purpose of this investigation was to study the effect of rotation, aspect ratio, and turbulator roughness on heat transfer in these rib-roughened passages. The investigation was performed in an orthogonally rotating setup to simulate the actual rotation of the cooling passages. Single-pass channels, roughened on two opposite walls, with turbulators positioned at 45 deg angle to the flow, in a criss-cross arrangement, were studied throughout this experiment. The ribs were arranged such that their pitch-to-height ratio remained at a constant value of 10. An aspect ratio of unity was investigated under three different rib blockage ratios (turbulator height/channel hydraulic diameter) of 0.1333, 0.25, and 0.3333. A channel with an aspect ratio of 2 was also investigated for a blockage ratio of 0.25. Air was flown radially outward over a Reynolds number range of 15,000 to 50,000. The rotation number was varied from 0 to 0.3. Stationary and rotating cases of identical geometries were compared. Results indicated that rotational effects are more pronounced in turbulated passages of high aspect and low blockage ratios for which a steady increase in heat transfer coefficient is observed on the trailing side as rotation number increases while the heat transfer coefficient on the leading side shows a steady decrease with rotation number. However, the all-smooth-wall classical pattern of heat transfer coefficient variation on the leading and trailing sides is not followed for smaller aspect ratios and high blockage ratios when the relative artificial roughness is high.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zang, Wei, Xin Cheng Li, Yi Chen, and Yu Ting Luo. "Numerical Study of the inside Flow Field and the Rectangle Channel Impeller of Roto-Jet Pump." Applied Mechanics and Materials 529 (June 2014): 164–68. http://dx.doi.org/10.4028/www.scientific.net/amm.529.164.

Повний текст джерела
Анотація:
By means of ANSYS-CFX, the 3D numerical simulations of flow field for the three hydraulic models are performed. Through comparing the three types of pumps with three different rectangle channel impellers which have different spread angle, blade, the authors draw conclusions: the distribution of the pressure and velocity in the rectangle flow channels with 6° spread angle is well-proportioned, the head and the efficiency of the whole pump can meet the requirement: But the other two types of impeller channels, the distribution of velocity is unstable, there are backflow and big whirlpool. Therefore, the rectangle channel impeller with 6°spread angle is a better type for the Roto-Jet pump.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kalinkevych, M., V. Ihnatenko, O. Bolotnikova, and O. Obukhov. "Design of high efficiency centrifugal compressors stages." Refrigeration Engineering and Technology 54, no. 5 (October 31, 2018): 4–9. http://dx.doi.org/10.15673/ret.v54i5.1239.

Повний текст джерела
Анотація:
The modern trend in compressor industry is an extension of the use of multi-shaft centrifugal compressors. Multi-shaft compressors have a number of advantages over single-shaft. The design of such compressors gives opportunity to use an axial inlet for all stages and select the optimum rotational speed for each pair of impellers, which, along with the cooling of the gas after each stage, makes possible to achieve high levels of efficiency. The design of high-efficiency centrifugal compressor stages can be performed on the basis of highly effective stage elements. Such elements are: impellers with spatial blades, vaned and channel diffusers with given velocity distribution. In this paper, impellers with axial-radial blades are considered. The blade profile is determined by the specified pressure distribution along the blade. Such design improves the structure of the gas flow in the interblade channels of the impeller, which leads to an increase in its efficiency. Characteristics of loss coefficients from attack angles for impellers were obtained experimentally. Vaned and channel diffusers, the characteristics of which are given in this article, are designed with the given velocity distribution along the vane. Compared to the classic type of diffuser, such diffusers have lower losses and a wider range of economical operation. For diffusers as well as for impellers, characteristics of loss coefficients from attack angles were obtained. High efficient impellers and diffusers and obtained gas-dynamic characteristics were used in the design of a multi-shaft compressor unit for the production of liquefied natural gas. The initial pressure of the unit is 3bar. The obtained characteristics of loss coefficients from attack angles for the considered impellers and diffusers make it possible to calculate the gas-dynamic characteristics of high-efficient centrifugal compressors stages. The high-efficient centrifugal compressors stages can be designed using high-efficient elements, such as: impeller with spatial blades and vaned diffuser with given velocity distribution.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Prasad Rao, Jubilee, and Francisco Diez. "Novel Cyclic Blade Pitching Mechanism for Wind and Tidal Energy Turbine Applications." Energies 11, no. 12 (November 29, 2018): 3328. http://dx.doi.org/10.3390/en11123328.

Повний текст джерела
Анотація:
A vertical axis drag-based turbine is proposed that allows for an improved performance by feathering its blades during recovery strokes to eliminate adverse blade forces. The turbine blades resemble flat plates and pitch by 90 ∘ between the two turbine strokes using a novel dual-cam mechanism. This passive mechanism orients the blades vertically during the drive stroke for maximum effective area and horizontally for minimum effective area during the recovery stroke. This allows maximizing the positive drive stroke force and minimizing the recovery stroke losses, in turn maximizing the net energy capture and the turbine performance. It is called the cyclic pitch turbine, and a mathematical model is developed that predicts the turbine performance. It shows that the turbine is self-starting for all orientations and has a higher and more uniform static torque coefficient than the popular Savonius turbine. The dynamic analysis also indicates a higher performance, and the predicted values for torque and power coefficients match very closely with those from water channel and wind tunnel experiments on a prototype. Results of testing several blade shapes indicate that airfoil section blades with long and narrow continuous shapes that have less area towards the blade’s tip result in higher performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Badshah, Mujahid, Saeed Badshah, James VanZwieten, Sakhi Jan, Muhammad Amir, and Suheel Abdullah Malik. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile." Energies 12, no. 11 (June 11, 2019): 2217. http://dx.doi.org/10.3390/en12112217.

Повний текст джерела
Анотація:
Velocity profiles in tidal channels cause cyclic oscillations in hydrodynamic loads due to the dependence of relative velocity on angular position, which can lead to fatigue damage. Therefore, the effect of velocity profile on the load variation and fatigue life of large-scale tidal turbines is quantified here. This is accomplished using Fluid Structure Interaction (FSI) simulations created using the ANSYS Workbench software, which couples the fluid solver ANSYS CFX to the structural solver ANSYS transient structural. While these load oscillations only minimally impact power and thrust fluctuation for rotors, they can significantly impact the load variations on individual rotor blades. To evaluate these loadings, a tidal turbine within a channel with a representative flow that follows a 1/7th power velocity profile and an onset turbulence intensity of 5% is simulated. This velocity profile increases the thrust coefficient variation from mean cycle value of an individual blade from 2.8% to 9% and the variation in flap wise bending moment coefficient is increased from 4.9% to 19%. Similarly, the variation from the mean cycle value for blade deformation and stress of 2.5% and 2.8% increased to 9.8% and 10.3%, respectively. Due to the effect of velocity profile, the mean stress is decreased, whereas, the range and variation of stress are considerably increased.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Dibelius, G. H., and E. Ahlers. "Influence of Periodically Unsteady Wake Flow on the Flow Separation in Blade Channels." Journal of Turbomachinery 114, no. 1 (January 1, 1992): 108–13. http://dx.doi.org/10.1115/1.2927973.

Повний текст джерела
Анотація:
The influence of periodically unsteady perturbations on the turbulent flow along the suction side of turbine blades is investigated in a test rig. The blade suction side is represented by a flat plate 550 mm in length. The pressure profile typically encountered in a turbine blade channel is generated by a curved wall opposite to the flat plate. The angle of the divergent part of the test channel and hence the pressure can be increased to induce flow separation on the flat plate. For simulation of the wakes from the upstream blade row, the incoming flow is periodically disturbed by a wake generator consisting of five flat profiles arranged in front and parallel to the plate rotating with adjustable speed and phase angle. An LDV with high spatial resolution is used to measure averaged and fluctuating components of the velocity inside the boundary layer flow down to a distance of y = 0.05 mm from the plate surface, determining the boundary layer parameters as well as the wall shear stress. By Fourier analysis of the measured time-related velocity distributions, the stochastic and periodic parts of the overall turbulence are identified. With a periodic wake flow the separation is shifted downstream as compared to the steady flow situation. This is due to the energization of the boundary layer flow associated with the conversion of periodic in stochastic parts of the turbulence. Conclusions resulting from the experimental findings for the theoretical understanding of the flow turbine cascades are discussed in particular with respect to turbulence modeling.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Taslim, M. E., and G. J. Korotky. "Low-Aspect-Ratio Rib Heat Transfer Coefficient Measurements in a Square Channel." Journal of Turbomachinery 120, no. 4 (October 1, 1998): 831–38. http://dx.doi.org/10.1115/1.2841796.

Повний текст джерела
Анотація:
Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of round-corner, low-aspect-ratio (ARrib = 0.667) ribs. Twelve rib geometries, comprising three rib height-to-channel hydraulic diameters (blockage ratios) of 0.133, 0.167, and 0.25 as well as three rib spacings (pitch-to-height ratios) of 5, 8.5, and 10 were investigated for two distinct thermal boundary conditions of heated and unheated channel walls. A square channel, roughened with low-aspect-ratio ribs on two opposite walls in a staggered manner and perpendicular to the flow direction, was tested. An instrumented copper rib was positioned either in the middle of the rib arrangements or in the furthest upstream location. Both rib heat transfer coefficient and channel friction factor for these low-aspect-ratio ribs were also compared with those of square ribs, reported previously by the authors. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Li, Chao, Huo-Xing Liu, and Zhi-Hong Zhou. "Experimental Research about Shock Wave in a 1+1/2 Counter-Rotating Turbine." MATEC Web of Conferences 151 (2018): 02005. http://dx.doi.org/10.1051/matecconf/201815102005.

Повний текст джерела
Анотація:
To investigate the internal distribution regularities of shock wave structure in 1+1/2 counter-rotating turbine, numerical simulation and experimental research about the shock wave structure were conducted by using the schlieren apparatus under different working conditions.From the point of the unsteady results, the unsteady effect has few influence on the flow field of high pressure guide vane, but the wake of the high pressure guide leaves periodically sweeps through the front edge of the high pressure blade and there presents strong unsteady effect on flow field of high pressure rotor. Because of periodic influence of external wake and shock wave, the unsteadiness of flow in low pressure rotor is still strong but not that drastic compared to the high pressure rotor. 50% height section of the blade of the three types of blades are extracted respectively to make plane cascades which are conducted blowing experiments in supersonic wind tunnel. The final photograph were analyzed by comparing with the CFD results. Results show that with the increase of expansion ratio, the wave structures in blade channel move toward the exit and the caudal interference between the outer tail wave and is strengthened gradually.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії