Статті в журналах з теми "Bivalent metal ion batteries"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Bivalent metal ion batteries.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Bivalent metal ion batteries".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ding, Yingchun, Qijiu Deng, Caiyin You, Yunhua Xu, Jilin Li, and Bing Xiao. "Assessing electrochemical properties and diffusion dynamics of metal ions (Na, K, Ca, Mg, Al and Zn) on a C2N monolayer as an anode material for non-lithium ion batteries." Physical Chemistry Chemical Physics 22, no. 37 (2020): 21208–21. http://dx.doi.org/10.1039/d0cp02524k.

Повний текст джерела
Анотація:
We perform first-principles molecular dynamics (FPMD) simulations together with a CI-NEB method to explore the structure, electrochemical properties and diffusion dynamics of a C2N monolayer saturated with various univalent, bivalent and trivalent metal ions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Drews, Janina, Rudi Ruben Maça, Liping Wang, Johannes Wiedemann, J. Alberto Blázquez, Zhirong Zhao-Karger, Maximilian Fichtner, Timo Danner, and Arnulf Latz. "Continuum Modelling As Tool for Optimizing the Cell Design of Magnesium Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 461. http://dx.doi.org/10.1149/ma2022-024461mtgabs.

Повний текст джерела
Анотація:
Magnesium-based next-generation batteries are of great interest since magnesium is not only very abundant, which allows economic and sustainable applications, but also less prone to dendrite formation than many other metals. Together with the bivalency of the magnesium cations the resulting possibility to safely use a metal anode enables batteries with high specific capacities. However, for a successful commercialization of magnesium batteries there are still some challenges to overcome. The high charge density of the bivalent cation causes strong coulomb interactions with anions and solvent molecules. Therefore, magnesium salts are prone to form ion pairs and bigger clusters – especially at high concentrations, which may adversely affect the transport in the electrolyte and the electrochemical reaction at the electrode.[1] Moreover, energetic barriers for desolvation and solid-state diffusion of the double-charged magnesium ion are usually very high, which can have a crucial impact on the battery performance. Former can significantly hinder the electron-transfer reaction,[2] whereas latter makes the choice of suitable cathode materials very challenging. Consequently, a good understanding of the limiting processes in rechargeable magnesium batteries is key to develop novel high-capacity / high-voltage cathode materials. For instance, it is well-known that the morphology of an intercalation material can strongly influence the battery performance and smaller particles as well as thinner electrodes are common strategies for avoiding adverse effects of transport limitations. However, high mass loadings as well as suitable separators are still essential bottlenecks for commercialization of magnesium-ion batteries. Up to date Chevrel phase (CP) Mo6S8 is considered as benchmark intercalation cathode and Mg[B(hfip)4]2 / DME is seen as most promising chloride-free magnesium electrolyte.[3,4] In our contribution we carefully study this model system of a magnesium-ion battery to get a better understanding of how to overcome undesired limitations. Therefore, we present a newly-developed continuum model, which is able to describe the complex intercalation process of magnesium cations into a CP cathode. The model considers not only the different thermodynamics and kinetics of the two intercalation sites of Mo6S8 and their interplay but also the impact of the desolvation on the electrochemical reactions and possible ion agglomeration. The parameterization and validation of the model is based on DFT calculations and experimental data. Different kind of (transport) limitations and their impact on the battery performance are studied in detail. All in all, the combination of different modelling techniques with experimental measurements provides important insights into the operation of magnesium ion batteries and enables an optimization of the cell design. Acknowledgements This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824066 (E-MAGIC). Furthermore, this work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm-Karlsruhe) and was funded by the German Research Foundation (DFG) under Project ID 390874152 (POLiS Cluster of Excellence). The simulations were carried out at JUSTUS 2 cluster supported by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant No INST 40/575-1 FUGG. References Drews, T. Danner, P. Jankowski et al., ChemSusChem, 3 (2020), 3599-3604. Drews, P. Jankowski, J. Häcker et al., ChemSusChem, 14 (2021), 4820-4835. Aurbach, Z. Lu, A. Schlechter et al., Nature, 407 (2000), 724-727. Zhao-Karger, R. Liu, W. Dai et al., ACS Energy Lett. 3 (2018), 2005-2013.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Yi, and Rudolf Holze. "Metal-Ion Batteries." Encyclopedia 2, no. 3 (September 15, 2022): 1611–23. http://dx.doi.org/10.3390/encyclopedia2030110.

Повний текст джерела
Анотація:
Metal-ion batteries are systems for electrochemical energy conversion and storage with only one kind of ion shuttling between the negative and the positive electrode during discharge and charge. This concept also known as rocking-chair battery has been made highly popular with the lithium-ion battery as its most popular example. The principle can also be applied with other cations both mono- and multivalent. This might have implications and advantages in terms of increased safety, lower expenses, and utilizing materials, in particular metals, not being subject to resource limitations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bennett, A. J., and C. R. Bagshaw. "The kinetics of bivalent metal ion dissociation from myosin subfragments." Biochemical Journal 233, no. 1 (January 1, 1986): 173–77. http://dx.doi.org/10.1042/bj2330173.

Повний текст джерела
Анотація:
Bivalent metal ions have multiple roles in subunit association and ATPase regulation in scallop adductor-muscle myosin. To help elucidate these functions, the rates of Ca2+ and Mg2+ dissociation from the non-specific high-affinity sites on the regulatory light chains were measured and compared with those of rabbit skeletal-muscle myosin subfragments. Ca2+ dissociation had a rate constant of about 0.7 s-1 in both species, as measured by the time course of the pH change on EDTA addition. Mg2+ dissociation had a rate constant of 0.05 s-1, as monitored by its displacement with the paramagnetic Mn2+ ion. It is concluded that the exchange between Ca2+ and Mg2+ at the non-specific site, on excitation of both skeletal and adductor muscles, is too slow to contribute to the activation itself. The release of bivalent metal ions from the non-specific site is, however, the first step in release of the scallop regulatory light chain (Bennett & Bagshaw (1986) Biochem. J. 233, 179-186). In scallop myosin additional specific sites are present, which can bind Ca2+ rapidly, to effect activation of the ATPase. In the course of this work, Ca2+ dissociation from EGTA was studied as a model system. This gave rates of 1 s-1 and 0.3 s-1 at pH 7.0 and pH 8.0 respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SATO, Hisakuni. "Ion exchange chromatography of bivalent metal ions by conductivity detection." Bunseki kagaku 34, no. 10 (1985): 606–11. http://dx.doi.org/10.2116/bunsekikagaku.34.10_606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Preigh, Michael J., Fu-Tyan Lin, Kamal Z. Ismail, and Stephen G. Weber. "Bivalent metal ion-dependent photochromism and photofluorochromism from a spiroquinoxazine." Journal of the Chemical Society, Chemical Communications, no. 20 (1995): 2091. http://dx.doi.org/10.1039/c39950002091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Voropaeva, D. Yu, S. A. Novikova, and A. B. Yaroslavtsev. "Polymer electrolytes for metal-ion batteries." Russian Chemical Reviews 89, no. 10 (September 18, 2020): 1132–55. http://dx.doi.org/10.1070/rcr4956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oumellal, Y., A. Rougier, G. A. Nazri, J.-M. Tarascon, and L. Aymard. "Metal hydrides for lithium-ion batteries." Nature Materials 7, no. 11 (October 12, 2008): 916–21. http://dx.doi.org/10.1038/nmat2288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kiai, Maryam Sadat, Omer Eroglu, and Navid Aslfattahi. "Metal-Ion Batteries: Achievements, Challenges, and Prospects." Crystals 13, no. 7 (June 23, 2023): 1002. http://dx.doi.org/10.3390/cryst13071002.

Повний текст джерела
Анотація:
A new type of battery known as metal-ion batteries promises better performance than existing batteries. In terms of energy storage, they could prove useful and eliminate some of the problems existing batteries face. This review aims to help academics and industry work together better. It will propose ways to measure the performance of metal-ion batteries using important factors such as capacity, convertibility, Coulombic efficiency, and electrolyte consumption. With the development of technology, a series of metal ion-based batteries are expected to hit the market. This review presents the latest innovative research findings on the fabrication of metal-ion batteries with new techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bachinin, Semyon, Venera Gilemkhanova, Maria Timofeeva, Yuliya Kenzhebayeva, Andrei Yankin, and Valentin A. Milichko. "Metal-Organic Frameworks for Metal-Ion Batteries: Towards Scalability." Chimica Techno Acta 8, no. 3 (August 27, 2021): 20210304. http://dx.doi.org/10.15826/chimtech.2021.8.3.04.

Повний текст джерела
Анотація:
Metal-organic frameworks (MOFs), being a family of highly crystalline and porous materials, have attracted particular attention in material science due to their unprecedented chemical and structural tunability. Next to their application in gas adsorption, separation, and storage, MOFs also can be utilized for energy transfer and storage in batteries and supercapacitors. Based on recent studies, this review describes the latest developments about MOFs as structural elements of metal-ion battery with a focus on their industry-oriented and large-scale production.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hu, Shukai. "Mxenes applications in different metal ion batteries." Applied and Computational Engineering 3, no. 1 (May 25, 2023): 336–40. http://dx.doi.org/10.54254/2755-2721/3/20230537.

Повний текст джерела
Анотація:
Mxenes, with unique two-dimensional structures, possess excellent electrical conductivity and low diffusion barriers, which are potential materials used in different metal ion batteries. Herein this paper focuses on synthesising MXenes applications through a literature review method. In relevant analysis, Mxenes can be Constructed in Ultrathin Layered with TiN in Heterostructure to Facilitate the Favorable Catalytic Capability of LithiumSulfur Batteries. For Potassium-Ion Batteries, MXene coated in Carbon to form a Three-Dimensional MXene/Iron Selenide Ball with CoreShell Structure shows a high reversible capacity with significant cycle stability. Ti3C2Tx MXene Electrolyte Additive prevents zinc ion batteries from Zinc Dendrite Deposition. Lastly, customizing the MXene nitrogen terminals for Na-Ion Batteries facilitates fast charging and stable cycling even when the temperature is low.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Geng, Lishan, Xuanpeng Wang, Kang Han, Ping Hu, Liang Zhou, Yunlong Zhao, Wen Luo, and Liqiang Mai. "Eutectic Electrolytes in Advanced Metal-Ion Batteries." ACS Energy Letters 7, no. 1 (December 15, 2021): 247–60. http://dx.doi.org/10.1021/acsenergylett.1c02088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Shea, John J., and Chao Luo. "Organic Electrode Materials for Metal Ion Batteries." ACS Applied Materials & Interfaces 12, no. 5 (January 9, 2020): 5361–80. http://dx.doi.org/10.1021/acsami.9b20384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Su, Heng, Saddique Jaffer, and Haijun Yu. "Transition metal oxides for sodium-ion batteries." Energy Storage Materials 5 (October 2016): 116–31. http://dx.doi.org/10.1016/j.ensm.2016.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Chen, Xiang, Xueqiang Zhang, Xin Shen, and Qiang Zhang. "Ion–Solvent Chemistry in Alkali Metal Batteries." ECS Meeting Abstracts MA2020-01, no. 4 (May 1, 2020): 571. http://dx.doi.org/10.1149/ma2020-014571mtgabs.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Brousse, T., D. Defives, L. Pasquereau, S. M. Lee, U. Herterich, and D. M. Schleich. "Metal oxide anodes for Li-ion batteries." Ionics 3, no. 5-6 (September 1997): 332–37. http://dx.doi.org/10.1007/bf02375707.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Chen, Yuan, Shuming Zhuo, Zengyu Li, and Chengliang Wang. "Redox polymers for rechargeable metal-ion batteries." EnergyChem 2, no. 2 (May 2020): 100030. http://dx.doi.org/10.1016/j.enchem.2020.100030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Greaves, Michael, Suelen Barg, and Mark A. Bissett. "MXene‐Based Anodes for Metal‐Ion Batteries." Batteries & Supercaps 3, no. 3 (February 26, 2020): 211. http://dx.doi.org/10.1002/batt.202000029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Greaves, Michael, Suelen Barg, and Mark A. Bissett. "MXene‐Based Anodes for Metal‐Ion Batteries." Batteries & Supercaps 3, no. 3 (January 16, 2020): 214–35. http://dx.doi.org/10.1002/batt.201900165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhang, Long. "High-Performance Metal–Chalcogen Batteries." Batteries 9, no. 1 (January 4, 2023): 35. http://dx.doi.org/10.3390/batteries9010035.

Повний текст джерела
Анотація:
The rapid proliferation in the market for smart devices, electric vehicles, and power grids over the past decade has substantially increased the demand for commercial lithium-ion batteries (LIBs) [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yang, Qingyun, Yanjin Liu, Hong Ou, Xueyi Li, Xiaoming Lin, Akif Zeb, and Lei Hu. "Fe-Based metal–organic frameworks as functional materials for battery applications." Inorganic Chemistry Frontiers 9, no. 5 (2022): 827–44. http://dx.doi.org/10.1039/d1qi01396c.

Повний текст джерела
Анотація:
This review presents a comprehensive discussion on the development and application of pristine Fe-MOFs in lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, metal–air batteries and lithium–sulfur batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Liu, Zhuoxin, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, and Chunyi Zhi. "Voltage issue of aqueous rechargeable metal-ion batteries." Chemical Society Reviews 49, no. 1 (2020): 180–232. http://dx.doi.org/10.1039/c9cs00131j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

PREIGH, M. J., F. T. LIN, K. Z. ISMAIL, and S. G. WEBER. "ChemInform Abstract: Bivalent Metal Ion-Dependent Photochromism and Photofluorochromism from a Spiroquinoxazine." ChemInform 27, no. 9 (August 12, 2010): no. http://dx.doi.org/10.1002/chin.199609166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

CLUGSTON, Susan L., Rieko YAJIMA, and John F. HONEK. "Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies." Biochemical Journal 377, no. 2 (January 15, 2004): 309–16. http://dx.doi.org/10.1042/bj20030271.

Повний текст джерела
Анотація:
GlxI (glyoxalase I) isomerizes the hemithioacetal formed between glutathione and methylglyoxal. Unlike other GlxI enzymes, Escherichia coli GlxI exhibits no activity with Zn2+ but maximal activation with Ni2+. To elucidate further the metal site in E. coli GlxI, several approaches were undertaken. Kinetic studies indicate that the catalytic metal ion affects the kcat without significantly affecting the Km for the substrate. Inductively coupled plasma analysis and isothermal titration calorimetry confirmed one metal ion bound to the enzyme, including Zn2+, which produces an inactive enzyme. Isothermal titration calorimetry was utilized to determine the relative binding affinity of GlxI for various bivalent metals. Each metal ion examined bound very tightly to GlxI with an association constant (Ka)>107 M−1, with the exception of Mn2+ (Ka of the order of 106 M−1). One of the ligands to the catalytic metal, His5, was altered to glutamine, a side chain found in the Zn2+-active Homo sapiens GlxI. The affinity of the mutant protein for all bivalent metals was drastically decreased. However, low levels of activity were now observed for Zn2+-bound GlxI. Although this residue has a marked effect on metal binding and activation, it is not the sole factor determining the differential metal activation between the human and E. coli GlxI enzymes.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zhang, Qi, Dixiong Li, Jia Wang, Sijia Guo, Wei Zhang, Dong Chen, Qi Li, Xianhong Rui, Liyong Gan, and Shaoming Huang. "Multiscale optimization of Li-ion diffusion in solid lithium metal batteries via ion conductive metal–organic frameworks." Nanoscale 12, no. 13 (2020): 6976–82. http://dx.doi.org/10.1039/c9nr10338d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Li, Junheng, Yifeng Cai, Haomin Wu, Zhiao Yu, Xuzhou Yan, Qiuhong Zhang, Theodore Z. Gao, Kai Liu, Xudong Jia, and Zhenan Bao. "Polymers in Lithium‐Ion and Lithium Metal Batteries." Advanced Energy Materials 11, no. 15 (January 25, 2021): 2003239. http://dx.doi.org/10.1002/aenm.202003239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Togonon, Jazer Jose H., Pin-Chieh Chiang, Hong-Jhen Lin, Wei-Che Tsai, and Hung-Ju Yen. "Pure carbon-based electrodes for metal-ion batteries." Carbon Trends 3 (April 2021): 100035. http://dx.doi.org/10.1016/j.cartre.2021.100035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Luo, Pan, Cheng Zheng, Jiawei He, Xin Tu, Wenping Sun, Hongge Pan, Yanping Zhou, Xianhong Rui, Bing Zhang, and Kama Huang. "Structural Engineering in Graphite‐Based Metal‐Ion Batteries." Advanced Functional Materials 32, no. 9 (November 10, 2021): 2107277. http://dx.doi.org/10.1002/adfm.202107277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Li, Tao, and Qiang Zhang. "Advanced metal sulfide anode for potassium ion batteries." Journal of Energy Chemistry 27, no. 2 (March 2018): 373–74. http://dx.doi.org/10.1016/j.jechem.2017.12.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Yang, Wenjin, Xianghua Zhang, Huiteng Tan, Dan Yang, Yuezhan Feng, Xianhong Rui, and Yan Yu. "Gallium-based anodes for alkali metal ion batteries." Journal of Energy Chemistry 55 (April 2021): 557–71. http://dx.doi.org/10.1016/j.jechem.2020.07.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Tang, Mi, Hongyang Li, Erjing Wang, and Chengliang Wang. "Carbonyl polymeric electrode materials for metal-ion batteries." Chinese Chemical Letters 29, no. 2 (February 2018): 232–44. http://dx.doi.org/10.1016/j.cclet.2017.09.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Wang, Zhiyu, Liang Zhou, and Xiong Wen David Lou. "Metal Oxide Hollow Nanostructures for Lithium-ion Batteries." Advanced Materials 24, no. 14 (March 14, 2012): 1903–11. http://dx.doi.org/10.1002/adma.201200469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Luo, Minghe, Haoxiang Yu, Feiyang Hu, Tingting Liu, Xing Cheng, Runtian Zheng, Ying Bai, Miao Shui, and Jie Shu. "Metal selenides for high performance sodium ion batteries." Chemical Engineering Journal 380 (January 2020): 122557. http://dx.doi.org/10.1016/j.cej.2019.122557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wang, Chunlei, Zibing Pan, Huaqi Chen, Xiangjun Pu, and Zhongxue Chen. "MXene-Based Materials for Multivalent Metal-Ion Batteries." Batteries 9, no. 3 (March 17, 2023): 174. http://dx.doi.org/10.3390/batteries9030174.

Повний текст джерела
Анотація:
Multivalent metal ion (Mg2+, Zn2+, Ca2+, and Al3+) batteries (MMIBs) emerged as promising technologies for large-scale energy storage systems in recent years due to the abundant metal reserves in the Earth’s crust and potentially low cost. However, the lack of high-performance electrode materials is still the main obstacle to the development of MMIBs. As a newly large family of two-dimensional transition metal carbides, nitrides, and carbonitrides, MXenes have attracted growing focus in the energy storage field because of their large specific surface area, excellent conductivity, tunable interlayer spaces, and compositional diversity. In particular, the multifunctional chemistry and superior hydrophilicity enable MXenes to serve not only as electrode materials but also as important functional components for heterojunction composite electrodes. Herein, the advances of MXene-based materials since its discovery for MMIBs are summarized, with an emphasis on the rational design and controllable synthesis of MXenes. More importantly, the fundamental understanding of the relationship between the morphology, structure, and function of MXenes is highlighted. Finally, the existing challenges and future research directions on MXene-based materials toward MMIBs application are critically discussed and prospected.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Xie, Xing-Chen, Ke-Jing Huang, and Xu Wu. "Metal–organic framework derived hollow materials for electrochemical energy storage." Journal of Materials Chemistry A 6, no. 16 (2018): 6754–71. http://dx.doi.org/10.1039/c8ta00612a.

Повний текст джерела
Анотація:
The recent progress and major challenges/opportunities of MOF-derived hollow materials for energy storage are summarized in this review, particularly for lithium-ion batteries, sodium-ion batteries, lithium–Se batteries, lithium–sulfur batteries and supercapacitor applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zhang, Xin, Yongan Yang, and Zhen Zhou. "Towards practical lithium-metal anodes." Chemical Society Reviews 49, no. 10 (2020): 3040–71. http://dx.doi.org/10.1039/c9cs00838a.

Повний текст джерела
Анотація:
Lithium ion batteries cannot meet the ever increasing demands of human society. Thus batteries with Li-metal anodes are eyed to revive. Here we summarize the recent progress in developing practical Li-metal anodes for various Li-based batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ni, Qiao, Yuejiao Yang, Haoshen Du, Hao Deng, Jianbo Lin, Liu Lin, Mengwei Yuan, Zemin Sun, and Genban Sun. "Anode-Free Rechargeable Sodium-Metal Batteries." Batteries 8, no. 12 (December 5, 2022): 272. http://dx.doi.org/10.3390/batteries8120272.

Повний текст джерела
Анотація:
Due to the advantages of rich resources, low cost, high energy conversion efficiency, long cycle life, and low maintenance fee, sodium–ion batteries have been regarded as a promising energy storage technology. However, their relatively low energy density compared with the commercialized lithium–ion batteries still impedes their application for power systems. Anode–free rechargeable sodium–metal batteries (AFSMBs) pose a solution to boost energy density and tackle the safety problems of metal batteries. At present, researchers still lack a comprehensive understanding of the anode-free cells in terms of electrolytes, solid–electrolyte interphase (SEI), and current collectors. This review is devoted to the field of AFSMBs, and outlines the breakthroughs that have been accomplished along with our perspective on the direction of future development for AFSMBs and the areas that warrant further investigation.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zhou, Dan, Tianli Wu, and Zhubing Xiao. "Self-supported metal-organic framework nanoarrays for alkali metal ion batteries." Journal of Alloys and Compounds 894 (February 2022): 162415. http://dx.doi.org/10.1016/j.jallcom.2021.162415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Khan, Badar Taqui, and Ch Abraham Lincoln. ""BINARY METAL COMPLEXES AND THERMODYNAMIC PARAMETERS ASSOCIATED WITH THE INTERACTION OF THYMIDINE WITH BIVALENT METAL ION"." Material Science Research India 3, no. 1 (November 1, 2006): 59–64. http://dx.doi.org/10.13005/msri/030111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Singh, D. P., V. Malik, R. Kumar, K. Kumar, and J. Singh. "Synthesis and spectral and antibacterial studies of bivalent transition metal ion macrocyclic complexes." Russian Journal of Coordination Chemistry 35, no. 10 (October 2009): 740–45. http://dx.doi.org/10.1134/s1070328409100054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Liu, Hua Kun, Guo Xiu Wang, Zaiping Guo, Jiazhao Wang, and Kosta Konstantinov. "Nanomaterials for Lithium-ion Rechargeable Batteries." Journal of Nanoscience and Nanotechnology 6, no. 1 (January 1, 2006): 1–15. http://dx.doi.org/10.1166/jnn.2006.103.

Повний текст джерела
Анотація:
In lithium-ion batteries, nanocrystalline intermetallic alloys, nanosized composite materials, carbon nanotubes, and nanosized transition-metal oxides are all promising new anode materials, while nanosized LiCoO2, LiFePO4, LiMn2 O4, and LiMn2O4 show higher capacity and better cycle life as cathode materials than their usual larger-particle equivalents. The addition of nanosized metal-oxide powders to polymer electrolyte improves the performance of the polymer electrolyte for all solid-state lithium rechargeable batteries. To meet the challenge of global warming, a new generation of lithium rechargeable batteries with excellent safety, reliability, and cycling life is needed, i.e., not only for applications in consumer electronics, but especially for clean energy storage and for use in hybrid electric vehicles and aerospace. Nanomaterials and nanotechnologies can lead to a new generation of lithium secondary batteries. The aim of this paper is to review the recent developments on nanomaterials and nanotechniques used for anode, cathode, and electrolyte materials, the impact of nanomaterials on the performance of lithium batteries, and the modes of action of the nanomaterials in lithium rechargeable batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Yoshinari, Takahiro, Datong Zhang, Kentaro Yamamoto, Yuya Kitaguchi, Aika Ochi, Koji Nakanishi, Hidenori Miki, et al. "Kinetic analysis and alloy designs for metal/metal fluorides toward high rate capability for all-solid-state fluoride-ion batteries." Journal of Materials Chemistry A 9, no. 11 (2021): 7018–24. http://dx.doi.org/10.1039/d0ta12055c.

Повний текст джерела
Анотація:
A Cu–Au cathode material for all-solid-state fluoride-ion batteries with high rate-capability was designed as new concepts for electrochemical energy storage to handle the physicochemical energy density limit that Li-ion batteries are approaching.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Puttaswamy, Rangaswamy, Ranjith Krishna Pai, and Debasis Ghosh. "Recent progress in quantum dots based nanocomposite electrodes for rechargeable monovalent metal-ion and lithium metal batteries." Journal of Materials Chemistry A 10, no. 2 (2022): 508–53. http://dx.doi.org/10.1039/d1ta06747h.

Повний текст джерела
Анотація:
This review summarizes the recent progress in quantum dot based nanocomposites as electrode materials in Li/Na/K-ion batteries, as cathodes in Li–S and Li–O2 batteries and in improving the electrochemical performance of Li metal anode batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Peters, Jens, Daniel Buchholz, Stefano Passerini, and Marcel Weil. "Life cycle assessment of sodium-ion batteries." Energy & Environmental Science 9, no. 5 (2016): 1744–51. http://dx.doi.org/10.1039/c6ee00640j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Anbarasi, C. Mary, and Susai Rajendran. "Surface Protection of Carbon Steel by Hexanesulphonic Acid-Zinc Ion System." ISRN Corrosion 2014 (March 19, 2014): 1–8. http://dx.doi.org/10.1155/2014/628604.

Повний текст джерела
Анотація:
Inhibition of corrosion of carbon steel in dam water by hexanesulphonic acid as its sodium salt C6H13SO3Na (SHXS) in the absence and presence of a bivalent cation zinc ion (Zn2þ) has been investigated using weight loss method. Results of weight loss method indicate that inhibition efficiency (IE) increased with increase of inhibitor concentration. Polarization study reveals that SHXS-Zn2+ system controls the cathodic reaction predominantly. AC impedance spectra reveal that a protective film is formed on the metal surface. The nature of the metal surface has been analysed by Fourier Transform Infrared Spectroscopy (FTIR) and Atomic Force Microscopy (AFM).
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gao, Yaning, Haoyi Yang, Ying Bai, and Chuan Wu. "Mn-based oxides for aqueous rechargeable metal ion batteries." Journal of Materials Chemistry A 9, no. 19 (2021): 11472–500. http://dx.doi.org/10.1039/d1ta01951a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Voropaeva, Daria Yu, Ekaterina Yu Safronova, Svetlana A. Novikova, and Andrey B. Yaroslavtsev. "Recent progress in lithium-ion and lithium metal batteries." Mendeleev Communications 32, no. 3 (May 2022): 287–97. http://dx.doi.org/10.1016/j.mencom.2022.05.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yin, Jian, Wenli Zhang, Gang Huang, Nuha A. Alhebshi, Numan Salah, Mohamed Nejib Hedhili, and Husam N. Alshareef. "Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries." ACS Applied Materials & Interfaces 13, no. 22 (May 28, 2021): 26421–30. http://dx.doi.org/10.1021/acsami.1c06543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhang, Nan, Tao Deng, Shuoqing Zhang, Changhong Wang, Lixin Chen, Chunsheng Wang, and Xiulin Fan. "Critical Review on Low‐Temperature Li‐Ion/Metal Batteries." Advanced Materials 34, no. 15 (February 26, 2022): 2107899. http://dx.doi.org/10.1002/adma.202107899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Schroeder, Marshall A., Lin Ma, Glenn Pastel, and Kang Xu. "The mystery and promise of multivalent metal-ion batteries." Current Opinion in Electrochemistry 29 (October 2021): 100819. http://dx.doi.org/10.1016/j.coelec.2021.100819.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії