Добірка наукової літератури з теми "Bivalent metal ion batteries"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bivalent metal ion batteries".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Bivalent metal ion batteries"

1

Ding, Yingchun, Qijiu Deng, Caiyin You, Yunhua Xu, Jilin Li, and Bing Xiao. "Assessing electrochemical properties and diffusion dynamics of metal ions (Na, K, Ca, Mg, Al and Zn) on a C2N monolayer as an anode material for non-lithium ion batteries." Physical Chemistry Chemical Physics 22, no. 37 (2020): 21208–21. http://dx.doi.org/10.1039/d0cp02524k.

Повний текст джерела
Анотація:
We perform first-principles molecular dynamics (FPMD) simulations together with a CI-NEB method to explore the structure, electrochemical properties and diffusion dynamics of a C2N monolayer saturated with various univalent, bivalent and trivalent metal ions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Drews, Janina, Rudi Ruben Maça, Liping Wang, Johannes Wiedemann, J. Alberto Blázquez, Zhirong Zhao-Karger, Maximilian Fichtner, Timo Danner, and Arnulf Latz. "Continuum Modelling As Tool for Optimizing the Cell Design of Magnesium Batteries." ECS Meeting Abstracts MA2022-02, no. 4 (October 9, 2022): 461. http://dx.doi.org/10.1149/ma2022-024461mtgabs.

Повний текст джерела
Анотація:
Magnesium-based next-generation batteries are of great interest since magnesium is not only very abundant, which allows economic and sustainable applications, but also less prone to dendrite formation than many other metals. Together with the bivalency of the magnesium cations the resulting possibility to safely use a metal anode enables batteries with high specific capacities. However, for a successful commercialization of magnesium batteries there are still some challenges to overcome. The high charge density of the bivalent cation causes strong coulomb interactions with anions and solvent molecules. Therefore, magnesium salts are prone to form ion pairs and bigger clusters – especially at high concentrations, which may adversely affect the transport in the electrolyte and the electrochemical reaction at the electrode.[1] Moreover, energetic barriers for desolvation and solid-state diffusion of the double-charged magnesium ion are usually very high, which can have a crucial impact on the battery performance. Former can significantly hinder the electron-transfer reaction,[2] whereas latter makes the choice of suitable cathode materials very challenging. Consequently, a good understanding of the limiting processes in rechargeable magnesium batteries is key to develop novel high-capacity / high-voltage cathode materials. For instance, it is well-known that the morphology of an intercalation material can strongly influence the battery performance and smaller particles as well as thinner electrodes are common strategies for avoiding adverse effects of transport limitations. However, high mass loadings as well as suitable separators are still essential bottlenecks for commercialization of magnesium-ion batteries. Up to date Chevrel phase (CP) Mo6S8 is considered as benchmark intercalation cathode and Mg[B(hfip)4]2 / DME is seen as most promising chloride-free magnesium electrolyte.[3,4] In our contribution we carefully study this model system of a magnesium-ion battery to get a better understanding of how to overcome undesired limitations. Therefore, we present a newly-developed continuum model, which is able to describe the complex intercalation process of magnesium cations into a CP cathode. The model considers not only the different thermodynamics and kinetics of the two intercalation sites of Mo6S8 and their interplay but also the impact of the desolvation on the electrochemical reactions and possible ion agglomeration. The parameterization and validation of the model is based on DFT calculations and experimental data. Different kind of (transport) limitations and their impact on the battery performance are studied in detail. All in all, the combination of different modelling techniques with experimental measurements provides important insights into the operation of magnesium ion batteries and enables an optimization of the cell design. Acknowledgements This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824066 (E-MAGIC). Furthermore, this work contributes to the research performed at CELEST (Center for Electrochemical Energy Storage Ulm-Karlsruhe) and was funded by the German Research Foundation (DFG) under Project ID 390874152 (POLiS Cluster of Excellence). The simulations were carried out at JUSTUS 2 cluster supported by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) through grant No INST 40/575-1 FUGG. References Drews, T. Danner, P. Jankowski et al., ChemSusChem, 3 (2020), 3599-3604. Drews, P. Jankowski, J. Häcker et al., ChemSusChem, 14 (2021), 4820-4835. Aurbach, Z. Lu, A. Schlechter et al., Nature, 407 (2000), 724-727. Zhao-Karger, R. Liu, W. Dai et al., ACS Energy Lett. 3 (2018), 2005-2013.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Yi, and Rudolf Holze. "Metal-Ion Batteries." Encyclopedia 2, no. 3 (September 15, 2022): 1611–23. http://dx.doi.org/10.3390/encyclopedia2030110.

Повний текст джерела
Анотація:
Metal-ion batteries are systems for electrochemical energy conversion and storage with only one kind of ion shuttling between the negative and the positive electrode during discharge and charge. This concept also known as rocking-chair battery has been made highly popular with the lithium-ion battery as its most popular example. The principle can also be applied with other cations both mono- and multivalent. This might have implications and advantages in terms of increased safety, lower expenses, and utilizing materials, in particular metals, not being subject to resource limitations.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bennett, A. J., and C. R. Bagshaw. "The kinetics of bivalent metal ion dissociation from myosin subfragments." Biochemical Journal 233, no. 1 (January 1, 1986): 173–77. http://dx.doi.org/10.1042/bj2330173.

Повний текст джерела
Анотація:
Bivalent metal ions have multiple roles in subunit association and ATPase regulation in scallop adductor-muscle myosin. To help elucidate these functions, the rates of Ca2+ and Mg2+ dissociation from the non-specific high-affinity sites on the regulatory light chains were measured and compared with those of rabbit skeletal-muscle myosin subfragments. Ca2+ dissociation had a rate constant of about 0.7 s-1 in both species, as measured by the time course of the pH change on EDTA addition. Mg2+ dissociation had a rate constant of 0.05 s-1, as monitored by its displacement with the paramagnetic Mn2+ ion. It is concluded that the exchange between Ca2+ and Mg2+ at the non-specific site, on excitation of both skeletal and adductor muscles, is too slow to contribute to the activation itself. The release of bivalent metal ions from the non-specific site is, however, the first step in release of the scallop regulatory light chain (Bennett & Bagshaw (1986) Biochem. J. 233, 179-186). In scallop myosin additional specific sites are present, which can bind Ca2+ rapidly, to effect activation of the ATPase. In the course of this work, Ca2+ dissociation from EGTA was studied as a model system. This gave rates of 1 s-1 and 0.3 s-1 at pH 7.0 and pH 8.0 respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

SATO, Hisakuni. "Ion exchange chromatography of bivalent metal ions by conductivity detection." Bunseki kagaku 34, no. 10 (1985): 606–11. http://dx.doi.org/10.2116/bunsekikagaku.34.10_606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Preigh, Michael J., Fu-Tyan Lin, Kamal Z. Ismail, and Stephen G. Weber. "Bivalent metal ion-dependent photochromism and photofluorochromism from a spiroquinoxazine." Journal of the Chemical Society, Chemical Communications, no. 20 (1995): 2091. http://dx.doi.org/10.1039/c39950002091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Voropaeva, D. Yu, S. A. Novikova, and A. B. Yaroslavtsev. "Polymer electrolytes for metal-ion batteries." Russian Chemical Reviews 89, no. 10 (September 18, 2020): 1132–55. http://dx.doi.org/10.1070/rcr4956.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oumellal, Y., A. Rougier, G. A. Nazri, J.-M. Tarascon, and L. Aymard. "Metal hydrides for lithium-ion batteries." Nature Materials 7, no. 11 (October 12, 2008): 916–21. http://dx.doi.org/10.1038/nmat2288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kiai, Maryam Sadat, Omer Eroglu, and Navid Aslfattahi. "Metal-Ion Batteries: Achievements, Challenges, and Prospects." Crystals 13, no. 7 (June 23, 2023): 1002. http://dx.doi.org/10.3390/cryst13071002.

Повний текст джерела
Анотація:
A new type of battery known as metal-ion batteries promises better performance than existing batteries. In terms of energy storage, they could prove useful and eliminate some of the problems existing batteries face. This review aims to help academics and industry work together better. It will propose ways to measure the performance of metal-ion batteries using important factors such as capacity, convertibility, Coulombic efficiency, and electrolyte consumption. With the development of technology, a series of metal ion-based batteries are expected to hit the market. This review presents the latest innovative research findings on the fabrication of metal-ion batteries with new techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bachinin, Semyon, Venera Gilemkhanova, Maria Timofeeva, Yuliya Kenzhebayeva, Andrei Yankin, and Valentin A. Milichko. "Metal-Organic Frameworks for Metal-Ion Batteries: Towards Scalability." Chimica Techno Acta 8, no. 3 (August 27, 2021): 20210304. http://dx.doi.org/10.15826/chimtech.2021.8.3.04.

Повний текст джерела
Анотація:
Metal-organic frameworks (MOFs), being a family of highly crystalline and porous materials, have attracted particular attention in material science due to their unprecedented chemical and structural tunability. Next to their application in gas adsorption, separation, and storage, MOFs also can be utilized for energy transfer and storage in batteries and supercapacitors. Based on recent studies, this review describes the latest developments about MOFs as structural elements of metal-ion battery with a focus on their industry-oriented and large-scale production.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Bivalent metal ion batteries"

1

David, Lamuel Abraham. "Van der Waals sheets for rechargeable metal-ion batteries." Diss., Kansas State University, 2015. http://hdl.handle.net/2097/32796.

Повний текст джерела
Анотація:
Doctor of Philosophy
Department of Mechanical and Nuclear Engineering
Gurpreet Singh
The inevitable depletion of fossil fuels and related environmental issues has led to exploration of alternative energy sources and storage technologies. Among various energy storage technologies, rechargeable metal-ion batteries (MIB) are at the forefront. One dominant factor affecting the performance of MIB is the choice of electrode material. This thesis reports synthesis of paper like electrodes composed for three representative layered materials (van der Waals sheets) namely reduced graphene oxide (rGO), molybdenum disulfide (MoS₂) and hexagonal boron nitride (BN) and their use as a flexible negative electrode for Li and Na-ion batteries. Additionally, layered or sandwiched structures of vdW sheets with precursor-derived ceramics (PDCs) were explored as high C-rate electrode materials. Electrochemical performance of rGO paper electrodes depended upon its reduction temperature, with maximum Li charge capacity of 325 mAh.g⁻¹ observed for specimen annealed at 900°C. However, a sharp decline in Na charge capacity was noted for rGO annealed above 500 °C. More importantly, annealing of GO in NH₃ at 500 °C showed negligible cyclability for Na-ions while there was improvement in electrode's Li-ion cycling performance. This is due to increased level of ordering in graphene sheets and decreased interlayer spacing with increasing annealing temperatures in Ar or reduction at moderate temperatures in NH₃. Further enhancement in rGO electrodes was achieved by interfacing exfoliated MoS₂ with rGO in 8:2 wt. ratios. Such papers showed good Na cycling ability with charge capacity of approx. 225.mAh.g⁻¹ and coulombic efficiency reaching 99%. Composite paper electrode of rGO and silicon oxycarbide SiOC (a type of PDC) was tested as high power-high energy anode material. Owing to this unique structure, the SiOC/rGO composite electrode exhibited stable Li-ion charge capacity of 543.mAh.g⁻¹ at 2400 mA.g⁻¹ with nearly 100% average cycling efficiency. Further, mechanical characterization of composite papers revealed difference in fracture mechanism between rGO and 60SiOC composite freestanding paper. This work demonstrates the first high power density silicon based PDC/rGO composite with high cyclic stability. Composite paper electrodes of exfoliated MoS₂ sheets and silicon carbonitride (another type of PDC material) were prepared by chemical interfacing of MoS₂ with polysilazane followed by pyrolysis . Microscopic and spectroscopic techniques confirmed ceramization of polymer to ceramic phase on surfaces on MoS₂. The electrode showed classical three-phase behavior characteristics of a conversion reaction. Excellent C-rate performance and Li capacity of 530 mAh.g⁻¹ which is approximately 3 times higher than bulk MoS₂ was observed. Composite papers of BN sheets with SiCN (SiCN/BN) showed improved electrical conductivity, high-temperature oxidation resistance (at 1000 °C), and high electrochemical activity (~517 mAh g⁻¹ at 100 mA g⁻¹) toward Li-ions generally not observed in SiCN or B-doped SiCN. Chemical characterization of the composite suggests increased free-carbon content in the SiCN phase, which may have exceeded the percolation limit, leading to the improved conductivity and Li-reversible capacity. The novel approach to synthesis of van der Waals sheets and its PDC composites along with battery cyclic performance testing offers a starting point to further explore the cyclic performance of other van der Waals sheets functionalized with various other PDC chemistries.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Xianji. "Metal nitrides as negative electrode materials for sodium-ion batteries." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/374787/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nose, Masafumi. "Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lubke, Mechthild. "Nano-sized transition metal oxide negative electrode materials for lithium-ion batteries." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10044227/.

Повний текст джерела
Анотація:
This thesis focuses on the synthesis, characterization and electrochemical evaluation of various nano-sized materials for use in high power and high energy lithium-ion batteries. The materials were synthesised via a continuous hydrothermal flow synthesis (CHFS) process, which is a single step synthesis method with many advantages including screening processes (chapter 5). Electrochemical energy storage is introduced in chapter 1, with a focus on high power and high energy negative electrode materials for lithium-ion batteries (and capacitors). Many different classes of materials are discussed with associated advantages and disadvantages. This is followed by an experimental section in chapter 2. Chapter 3 deals with the main question regarding why some high power insertion materials show a wider operational potential window than expected. The nature of this electrochemical performance is discussed and classified towards battery-like and supercapacitor-like behaviour. Chapter 4 deals with Nb-doped anatase TiO2, which was tested for high power insertion materials. The role of the dopant was discussed in a comprehensive study. Chapter 5 gives an excellent example how CHFS processes can help accurately answer a scientific question. In this case the question dealt with the impact of transition metal dopants on the electrochemical performance of SnO2. Since CHFS enables similar materials properties despite doping, the real impact could be investigated in a fair manner. Finally, chapter 6 shows a strategy of achieving higher energy simultaneously with high cycle life. Insertion materials are combined with alloying materials in a simple, single step synthesis and this showed increased capacity, which is essential for high energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Budak, Öznil [Verfasser]. "Metal oxide / carbon hybrid anode materials for lithium-ion batteries / Öznil Budak." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1232726214/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alwast, Dorothea [Verfasser]. "Electrochemical Model Studies on Metal-air and Lithium-ion Batteries / Dorothea Alwast." Ulm : Universität Ulm, 2021. http://d-nb.info/1237750822/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Berti, Nicola. "MgH2-TiH2 hydrides as negative electrodesof Li-ion batteries." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1029/document.

Повний текст джерела
Анотація:
Les batteries lithium-ion sont aujourd’hui très utilisées pour alimenter l’électronique portable telle que les ordinateurs, les smartphones et les caméras. Cependant, de nouvelles applications telles que les véhicules électriques et les systèmes stationnaires de stockage d'énergie nécessitent des batteries à performances améliorées. En particulier, de nouveaux matériaux d'électrode avec des densités d'énergie plus élevées sont requis. Les hydrures de MgH2 et TiH2 et leurs mélanges possèdent de très fortes capacités électrochimiques (>1 Ah/g). Ils ont été étudiés comme matériaux d’électrode négative dans les batteries Li-ion. La réaction de conversion de ces hydrures avec du lithium et les changements structuraux induits ont été étudiés en détails pour mieux comprendre les mécanismes réactionnels et leur réversibilité. Les propriétés électrochimiques de couches minces de MgH2 et des poudres composites de MgH2+TiH2 ont été étudiées en utilisant à la fois des électrolytes organiques liquides et un électrolyte solide LiBH4. La capacité réversible et la tenue au cyclage dépendent fortement du rapport molaire entre les deux hydrures et des conditions de cyclage. Le transport de masse et la densité d’interfaces à l'intérieur de l'électrode sont identifiés comme les principaux facteurs affectant la réversibilité de la réaction de conversion
Today, lithium-ion batteries are widely used as power supplies in portable electronics such as laptops, smartphones and cameras. However, new applications such as full electric vehicles and energy storage stationary systems require enhanced battery performances. In particular, novel electrode materials with higher energy density are needed.MgH2 and TiH2 hydrides and mixtures of them have high electrochemical capacity (> 1 Ah/g). They have been studied as negative electrode materials in Li-ion batteries. The conversion reaction of lithium with these hydrides and the related microstructural changes have been deeply investigated to gain a better understanding of reaction mechanisms and their reversibility. The electrochemical properties of MgH2 thin films and MgH2+TiH2 composite powders have been evaluated using both liquid organic and solid (LiBH4) electrolytes. Reversible capacity and cycle-life are found to strongly depend on both molar ratio between the hydrides and cycling conditions. Mass transport and density of interfaces within the electrode are identified as the main factors affecting the reversibility of the conversion reaction
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Henriques, Alexandra J. "Nano-Confined Metal Oxide in Carbon Nanotube Composite Electrodes for Lithium Ion Batteries." FIU Digital Commons, 2017. http://digitalcommons.fiu.edu/etd/3169.

Повний текст джерела
Анотація:
Lithium ion batteries (LIB) are one of the most commercially significant secondary batteries, but in order to continue improving the devices that rely on this form of energy storage, it is necessary to optimize their components. One common problem with anode materials that hinders their performance is volumetric expansion during cycling. One of the methods studied to resolve this issue is the confinement of metal oxides with the interest of improving the longevity of their performance with cycling. Confinement of metal oxide nanoparticles within carbon nanotubes has shown to improve the performance of these anode materials versus unconfined metal oxides. Here, electrostatic spray deposition (ESD) is used to create thin films of nano-confined tin oxide/CNT composite as the active anode material for subsequent property testing of assembled LIBs. This thesis gives the details of the techniques used to produce the desired anode materials and their electrochemical characterization as LIB anodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tsukamoto, Hisashi. "Synthesis and electrochemical studies of lithium transition metal oxides for lithium-ion batteries." Thesis, University of Aberdeen, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Martin, Andréa Joris Quentin. "Nano-sized Transition Metal Fluorides as Positive Electrode Materials for Alkali-Ion Batteries." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21619.

Повний текст джерела
Анотація:
Übergangsmetallfluoridverbindungen sind sehr vielversprechende Kandidaten für die nächste Generation von Kathoden für Alkaliionenbatterien. Dennoch verhindern einige Nachteile dieser Materialklasse ihre Anwendung in Energiespeichermedien. Metallfluoride haben eine stark isolierende Wirkung, außerdem bewirken die Mechanismen beim Lade-/Entladevorgang, große Volumenänderungen und somit eine drastische Reorganisation des Materials, welche nur geringfügig umkehrbar ist. Um diese Nachteile zu reduzieren, werden in dieser Arbeit innovative Syntheserouten für die Umwandlung von Metallfluoridverbindungen sowie deren Anwendung in Alkaliionenbatterien vorgestellt. Im ersten Teil werden MFx Verbindungen (M = Co, Fe; x = 2 oder 3) untersucht. Diese Materialien zeigen eine hohe Ausgangskapazität aber nur bei sehr geringen C-Raten und zudem sehr geringe Zyklisierbarkeiten. Ex-situ-XRD und -TEM zeigen, dass die geringe Umkehrbarkeit der Prozesse hauptsächlich aus der Umwandlungsreaktion während des Be-/Entladens resultieren. Im zweiten Teil werden sowohl die Synthesen als auch die elektrochemischen Eigenschaften von Perowskiten aus Übergangsmetallfluoriden vorgestellt. NaFeF3 zeigt hierbei exzellente Leistungen und Reversibilitäten. Die Untersuchung der Mechansimen durch ex-situ und operando XRD während der Be- und Entladeprozesse hinsichtlich verschiedener Alkalisysteme zeigt, dass das kristalline Netzwerk über den Zyklus erhalten bleibt. Dies führt zur hohen Reversibilität und hohen Leistung selbst bei hohen C-Raten. Der Erhalt der Kristallstruktur wird durch elektrochemische Stabilisierung der kubischen Konformation von FeF3 ermöglicht, welche normalerweise erst bei hohen Temperaturen (400 °C) beobachtet wird und durch geringere Reorganisationen innerhalb des Kristallgerüsts erklärt werden kann. Ähnliche elektrochemische Eigenschaften können für KFeF3 und NH4FeF3 beobachtet werden, wobei erstmalig von Ammoniumionen als Ladungsträger in Alkaliionensystemen berichtet wird.
Metal fluoride compounds appear as very appealing candidates for the next generation of alkali-ion battery cathodes. However, many drawbacks prevent this family of compounds to be applicable to storage systems. Metal fluorides demonstrate a high insulating character, and the mechanisms involved during the discharge/charge processes atom engender large volume changes and a drastic reorganization of the material, which induces poor reversibility. In order to answer these problematics, the present thesis reports the elaboration of innovative synthesis routes for transition metal fluoride compounds and the application of these fluoride materials in alkali-ion battery systems. In a first part, MFx compounds (M = Co, Fe; x = 2 or 3) are studied. Those compounds exhibit high initial capacity but very poor cyclability and low C-rate capabilities. Ex-situ X-ray diffraction and transmission electron microscopy demonstrate that the low reversibility of the processes is mainly due to the conversion reaction occurring during their discharge/charge. In the second part, the syntheses of transition metal fluoride perovskites are reported, as well as their electrochemical properties. NaFeF3 demonstrates excellent performances and reversibility. The study of the mechanisms occurring during its charge/discharge processes towards different alkali systems by ex-situ and operando X-ray diffraction reveals that its crystalline framework is maintained along the cycles, resulting in high reversibility and excellent C-rate performance. This retention of the crystal framework is possible by an electrochemical stabilization of a cubic conformation of FeF3, which is usually only observable at high temperature (400 °C), and can be explained by lower reorganizations within the crystal framework. Similar electrochemical properties could be observed for KFeF3 and NH4FeF3, where ammonium ions are reported for the first time as a charge carrier in alkali-ion systems.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Bivalent metal ion batteries"

1

Zhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Incorporated, John, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Incorporated, John, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Limited, John, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Shanqing. Functional Polymers for Metal-Ion Batteries. Wiley & Sons, Incorporated, John, 2023.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Innovative Antriebe 2016. VDI Verlag, 2016. http://dx.doi.org/10.51202/9783181022894.

Повний текст джерела
Анотація:
Rechargeable Energy Storage Technologies for Automotive Applications Abstract This paper provides an extended summary of the available relevant rechargeable energy storage electrode materials that can be used for hybrid, plugin and battery electric vehicles. The considered technologies are the existing lithium-ion batteries and the next generation technologies such as lithium sulfur, solid state, metal-air, high voltage materials, metalair and sodium based. This analysis gives a clear overview of the battery potential and characteristics in terms of energy, power, lifetime, cost and finally the technical hurdles. Inhalt Seite Vorwort 1 Alternative Energiespeicher – und Wandler S. Hävemeier, Neue Zelltechnologien und die Chance einer deutschen 3 M. Hackmann, Zellproduktion – Betrachtung von Technologie, Wirtschaft- R. Stanek lichkeit und dem Standort Deutschland N. Omar, Rechargeable Energy Storage Technologies for 7 R. Gopalakrishnan Automotive Applications – Present and Future ...
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Bivalent metal ion batteries"

1

Dimov, Nikolay. "Development of Metal Alloy Anodes." In Lithium-Ion Batteries, 1–25. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cho*, Jaephil, Byungwoo Park, and Yang-kook Sun. "Overcharge Behavior of Metal Oxide-Coated Cathode Materials." In Lithium-Ion Batteries, 1–33. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nithya, C. "Biowastes for Metal-Ion Batteries." In Energy from Waste, 269–82. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178354-22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pandurangan, Swathi, Dhavalkumar N. Joshi, Arun Prasath Ramaswamy, and Vinod Kumar. "Hydrogels for Metal-Ion Batteries." In Hydrogels, 213–32. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003351566-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Uke, Santosh J., and Satish P. Mardikar. "Nanowires for Metal-Ion Batteries." In Nanowires, 65–81. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003296621-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rajagopalan, Ranjusha, and Haiyan Wang. "Polymeric Wastes for Metal-Ion Batteries." In Energy from Waste, 299–312. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003178354-24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Koh, Jin Kwei, and Chin Wei Lai. "3D Graphene for Metal-Ion Batteries." In Carbon Nanostructures, 207–31. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36249-1_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dehghan-Manshadi, Hamid, Mohammad Mazloum-Ardakani, and Soraya Ghayempour. "Polymer-Metal Oxides Nanocomposites for Metal-Ion Batteries." In Recent Advancements in Polymeric Materials for Electrochemical Energy Storage, 299–312. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4193-3_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guo, Juchen, and Chunsheng Wang. "Nanostructured Metal Oxides for Li-Ion Batteries." In Functional Metal Oxide Nanostructures, 337–63. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9931-3_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eshetu, Gebrekidan Gebresilassie, Xabier Judez, Chunmei Li, Maria Martinez-Ibañez, Eduardo Sánchez-Diez, Lide M. Rodriguez-Martinez, Heng Zhang, and Michel Armand. "CHAPTER 4. Solid Electrolytes for Lithium Metal and Future Lithium-ion Batteries." In Future Lithium-ion Batteries, 72–101. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016124-00072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Bivalent metal ion batteries"

1

Liang, Junfei, Lidong Li, and Lin Guo. "Graphene/metal oxide nanocomposites for Li-ion batteries." In Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asu3b.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ranganath, Suman Bhasker, Steven Hartman, Ayorinde S. Hassan, Collin D. Wick, and B. Ramu Ramachandran. "Interfaces in Metal, Alloy, and Metal Oxide Anode Materials for Lithium Ion Batteries." In Annual International Conference on Materials science, Metal and Manufacturing ( M3 2016 ). Global Science & Technology Forum ( GSTF ), 2016. http://dx.doi.org/10.5176/2251-1857_m316.28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Doeff, Marca M., Thomas Conry, and James Wilcox. "Improved layered mixed transition metal oxides for Li-ion batteries." In SPIE Defense, Security, and Sensing, edited by Nibir K. Dhar, Priyalal S. Wijewarnasuriya, and Achyut K. Dutta. SPIE, 2010. http://dx.doi.org/10.1117/12.851228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lou, Xiong Wen (David). "Metal Oxide based Nanostructured Anode Materials for Li-ion Batteries." In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_543.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shao, Chenhui, Tae Hyung Kim, S. Jack Hu, Jionghua (Judy) Jin, Jeffrey A. Abell, and J. Patrick Spicer. "Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-Ion Batteries." In ASME 2015 International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/msec2015-9428.

Повний текст джерела
Анотація:
This paper presents a tool wear monitoring framework for ultrasonic metal welding which has been used for lithium-ion battery manufacturing. Tool wear has a significant impact on joining quality. In addition, tool replacement, including horns and anvils, constitutes an important part of production costs. Therefore, a tool condition monitoring (TCM) system is highly desirable for ultrasonic metal welding. However, it is very challenging to develop a TCM system due to the complexity of tool surface geometry and a lack of thorough understanding on the wear mechanism. Here, we first characterize tool wear progression by comparing surface measurements obtained at different stages of tool wear, and then develop a tool condition classification algorithm to identify the state of wear. The developed algorithm is validated using tool measurement data from a battery plant.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Opra, Denis P., Sergey V. Gnedenkov, Alexander A. Sokolov, Alexander N. Minaev, Valery G. Kuryavyi, and Sergey L. Sinebryukhov. "Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries." In ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING: FROM THEORY TO APPLICATIONS: Proceedings of the International Conference on Electrical and Electronic Engineering (IC3E 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, Taylor, Jinyun Liao, Khaleel Hamad, and Yangchuan Xing. "Transition Metal Oxide Powders Made from Flame Spray Pyrolysis for Li-Ion Batteries." In 232nd ECS Meeting, National Harbor, MD, Oct. 1-5, 2017. US DOE, 2022. http://dx.doi.org/10.2172/1871961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhao, Ting-Wen, Zi-Geng Liu, Kang-Li Fu, Yang Li, and Ming Cai. "The Application of Metal-Organic Frameworks as Anode Materials for Li-Ion Batteries." In 4th 2016 International Conference on Material Science and Engineering (ICMSE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmse-16.2016.87.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kumar, Bachu S., Anagha Pradeep, and Amartya Mukhopadhyay. "Tuning the transition metal oxides towards achieving water-stability and high voltage electrochemical stability, as cathode materials for alkali metal-ion batteries." In Energy Harvesting and Storage: Materials, Devices, and Applications XI, edited by Achyut K. Dutta, Palani Balaya, and Sheng Xu. SPIE, 2021. http://dx.doi.org/10.1117/12.2589639.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, C. Y., W. B. Gu, R. Cullion, and B. Thomas. "Heat and Mass Transfer in Advanced Batteries." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1000.

Повний текст джерела
Анотація:
Abstract This paper presents an overview of heat and mass transfer issues in advanced rechargeable batteries such as nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) batteries. These batteries are important power sources for ultra-clean, fuel-efficient vehicles and modern portable electronics. Recent demands for environmentally responsible vehicles and strong portable power have prompted fundamental studies of heat and mass transport processes in battery systems in conjunction with electrochemistry and materials science. In this paper, discussions are presented on what are the critical heat and mass transfer issues present in advanced batteries and how these issues affect the battery performance, safety, life cycle, and cost. A theoretical framework describing the transport phenomena with electrochemical reactions is provided. Selected results are presented to illustrate the importance of coupled electrochemical and thermal modeling for advanced batteries. The recent progress is also reviewed in developing and validating battery models at Penn State GATE Center for Advanced Energy Storage.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Bivalent metal ion batteries"

1

Gao, Yue, Guoxing Li, Pei Shi, and Linh Le. Multifunctional Li-ion Conducting Interfacial Materials for Lithium Metal Batteries”. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1839857.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dzwiniel, Trevor L., Krzysztof Z. Pupek, and Gregory K. Krumdick. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yakovleva, Marina. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1164223.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії