Статті в журналах з теми "Bismuth Based Materials"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Bismuth Based Materials.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Bismuth Based Materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ghanem, A. H., A. T. M. Farag, Abdullah G. Al-Sehemi, Ahmed Al-Ghamdi, W. A. Farooq, and F. Yakuphanoglu. "Bismuth Borate Glass Based Nuclear Materials." Silicon 10, no. 3 (January 16, 2018): 1195–201. http://dx.doi.org/10.1007/s12633-017-9593-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lukyanova, L. N., O. A. Usov, M. P. Volkov, and I. V. Makarenko. "Topological Thermoelectric Materials Based on Bismuth Telluride." Nanobiotechnology Reports 16, no. 3 (May 2021): 282–93. http://dx.doi.org/10.1134/s2635167621030125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Miller, Nichole Cates, and María Bernechea. "Research Update: Bismuth based materials for photovoltaics." APL Materials 6, no. 8 (August 2018): 084503. http://dx.doi.org/10.1063/1.5026541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mao, Jun, Hangtian Zhu, Zhiwei Ding, Zihang Liu, Geethal Amila Gamage, Gang Chen, and Zhifeng Ren. "High thermoelectric cooling performance of n-type Mg3Bi2-based materials." Science 365, no. 6452 (July 18, 2019): 495–98. http://dx.doi.org/10.1126/science.aax7792.

Повний текст джерела
Анотація:
Thermoelectric materials have a large Peltier effect, making them attractive for solid-state cooling applications. Bismuth telluride (Bi2Te3)–based alloys have remained the state-of-the-art room-temperature materials for many decades. However, cost partially limited wider use of thermoelectric cooling devices because of the large amounts of expensive tellurium required. We report n-type magnesium bismuthide (Mg3Bi2)–based materials with a peak figure of merit (ZT) of ~0.9 at 350 kelvin, which is comparable to the commercial bismuth telluride selenide (Bi2Te3–xSex) but much cheaper. A cooling device made of our material and p-type bismuth antimony telluride (Bi0.5Sb1.5Te3) has produced a large temperature difference of ~91 kelvin at the hot-side temperature of 350 kelvin. n-type Mg3Bi2-based materials are promising for thermoelectric cooling applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiong, Jun, Pin Song, Jun Di, Huaming Li, and Zheng Liu. "Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications." Journal of Materials Chemistry A 7, no. 44 (2019): 25203–26. http://dx.doi.org/10.1039/c9ta10144f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reichmann, Klaus, Antonio Feteira, and Ming Li. "Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators." Materials 8, no. 12 (December 4, 2015): 8467–95. http://dx.doi.org/10.3390/ma8125469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gomah-Pettry, J. "Sodium-bismuth titanate based lead-free ferroelectric materials." Journal of the European Ceramic Society 24, no. 6 (2004): 1165–69. http://dx.doi.org/10.1016/s0955-2219(03)00473-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lee, Lana C., Tahmida N. Huq, Judith L. MacManus-Driscoll, and Robert L. Z. Hoye. "Research Update: Bismuth-based perovskite-inspired photovoltaic materials." APL Materials 6, no. 8 (August 2018): 084502. http://dx.doi.org/10.1063/1.5029484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Devillers, M., O. Tirions, L. Cadus, P. Ruiz, and B. Delmon. "Bismuth Carboxylates as Precursors for the Incorporation of Bismuth in Oxide-based Materials." Journal of Solid State Chemistry 126, no. 2 (November 1996): 152–60. http://dx.doi.org/10.1006/jssc.1996.0323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Li, Feng, Tao Jiang, Jiwei Zhai, Bo Shen, and Huarong Zeng. "Exploring novel bismuth-based materials for energy storage applications." Journal of Materials Chemistry C 6, no. 30 (2018): 7976–81. http://dx.doi.org/10.1039/c8tc02801j.

Повний текст джерела
Анотація:
A novel bismuth-based material of hot-pressed (Bi0.5K0.5)TiO3–0.06La(Mg0.5Ti0.5)O3 ceramic with an ultrahigh energy storage density and fast discharge speed.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Rajaee, Azimeh, Shi Wang, and Lingyun Zhao. "Bismuth-based nanoparticles as radiosensitizer in low and high dose rate brachytherapy." Polish Journal of Medical Physics and Engineering 25, no. 2 (June 1, 2019): 79–85. http://dx.doi.org/10.2478/pjmpe-2019-0011.

Повний текст джерела
Анотація:
Abstract Background: Recently bismuth-based nanoparticles have attracted increasing attention as a dose amplification agent in radiation therapy due to high atomic number, high photoelectric absorption, low cost, and low toxicity. Objectives: This study aims to calculate physical aspects of dose enhancement of bismuth-based nanoparticles in the presence of brachytherapy source by Monte Carlo simulation and an analytical method for low mono-energy. Materials and methods: After simulation and validation brachytherapy sources (Iodine-125 and Ytterbium-169) by Monte Carlo code, bismuth-based nanoparticles (bismuth, bismuth oxide, bismuth sulfide, and bismuth ferrite) were modeled in the sizes of 50 nm and 100 nm for two concentrations of 10 and 20 mg/ml. Dose enhancement factors for the bismuth-based nanoparticles were measured at both brachytherapy sources. Furthermore, the dose amplification was calculated with an analytic method at 30 keV mono-energy. Results: Dose enhancement factor was greatest with pure bismuth nanoparticles, followed by bismuth oxide, bismuth sulfide and bismuth ferrite for both radiation source and simulation methods. The dose amplification for the bismuth-based nanoparticles increased with increasing size and concentration of nanoparticles. Conclusion: The physical aspect dose enhancement of the nanoparticles was shown by Monte Carlo and analytic method. The results have proved bismuth-based nanoparticles deserve further study as a radiosensitizer.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Misiurev, Denis, Pavel Kaspar, and Vladimír Holcman. "Brief Theoretical Overview of Bi-Fe-O Based Thin Films." Materials 15, no. 24 (December 7, 2022): 8719. http://dx.doi.org/10.3390/ma15248719.

Повний текст джерела
Анотація:
This paper will provide a brief overview of the unique multiferroic material Bismuth ferrite (BFO). Considering that Bismuth ferrite is a unique material which possesses both ferroelectric and magnetic properties at room temperature, the uniqueness of Bismuth ferrite material will be discussed. Fundamental properties of the material including electrical and ferromagnetic properties also will be mentioned in this paper. Electrical properties include characterization of basic parameters considering the electrical resistivity and leakage current. Ferromagnetic properties involve the description of magnetic hysteresis characterization. Bismuth ferrite can be fabricated in a different form. The common forms will be mentioned and include powder, thin films and nanostructures. The most popular method of producing thin films based on BFO materials will be described and compared. Finally, the perspectives and potential applications of the material will be highlighted.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Frappa, Mirko, Francesca Macedonio, Annarosa Gugliuzza, Wanqin Jin, and Enrico Drioli. "Performance of PVDF Based Membranes with 2D Materials for Membrane Assisted-Crystallization Process." Membranes 11, no. 5 (April 21, 2021): 302. http://dx.doi.org/10.3390/membranes11050302.

Повний текст джерела
Анотація:
Membrane crystallization (MCr) is a promising and innovative process for the recovery of freshwater from seawater and for the production of salt crystals from the brine streams of desalination plants. In the present work, composite polymeric membranes for membrane crystallization were fabricated using graphene and bismuth telluride inks prepared according to the wet-jet milling (WJM) technology. A comparison between PVDF-based membranes containing a few layers of graphene or bismuth telluride and PVDF-pristine membranes was carried out. Among the 2D composite membranes, PVDF with bismuth telluride at higher concentration (7%) exhibited the highest flux (about 3.9 L∙m−2h−1, in MCr experiments performed with 5 M NaCl solution as feed, and at a temperature of 34 ± 0.2 °C at the feed side and 11 ± 0.2 °C at the permeate side). The confinement of graphene and bismuth telluride in PVDF membranes produced more uniform NaCl crystals with respect to the pristine PVDF membrane, especially in the case of few-layer graphene. All the membranes showed rejection equal to or higher than 99.9% (up to 99.99% in the case of the membrane with graphene). The high rejection together with the good trans-membrane flux confirmed the interesting performance of the process, without any wetting phenomena, at least during the performed crystallization tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bobic, Jelena, Mirjana Vijatovic-Petrovic, and Biljana Stojanovic. "Aurivillius BaBi4Ti4O15 based compounds: Structure, synthesis and properties." Processing and Application of Ceramics 7, no. 3 (2013): 97–110. http://dx.doi.org/10.2298/pac1303097b.

Повний текст джерела
Анотація:
The discovery of some Aurivillius materials with high Curie temperature or fatigue-free character suggests possible applications in high temperature piezoelectric devices or non-volatile ferroelectric random access memories. Furthermore, increasing concerns for environmental issues have promoted the study of new leadfree piezoelectric materials. Barium bismuth titanate (BaBi4Ti4O15 ), an Aurivillius compound, is promising candidate to replace lead-based materials, both as lead-free ferroelectric and high temperature piezoelectric. In this review paper, we report a detailed overview of crystal structure, different synthesis methods and characteristic properties of barium bismuth titanate ferroelectric materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Liu, Haitao, Weiqing Chen, Wenying Li, and Yanchong Yu. "Solubility of Bismuth in Liquid Bi-S Based Free Cutting Steel." High Temperature Materials and Processes 33, no. 2 (April 1, 2014): 187–91. http://dx.doi.org/10.1515/htmp-2013-0047.

Повний текст джерела
Анотація:
AbstractSolubility of bismuth in liquid Bi-S based free cutting steel was measured using a vapor-liquid equilibration method at 1540–1600 °C, and the recovery rate of bismuth in the steel with different temperatures under an atmospheric pressure was also measured. The results showed that the solubility of bismuth in liquid Bi-S based free cutting steel from experiment under a constant volume at 1540, 1560, 1580, and 1600 °C were 0.174, 0.181, 0.205, and 0.220 mass%, respectively, and the relationship of bismuth solubility vs. temperature could be expressed as lg[%Bi] = −6049/T + 2.572. Meanwhile, the solubility of bismuth increased with the increase of Mn content, but decreased with the increase of C content. The recovery of bismuth in this experiment reached a maximum when the temperature was at bismuth boiling point or so, and then it was decreased with the increase of temperature when the temperature was above 1560 °C, which might be attributed to the accelerating of bismuth evaporation that were caused by the increase of bismuth equilibrium partial pressure above the surface of the molten steel with increasing temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bhorde, Ajinkya, Shruthi Nair, Haribhau Borate, Subhash Pandharkar, Rahul Aher, Ashvini Punde, Ashish Waghmare, et al. "Highly stable and Pb-free bismuth-based perovskites for photodetector applications." New Journal of Chemistry 44, no. 26 (2020): 11282–90. http://dx.doi.org/10.1039/d0nj01806f.

Повний текст джерела
Анотація:
Herein, we report synthesis of highly stable, Pb-free bismuth iodide, stoichiometric methylammonium bismuth iodide and non-stoichiometric methylammonium bismuth iodide perovskite thin films for photodetector applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Won-In, Krit, Sorapong Pongkrapan, and Pisutti Dararutana. "Eco-Glass Based on Thailand Quartz Sands and Bismuth Oxide." Materials Science Forum 695 (July 2011): 223–26. http://dx.doi.org/10.4028/www.scientific.net/msf.695.223.

Повний текст джерела
Анотація:
Ecological glass with non-toxic was fabricated in bismuth-bearing glass using mainly local quartz sands and various concentration of bismuth oxide. The specific gravity (SG), refractive index (RI), thermal expansion coefficient (CoE) and hardness (HV) were determined. It was found that the values of SG, RI and HV were increased linearly as the increasing of bismuth oxide, whiles that of CoE was decreased. This glass is environmentally friendly materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Tian, Na, Cheng Hu, Jingjing Wang, Yihe Zhang, Tianyi Ma, and Hongwei Huang. "Layered bismuth-based photocatalysts." Coordination Chemistry Reviews 463 (July 2022): 214515. http://dx.doi.org/10.1016/j.ccr.2022.214515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wei, Xuejiao, Muhammad Usama Akbar, Ali Raza, and Gao Li. "A review on bismuth oxyhalide based materials for photocatalysis." Nanoscale Advances 3, no. 12 (2021): 3353–72. http://dx.doi.org/10.1039/d1na00223f.

Повний текст джерела
Анотація:
A new class of photocatalysts comprising ternary semiconductors such as BiOX joined via van der Waals forces is potential candidates for photocatalysis because of their high charge transfer ratio due to their indirect band gaps with crystallinity.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Altman, Alison, and Danna Freedman. "Computationally directed discovery of bismuth-based binary intermetallic materials." Acta Crystallographica Section A Foundations and Advances 76, a1 (August 2, 2020): a144. http://dx.doi.org/10.1107/s0108767320098566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Reznichenko, M. F., B. M. Kuchumov, T. P. Koretskaya, A. V. Alexeyev, and S. A. Gromilov. "Bismuth telluride-based materials obtained by rapid quenching process." Journal of Physics and Chemistry of Solids 69, no. 2-3 (February 2008): 680–84. http://dx.doi.org/10.1016/j.jpcs.2007.07.091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Li, Xinyan, Jiangfeng Ni, S. V. Savilov, and Liang Li. "Materials Based on Antimony and Bismuth for Sodium Storage." Chemistry - A European Journal 24, no. 52 (July 10, 2018): 13719–27. http://dx.doi.org/10.1002/chem.201801574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Egorikhina, Marfa N., Andrey E. Bokov, Irina N. Charykova, Yulia P. Rubtsova, Daria D. Linkova, Irina I. Kobyakova, Ekaterina A. Farafontova, Svetlana Ya Kalinina, Yuri N. Kolmogorov, and Diana Ya Aleynik. "Biological Characteristics of Polyurethane-Based Bone-Replacement Materials." Polymers 15, no. 4 (February 7, 2023): 831. http://dx.doi.org/10.3390/polym15040831.

Повний текст джерела
Анотація:
A study is presented on four polymers of the polyurethane family, obtained using a two-stage process. The first composition is the basic polymer; the others differ from it by the presence of a variety of fillers, introduced to provide radiopacity. The fillers used were 15% bismuth oxide (Composition 2), 15% tantalum pentoxide (Composition 3), or 15% zirconium oxide (Composition 4). Using a test culture of human fibroblasts enabled the level of cytotoxicity of the compositions to be determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, along with variations in the characteristics of the cells resulting from their culture directly on the specimens. The condition of cells on the surfaces of the specimens was assessed using fluorescence microscopy. It was shown that introducing 15% bismuth, tantalum, or zinc compounds as fillers produced a range of effects on the biological characteristics of the compositions. With the different fillers, the levels of toxicity differed and the cells’ proliferative activity or adhesion was affected. However, in general, all the studied compositions may be considered cytocompatible in respect of their biological characteristics and are promising for further development as bases for bone-substituting materials. The results obtained also open up prospects for further investigations of polyurethane compounds.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kumar, Prashant, Wandi Wahyudi, Abhinav Sharma, Youyou Yuan, George T. Harrison, Murali Gedda, Xuan Wei, et al. "Bismuth-based mixed-anion compounds for anode materials in rechargeable batteries." Chemical Communications 58, no. 20 (2022): 3354–57. http://dx.doi.org/10.1039/d1cc06456h.

Повний текст джерела
Анотація:
Chemical composition control in ternary mixed-anion material bismuth sulfide iodide (Bi–S–I) is achieved by controlling the sulfide concentration. Synthesized BiSI and BiSI/Bi13S18I2 show promise as anode materials for lithium-ion batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Bartoli, Mattia, Pravin Jagdale, and Alberto Tagliaferro. "A Short Review on Biomedical Applications of Nanostructured Bismuth Oxide and Related Nanomaterials." Materials 13, no. 22 (November 19, 2020): 5234. http://dx.doi.org/10.3390/ma13225234.

Повний текст джерела
Анотація:
In this review, we reported the main achievements reached by using bismuth oxides and related materials for biological applications. We overviewed the complex chemical behavior of bismuth during the transformation of its compounds to oxide and bismuth oxide phase transitions. Afterward, we summarized the more relevant studies regrouped into three categories based on the use of bismuth species: (i) active drugs, (ii) diagnostic and (iii) theragnostic. We hope to provide a complete overview of the great potential of bismuth oxides in biological environments.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ganose, Alex M., Keith T. Butler, Aron Walsh, and David O. Scanlon. "Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials." Journal of Materials Chemistry A 4, no. 6 (2016): 2060–68. http://dx.doi.org/10.1039/c5ta09612j.

Повний текст джерела
Анотація:
Bismuth-based solar absorbers are of interest due to similarities in the chemical properties of bismuth halides and the exceptionally efficient lead halide hybrid perovskites. Here, we computationally screen BiSI and BiSeI and show they possess electronic structures ideal for solar cell applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ünlü, Feray, Meenal Deo, Sanjay Mathur, Thomas Kirchartz, and Ashish Kulkarni. "Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics." Journal of Physics D: Applied Physics 55, no. 11 (November 10, 2021): 113002. http://dx.doi.org/10.1088/1361-6463/ac3033.

Повний текст джерела
Анотація:
Abstract The efficiency of organic-inorganic hybrid lead halide perovskite solar cells (PSCs) has increased over 25% within a frame of ten years, which is phenomenal and indicative of the promising potential of perovskite materials in impacting the next generation solar cells. Despite high technology readiness of PSCs, the presence of lead has raised concerns about the adverse effect of lead on human health and the environment that may slow down or inhibit the commercialization of PSCs. Thus, there is a dire need to identify materials with lower toxicity profile and comparable optoelectronic properties in regard to lead-halide perovskites. In comparison to tin-, germanium-, and copper-based PSCs, which suffer from stability issues under ambient operation, bismuth-based perovskite and perovskite-inspired materials have gained attention because of their enhanced stability in ambient atmospheric conditions. In this topical review, we initially discuss the background of lead and various lead-free perovskite materials and further discuss the fundamental aspects of various bismuth-based perovskite and perovskite-inspired materials having a chemical formula of A3Bi2X9, A2B′BiX6, B′aBibXa+3b (A = Cs+, MA+ and bulky organic ligands; B′ = Ag+, Cu+; X = I−, Cl−, Br−) and bismuth triiodide (BiI3) semiconducting material particularly focusing on their structure, optoelectronic properties and the influence of compositional variation on the photovoltaic device performance and stability
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wang, M., C. Sanchez‐Perez, F. Habib, M. O. Blunt, and C. J. Carmalt. "Scalable Production of Ambient Stable Hybrid Bismuth‐Based Materials: AACVD of Phenethylammonium Bismuth Iodide Films**." Chemistry – A European Journal 27, no. 36 (May 27, 2021): 9406–13. http://dx.doi.org/10.1002/chem.202100774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wenkin, Mireille, Roland Touillaux, and Michel Devillers. "Bismuth derivatives of 2,3-dicarboxypyrazine and 3,5-dicarboxypyrazole as precursors for bismuth oxide based materials." New Journal of Chemistry 22, no. 9 (1998): 973–76. http://dx.doi.org/10.1039/a801161c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Abramov, Aleksander V., Ruslan R. Alimgulov, Anastasia I. Trubcheninova, Arkadiy Yu Zhilyakov, Sergey V. Belikov, Vladimir A. Volkovich, and Ilya B. Polovov. "Corrosion of Molybdenum-Based and Ni–Mo Alloys in Liquid Bismuth–Lithium Alloy." Metals 13, no. 2 (February 11, 2023): 366. http://dx.doi.org/10.3390/met13020366.

Повний текст джерела
Анотація:
Bismuth–lithium alloys are considered primary candidates for the reductive extraction step in the on-line reprocessing of molten salt reactor fuel. The corrosion behavior of molybdenum-based alloys and Hastelloy® B-3 alloy (taken for comparison) was examined here in a liquid Bi–Li (5 mol.%) alloy at 650 °C. MoW10, MoW30, and TZM corrosion-resistant alloys were studied as prospective construction materials for holding liquid bismuth–lithium alloy. Rates of corrosion were determined by the gravimetric method as well as by chemical analysis of corrosion products formed in liquid-phase Bi–Li alloy. The microstructure and chemical composition of samples of the materials and Bi–Li alloys containing the corrosion products after the tests were determined using inductively coupled plasma–atomic emission spectroscopy, X-ray fluorescence analysis, scanning electron microscopy, and energy dispersive spectroscopy. TZM molybdenum-based alloy corrodes in the bismuth-lithium alloy due to the formation of a zirconium–bismuth intermetallic compound, which passes into the liquid phase. The corrosion rates of MoW10, MoW30, and TZM alloys at 650 °C were 16, 16, and 23 µm/year, respectively. Hastelloy® B-3 alloy, despite its high molybdenum content, was subjected to severe corrosion in liquid Bi–Li alloys due to dissolution of nickel in liquid bismuth. The corrosion rate of this alloy was 14 mm/year.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Гирсова, М. А., Т. В. Антропова, Г. Ф. Головина, И. Н. Анфимова та Л. Н. Куриленко. "Влияние химического состава пористой матрицы и атмосферы спекания на люминесцентные свойства висмутсодержащих композиционных материалов". Оптика и спектроскопия 131, № 1 (2023): 84. http://dx.doi.org/10.21883/os.2023.01.54542.4040-22.

Повний текст джерела
Анотація:
The spectral-optical and luminescence properties of bismuth-containing composite materials based on matrices of high-silica porous glasses are investigated. Luminescence spectra, luminescence excitation spectra, infrared transmission spectra (8000–4000 cm-1) depending on the composition of different types of matrices and sintering atmosphere (nitrogen, argon) of bismuth-containing composite materials were examined. It was found that the samples of bismuth-containing composite materials are characterized by UV (λem = 350 nm), blue-green (λem = 410–550 nm) and orange-red (λem = 600–725 nm) luminescence due to the presence of various bismuth active centers. The analysis of the spectra obtained by near-infrared spectroscopy demonstrates the formation of Bi2+ dimers of bismuth and bismuth active centers associated with silicon.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ünlü, Feray, Ashish Kulkarni, Khan Lê, Christoph Bohr, Andrea Bliesener, Seren Dilara Öz, Ajay Kumar Jena, et al. "Single- or double A-site cations in A3Bi2I9 bismuth perovskites: What is the suitable choice?" Journal of Materials Research 36, no. 9 (March 30, 2021): 1794–804. http://dx.doi.org/10.1557/s43578-021-00155-z.

Повний текст джерела
Анотація:
Abstract Investigations on the effect of single or double A-site cation engineering on the photovoltaic performance of bismuth perovskite-inspired materials (A3Bi2I9) are rare. Herein, we report novel single- and double-cation based bismuth perovskite-inspired materials developed by (1) completely replacing CH3NH3+ (methylammonium, MA+) in MA3Bi2I9 with various organic cations such as CH(NH2)2+ (formamidinium, FA+), (CH3)2NH2+ (dimethylammonium, DMA+), C(NH2)3+ (guanidinium, GA+) and inorganic cations such as cesium (Cs+), rubidium (Rb+), potassium (K+), sodium (Na+) and lithium (Li+) and (2) partially replacing MA+ with Cs+ in different stoichiometric ratios. Compared to single-cation based bismuth perovskite devices, the double-cation bismuth perovskite device showed an increment in the device power conversion efficiency (PCE) up to 1.5% crediting to the reduction in the bandgap. This is the first study demonstrating double-cation based bismuth perovskite showing bandgap reduction and increment in device efficiency and opens up the possibilities towards compositional engineering for improved device performance. Graphic Abstract
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mazur, Tomasz, Piotr Zawal, and Konrad Szaciłowski. "Synaptic plasticity, metaplasticity and memory effects in hybrid organic–inorganic bismuth-based materials." Nanoscale 11, no. 3 (2019): 1080–90. http://dx.doi.org/10.1039/c8nr09413f.

Повний текст джерела
Анотація:
Herein, we present memristive, thin film devices made of methylammonium bismuth iodide that exhibit a wide variety of neuromorphic effects simultaneously. Described materials have the potential to become universal cells in artificial neural networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Tesfay Reda, Alemtsehay, Meng Pan, Dongxiang Zhang, and Xiyan Xu. "Bismuth-based materials for iodine capture and storage: A review." Journal of Environmental Chemical Engineering 9, no. 4 (August 2021): 105279. http://dx.doi.org/10.1016/j.jece.2021.105279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Viola, Giuseppe, Ye Tian, Chuying Yu, Yongqiang Tan, Vladimir Koval, Xiaoyong Wei, Kwang-Leong Choy, and Haixue Yan. "Electric field-induced transformations in bismuth sodium titanate-based materials." Progress in Materials Science 122 (October 2021): 100837. http://dx.doi.org/10.1016/j.pmatsci.2021.100837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

SLOBODYUK, A. B., M. M. POLYANTSEV, V. K. GONCHARUK, and V. Ya KAVUN. "Functional materials with high ionic conductivity based on bismuth trifluoride." Вестник ДВО РАН, no. 5 (2021): 95–106. http://dx.doi.org/10.37102/0869-7698_2021_219_05_08.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dai, Xiao-Jing, Xin-Xin Niu, Wang-Qin Fu, Dong Zheng, Wen-Xian Liu, Wen-Hui Shi, Jian-Wei Nai, Fang-Fang Wu, and Xie-Hong Cao. "Bismuth-based materials for rechargeable aqueous batteries and water desalination." Rare Metals 41, no. 1 (November 15, 2021): 287–303. http://dx.doi.org/10.1007/s12598-021-01853-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zhao, Ailun, Luhong Zhang, Yujie Guo, Hui Li, Shuangchen Ruan, and Yu-Jia Zeng. "Emerging members of two-dimensional materials: bismuth-based ternary compounds." 2D Materials 8, no. 1 (December 1, 2020): 012004. http://dx.doi.org/10.1088/2053-1583/abc73a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Mahmood, Rashid, and Muhammad Javed Iqbal. "Synthesis and Characterization of Thallium Containing Bismuth Based Superconducting Materials." Asian Journal of Chemistry 27, no. 10 (2015): 3826–30. http://dx.doi.org/10.14233/ajchem.2015.19000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zemskov, V. S., L. E. Shelimova, P. P. Konstantinov, E. S. Avilov, M. A. Kretova, and I. Yu Nikhezina. "Thermoelectric materials based on layered chalcogenides of bismuth and lead." Inorganic Materials: Applied Research 3, no. 1 (January 2012): 61–68. http://dx.doi.org/10.1134/s2075113312010133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Devi, Nishu, and Suprakas Sinha Ray. "Performance of bismuth-based materials for supercapacitor applications: A review." Materials Today Communications 25 (December 2020): 101691. http://dx.doi.org/10.1016/j.mtcomm.2020.101691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Xu, Kang, Liang Wang, Xun Xu, Shi Xue Dou, Weichang Hao, and Yi Du. "Two dimensional bismuth-based layered materials for energy-related applications." Energy Storage Materials 19 (May 2019): 446–63. http://dx.doi.org/10.1016/j.ensm.2019.03.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Choudhary, R. N. P., C. Behera, Piyush R. Das, and R. R. Das. "Development of bismuth-based electronic materials from Indian red mud." Ceramics International 40, no. 8 (September 2014): 12253–64. http://dx.doi.org/10.1016/j.ceramint.2014.04.070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kuznetsova, A. S., L. E. Ermakova, I. N. Anfimova, and T. V. Antropova. "Electrokinetic Characteristics of Bismuth-Containing Materials Based on Porous Glasses." Glass Physics and Chemistry 46, no. 4 (July 2020): 290–97. http://dx.doi.org/10.1134/s1087659620030086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Trubnikov, I. L., S. N. Svirskaya, A. A. Zubkov, and I. N. Toguleva. "Possible ways to obtain materials based on bismuth titanate Bi4Ti3O12." Russian Journal of Applied Chemistry 82, no. 11 (November 2009): 1911–14. http://dx.doi.org/10.1134/s1070427209110019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Vodyankin, A. A., I. P. Ushakov, Yu A. Belik, and O. V. Vodyankina. "Synthesis and photocatalytic properties of materials based on bismuth silicates." Kinetics and Catalysis 58, no. 5 (September 2017): 593–600. http://dx.doi.org/10.1134/s0023158417050238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Parveen, S., S. Victor Vedanayakam, and R. Padma Suvarna. "Thermoelectric generator electrical performance based on temperature of thermoelectric materials." International Journal of Engineering & Technology 7, no. 3.29 (August 24, 2018): 189. http://dx.doi.org/10.14419/ijet.v7i3.29.18792.

Повний текст джерела
Анотація:
In space applications, the radioisotope thermoelectric generators are being used for the power generation. The energy storage devices like fuel cells, solar cells cannot function in remote areas, in such cases the power generating systems can work successfully for generating electrical power in space missions. The efficiency of thermo electric generators is around 5% to 8% . Bismuth telluride has high electrical conductivity (1.1 x 105S.m /m2) and very low thermal conductivity (1.20 W/ m.K). A Thermoelectric generator has been built up consisting of a Bi2Te3 based on thermoelectric module. The main aim of this is when four thermoelectric modules are connected in series, the power and efficiency was calculated. The thermoelectric module used is TEP1-1264-1.5. This thermoelectric module is having a size of 40mmx40mm. The hot side maximum temperature was 1600C where the cold side temperature is at 400C. At load resistance, 15Ω the maximum efficiency calculated was 6.80%, at temperature of 1600C. The maximum power at this temperature was 15.01W, the output voltage is 16.5V, and the output current is 0.91A. The related and the corresponding graphs between efficiency, power, output voltage, output current was drawn at different temperatures. The efficiency of bismuth telluride, thermoelectric module is greater than other thermoelectric materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Arefieva, Ol'ga Dmitriyevna, Natal'ya Viktorovna Makarenko, Vladimir Sergeyevich Egorkin, Lyudmila Alekseyevna Zemnukhova, and Yuliya Aleksandrovna Azarova. "REMOVAL OF Bi(III) IONS BY PHYTIC ACID DERIVATIVES FROM RICE BRAN." chemistry of plant raw material, no. 1 (March 16, 2021): 345–52. http://dx.doi.org/10.14258/jcprm.2021017751.

Повний текст джерела
Анотація:
Creation of new multifunctional materials based on renewable raw materials is a major direction in recent years. Large-tonnage waste of rice production (husk, straw, bran) of the Far East is a promising raw material base for obtaining such materials. Composition of rice bran includes inositol hexaphosphoric acid and its derivatives (phytin, phosphoinositol) which are capable of chelating polyvalent metal ions. Bismuth (III) is one of natural water pollutants that come from leaching of bismuth-containing minerals and activities of pharmaceutical and perfume industries. The goal of this work is to study removal conditions of bismuth (III) ions from aqueous solutions of a phytic acid derivative obtained from rice bran. It is shown in the work that with a sorbent: solution ratio of 1: 100, bismuth ions are removed from the solution by 89 %. It was found that removal of bismuth cations depends on the initial concentration (3.17–51.90 mg/l) and varies from 13 to 96 %. A comparative analysis also showed that chromium (III) ions are removed from aqueous solutions by a phosphorus-containing product better than bismuth (III) ions. These studies allow us to give recommendations on the choice of materials for treating solutions from heavy metal ions, expanding the range of currently used natural sorbents based on plant materials and solving at the same time an urgent environmental and economic problem - the disposal of rice production wastes.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

CAPOEN, E., G. NOWOGROCKI, R. CHATER, S. SKINNER, J. KILNER, M. MALYS, J. BOIVIN, G. MAIRESSE, and R. VANNIER. "Oxygen permeation in bismuth-based materials. Part II: Characterisation of oxygen transfer in bismuth erbium oxide and bismuth calcium oxide ceramic." Solid State Ionics 177, no. 5-6 (February 2006): 489–92. http://dx.doi.org/10.1016/j.ssi.2005.12.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Devi, Nishu, Sarit Ghosh, Venkata K. Perla, Tarasankar Pal, and Kaushik Mallick. "Laboratory based synthesis of the pure form of gananite (BiF3) nanoparticles: a potential material for electrochemical supercapacitor application." New Journal of Chemistry 43, no. 46 (2019): 18369–76. http://dx.doi.org/10.1039/c9nj04573b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії