Добірка наукової літератури з теми "Biotin transporter"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biotin transporter".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biotin transporter"

1

Finkenwirth, Friedrich, Olivia Neubauer, Julia Gunzenhäuser, Janna Schoknecht, Silvia Scolari, Martin Stöckl, Thomas Korte, Andreas Herrmann, and Thomas Eitinger. "Subunit composition of an energy-coupling-factor-type biotin transporter analysed in living bacteria." Biochemical Journal 431, no. 3 (October 11, 2010): 373–81. http://dx.doi.org/10.1042/bj20100813.

Повний текст джерела
Анотація:
BioMNY, a bacterial high-affinity biotin transporter, is a member of the recently defined class of ECF (energy-coupling factor) transporters. These systems are composed of ABC (ATP-binding-cassette) ATPases (represented by BioM in the case of the biotin transporter), a universally conserved transmembrane protein (BioN) and a core transporter component (BioY), in unknown stoichiometry. The quaternary structure of BioY, which functions as a low-affinity biotin transporter in the absence of BioMN, and of BioMNY was investigated by a FRET (Förster resonance energy transfer) approach using living recombinant Escherichia coli cells. To this end, the donor–acceptor pair, of Cerulean and yellow fluorescent protein respectively, were fused to BioM, BioN and BioY. The fusion proteins were stable and the protein tags did not interfere with transport and ATPase activities. Specific donor–acceptor interactions were characterized by lifetime-based FRET spectroscopy. The results suggest an oligomeric structure for the solitary BioY core transporter and oligomeric forms of BioM and BioY in BioMNY complexes. We surmise that oligomers of BioY are the functional units of the low- and high-affinity biotin transporter in the living cell. Beyond its relevance for clarifying the supramolecular organization of ECF transporters, the results demonstrate the general applicability of lifetime-based FRET studies in living bacteria.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zempleni, Janos, and Donald M. Mock. "Mitogen-induced proliferation increases biotin uptake into human peripheral blood mononuclear cells." American Journal of Physiology-Cell Physiology 276, no. 5 (May 1, 1999): C1079—C1084. http://dx.doi.org/10.1152/ajpcell.1999.276.5.c1079.

Повний текст джерела
Анотація:
We sought to determine whether the proliferation of immune cells affects the cellular uptake of the vitamin biotin. Peripheral blood mononuclear cells (PBMC) were isolated from healthy adults. The proliferation of PBMC was induced by either pokeweed lectin, concanavalin A, or phytohemagglutinin. When the medium contained a physiological concentration of [3H]biotin, nonproliferating PBMC accumulated 406 ± 201 amol [3H]biotin ⋅ 106cells−1 ⋅ 30 min−1. For proliferating PBMC, [3H]biotin uptake increased to between 330 and 722% of nonproliferating values. Maximal transport rates of [3H]biotin in proliferating PBMC were also about four times greater than those in nonproliferating PBMC, suggesting that proliferation was associated with an increase in the number of biotin transporters on the PBMC membrane. The biotin affinities and specificities of the transporter for proliferating and nonproliferating PBMC were similar, providing evidence that the same transporter mediates biotin uptake in both states. [14C]urea uptake values for proliferating and nonproliferating PBMC were similar, suggesting that the increased [3H]biotin uptake was not caused by a global upregulation of transporters during proliferation. We conclude that PBMC proliferation increases the cellular accumulation of biotin.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Subramanian, Veedamali S., Jonathan S. Marchant, and Hamid M. Said. "Biotin-responsive basal ganglia disease-linked mutations inhibit thiamine transport via hTHTR2: biotin is not a substrate for hTHTR2." American Journal of Physiology-Cell Physiology 291, no. 5 (November 2006): C851—C859. http://dx.doi.org/10.1152/ajpcell.00105.2006.

Повний текст джерела
Анотація:
The water-soluble micronutrient thiamine is required for normal tissue growth and development in humans. Thiamine is accumulated into cells through the activity of two cell surface thiamine transporters (hTHTR1 and hTHTR2), which are differentially targeted in polarized tissues. Mutational dysfunction of hTHTR1 is associated with the clinical condition of thiamine-responsive megaloblastic anemia: the symptoms of which are alleviated by thiamine supplementation. Recently, two hTHTR2 mutants (G23V, T422A) have been discovered in clinical kindreds manifesting biotin-responsive basal ganglia disease (BBGD): the symptoms of which are alleviated by biotin administration. Why then does mutation of a specific thiamine transporter isoform precipitate a disorder correctable by exogenous biotin? To investigate the suggestion that hTHTR2 can physiologically function as a biotin transporter, we examined 1) the cell biological basis of hTHTR2 dysfunction associated with the G23V and T422A mutations and 2) the substrate specificity of hTHTR2 and these clinically relevant mutants. We show that the G23V and T422A mutants both abrogate thiamine transport activity rather than targeting of hTHTR2 to the cell surface. Furthermore, biotin accumulation was not detectable in cells overexpressing either the full length hTHTR2 or the clinically relevant hTHTR2 mutants, yet was demonstrable in the same assay using cells overexpressing the human sodium-dependent multivitamin transporter, a known biotin transporter. These results cast doubt on the most parsimonious explanation for the BBGD phenotype, namely that hTHTR2 is a physiological biotin transporter.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Walker, Jennifer R., and Elliot Altman. "Biotinylation Facilitates the Uptake of Large Peptides by Escherichia coli and Other Gram-Negative Bacteria." Applied and Environmental Microbiology 71, no. 4 (April 2005): 1850–55. http://dx.doi.org/10.1128/aem.71.4.1850-1855.2005.

Повний текст джерела
Анотація:
ABSTRACT Gram-negative bacteria such as Escherichia coli can normally only take up small peptides less than 650 Da, or five to six amino acids, in size. We have found that biotinylated peptides up to 31 amino acids in length can be taken up by E. coli and that uptake is dependent on the biotin transporter. Uptake could be competitively inhibited by free biotin or avidin and blocked by the protonophore carbonyl m-chlorophenylhydrazone and was abolished in E. coli mutants that lacked the biotin transporter. Biotinylated peptides could be used to supplement the growth of a biotin auxotroph, and the transported peptides were shown to be localized to the cytoplasm in cell fractionation experiments. The uptake of biotinylated peptides was also demonstrated for two other gram-negative bacteria, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa. This finding may make it possible to create new peptide antibiotics that can be used against gram-negative pathogens. Researchers have used various moieties to cause the illicit transport of compounds in bacteria, and this study demonstrates the illicit transport of the largest known compound to date.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kondo, Hiroki, Yasuaki Kazuta, and Tamami Goto. "Search for a microbial biotin transporter." BioFactors 11, no. 1-2 (2000): 101–2. http://dx.doi.org/10.1002/biof.5520110129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zempleni, Janos, and Donald M. Mock. "Uptake and metabolism of biotin by human peripheral blood mononuclear cells." American Journal of Physiology-Cell Physiology 275, no. 2 (August 1, 1998): C382—C388. http://dx.doi.org/10.1152/ajpcell.1998.275.2.c382.

Повний текст джерела
Анотація:
We studied the uptake of biotin into human peripheral blood mononuclear cells (PBMC) using [3H]biotin and studied the catabolism of biotin in PBMC using [14C]biotin. Over 30 min, [3H]biotin uptake was greater at 37°C than at 25°C ( K T = 2.6 ± 0.4 nM, maximal velocity = 2.9 ± 0.2 fmol ⋅ 106cells−1 ⋅ 30 min−1). Ouabain reduced [3H]biotin uptake to 65% of control values, suggesting that biotin uptake is Na-K-ATPase dependent. Unlabeled biotin and biotin analogs reduced the uptake of [3H]biotin to 22–70% of control values, suggesting the presence of a competition for a structurally specific biotin transporter. When endocytosis by PBMC was stimulated by various acyl glycerols, [3H]biotin uptake was 40–73% of control values; these data are consistent with the hypothesis that stimulated endocytosis reduces biotin transporter density on the cell surface. During a 168-h incubation, PBMC did not catabolize [14C]biotin.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ghosal, Abhisek, Stefan Jellbauer, Rubina Kapadia, Manuela Raffatellu, and Hamid M. Said. "Salmonellainfection inhibits intestinal biotin transport: cellular and molecular mechanisms." American Journal of Physiology-Gastrointestinal and Liver Physiology 309, no. 2 (July 15, 2015): G123—G131. http://dx.doi.org/10.1152/ajpgi.00112.2015.

Повний текст джерела
Анотація:
Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium ( S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lakhan, Ram, and Hamid M. Said. "Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for a casein kinase 2-mediated pathway." American Journal of Physiology-Cell Physiology 312, no. 4 (April 1, 2017): C376—C384. http://dx.doi.org/10.1152/ajpcell.00300.2016.

Повний текст джерела
Анотація:
Biotin (vitamin B7), an essential micronutrient for normal cellular functions, is obtained from both dietary sources as well as gut microbiota. Absorption of biotin in both the small and large intestine is via a carrier-mediated process that involves the sodium-dependent multivitamin transporter (SMVT). Although different physiological and molecular aspects of intestinal biotin uptake have been delineated, nothing is known about the effect of LPS on the process. We addressed this issue using in vitro (human colonic epithelial NCM460 cells) and in vivo (mice) models of LPS exposure. Treating NCM460 cells with LPS was found to lead to a significant inhibition in carrier-mediated biotin uptake. Similarly, administration of LPS to mice led to a significant inhibition in biotin uptake by native colonic tissue. Although no changes in total cellular SMVT protein and mRNA levels were observed, LPS caused a decrease in the fraction of SMVT expressed at the cell surface. A role for casein kinase 2 (CK2) (whose activity was also inhibited by LPS) in mediating the endotoxin effects on biotin uptake and on membrane expression of SMVT was suggested by findings that specific inhibitors of CK2, as well as mutating the putative CK2 phosphorylation site (Thr78Ala) in the SMVT protein, led to inhibition in biotin uptake and membrane expression of SMVT. This study shows for the first time that LPS inhibits colonic biotin uptake via decreasing membrane expression of its transporter and that these effects likely involve a CK2-mediated pathway.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vlasova, Tatyana I., Shawna L. Stratton, Amanda M. Wells, Nell I. Mock, and Donald M. Mock. "Biotin Deficiency Reduces Expression of SLC19A3, a Potential Biotin Transporter, in Leukocytes from Human Blood." Journal of Nutrition 135, no. 1 (January 1, 2005): 42–47. http://dx.doi.org/10.1093/jn/135.1.42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Griffin, Jacob, Steven Stanley, and Janos Zempleni. "Synthesis of a Rabbit Polyclonal Antibody to the Human Sodium-Dependent Multivitamin Transporter." International Journal for Vitamin and Nutrition Research 72, no. 4 (July 1, 2002): 195–98. http://dx.doi.org/10.1024/0300-9831.72.4.195.

Повний текст джерела
Анотація:
In mammalian cells, biotin is covalently attached to carboxylases and histones and is required for cell proliferation and function. Cellular uptake of biotin (as well as pantothenic acid and lipoic acid) is mediated by the sodium-dependent multivitamin transporter, SMVT. Studies of cellular biotin homeostasis have been hampered by the lack of an antibody to SMVT. Here, we describe the synthesis of a rabbit polyclonal antibody to human SMVT. Using this antibody, SMVT has been identified in human peripheral blood mononuclear cells, Caco-2 cells, and HepG2 cells. Moreover, we observed that cells respond to proliferation with increased synthesis of SMVT.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biotin transporter"

1

Kirsch, Franziska. "Analyse der Substratbindestelle, der Stöchiometrie und der Transportfunktion von S-Einheiten bakterieller ECF-Transporter." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17404.

Повний текст джерела
Анотація:
Energy-Coupling-Factor (ECF)-Transporter sind Aufnahmesysteme für Vitamine und Übergangsmetallkationen in Prokaryoten. Sie bestehen aus den zwei unverwandten Membranproteinen S und T sowie einem Paar ABC-ATPasen (A). Die S-Einheit vermittelt die Substratspezifität. Die Kombination aus der T- und den A-Einheiten wird als ECF bezeichnet. In dieser Arbeit wurden Fragen zur kontrovers diskutierten Stöchiometrie der Untereinheiten von ECF-Transportern sowie zur zuvor postulierten Substrattransport-Funktion einzelner S-Komponenten auch ohne ECF untersucht. Dazu wurden der ECF-Biotintransporter BioMNY, mehrere natürlicherweise in Organismen ohne ECF existierende biotinspezifische S Einheiten (BioY) sowie zwei Vertreter der metallspezifischen ECF-Systeme genutzt. Die S-Einheit BioY des dreiteiligen Biotinimporters lag in vitro als Monomer und Dimer vor. Oligomeres BioY wurde außerdem in lebenden Bakterienzellen beobachtet. „Pull-down“-Experimente zeigten, dass die T Komponente BioN im BioMNY-Komplex zum Teil als Dimer vorlag. Wachstumsuntersuchungen bestätigten die Transportfunktion von acht solitär vorkommenden BioY. Die in vitro auch für diese BioY-Proteine nachgewiesene Dimerisierung könnte die Transportfunktion von BioY ohne ECF erklären. Die metallspezifischen S Einheiten CbiM/NikM interagieren mit für die Transportfunktion essentiellen, zusätzlichen Transmembranproteinen (N) und zeichnen sich durch eine Topologie mit sieben Transmembranhelices und einem extrem konservierten, weit in das Proteininnere hineinragenden N-Terminus aus. Die Metallbindestelle besteht aus vier Stickstoffatomen von Met1, His2 und His67 und wird durch ein Netz aus Wasserstoffbrückenbindungen stabilisiert. Die Transport¬funktion von CbiMN bzw. Nik(MN) ohne ECF wurde in vivo mittels des nickelabhängigen Enzyms Urease als Indikator für die intrazelluläre Nickelkonzentration verifiziert. Zum gegenwärtigen Zeitpunkt ist die Funktion der für den Transport essentiellen N-Komponente jedoch noch unklar.
Energy-coupling factor (ECF) transporters are uptake systems for vitamins and transition metal cations in prokaryotes. They consist of the two unrelated membrane proteins S and T, and a pair of ABC ATPases (A). The S unit mediates substrate specificity. The combination of the T and the A units is called ECF. In this thesis the controversially discussed stoichiometry of the subunits of ECF transporters and the postulated substrate transport function of solitary S units without ECF were analysed. For this purpose, the biotin-specific ECF transporter BioMNY, several biotin-specific S units (BioY) encoded in organisms lacking any recognizable ECF and two metal-specific ECF transporters were used. The S unit BioY of the tripartite biotin importer existed in vitro as monomer and dimer. Furthermore, oligomeric BioY was observed in living bacterial cells. Oligomerisation of a part of the T unit BioN in the BioMNY complex was shown by “pull-down”- experiments. Growth analyses confirmed the transport function of eight solitary BioY proteins. The dimerisation, also proved for these solitary BioY proteins in vitro, could be an explanation for the transport function of BioY without ECF. The metal-specific S units CbiM/NikM interact with additional and for the transport function essential transmembrane proteins (N). The S units consist of seven transmembrane helices and an extremely conserved N-terminus, which extends deeply into the protein. The metal-binding site consists of four nitrogen atoms from Met1, His2 and His67 and is stabilised by a series of hydrogen bonds. The transport function of CbiMN and Nik(MN) without ECF was verified respectively in vivo using the nickel-depending enzyme urease as an indicator for intracellular nickel concentration, respectively. However, the role of the N component, which is essential for transport activity, is currently under investigation.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zuo, Shusheng. "Quantitation, Purification and Reconstitution of the Red Blood Cell Glucose Transporter GLUT1." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lagerquist, Hägglund Christine. "Affinity-, Partition- and Permeability Properties of the Human Red Blood Cell Membrane and Biomembrane Models, with Emphasis on the GLUT1 Glucose Transporter." Doctoral thesis, Uppsala University, Department of Biochemistry, 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3525.

Повний текст джерела
Анотація:

The human glucose transporter GLUT1 is abundant in red blood cells, the blood-brain barrier and epithelial cells, where it mediates the transport of the energy metabolite, glucose. In the present work some properties of GLUT1, including affinity binding of both substrates and inhibitors, transport rates as well as permeabilities of aromatic amino acids and drug-membrane interactions were analyzed by chromatographic methods.

Reconstitution by size-exclusion chromatography on Superdex 75 from a detergent with a low CMC that provides monomeric GLUT1 was examined regarding D-glucose- and CB binding as well as D-glucose transport. Upon steric immobilization in Superdex 200 gel beads, residual detergent could be washed away and dissociation constants in the same range as reported for binding to GLUT1 reconstituted from other detergents were obtained. The transport rate into the GLUT1 proteoliposomes was low, probably due to residual detergent. Binding to GLUT1 at different pH was analyzed and the affinity of glucose and GLUT1 inhibitors was found to decrease with increasing pH (5–8.7). The average number of cytochalasin B-binding sites per GLUT1 monomers was, in most cases, approximately 0.4. GLUT1 may work as a functional monomer, dimer or oligomer. To determine whether GLUT1 was responsible for the transport of the aromatic amino acids tyrosine and tryptophan, uptake values and permeabilities of these amino acids into liposomes and GLUT1 proteoliposomes were compared to the permeabilities of D- and L- glucose in the same systems. Dihydrocytochalasin B was identified to be a new inhibitor of tyrosine and tryptophan transport into red blood cells. Ethanol turned out to inhibit the specific binding between CB and GLUT1 and also to decrease the partitioning of CB and drugs into lipid bilayers. A capacity factor for drug partitioning into membranes that allows comparison between columns with different amount of immobilized lipids was validated, and turned out to be independent of flow rate, amount of lipids and drug concentration in the ranges tested.

Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rasamoelisolo, Michèle. "Caracterisation biochimique des anticorps monoclonaux antiglycophorine a : utilisation de la glycophorine a en tant que transporteurs de substances biologiquement actives (doctorat : immunologie)." Nantes, 1997. http://www.theses.fr/1997NANT01VS.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stephan, Milena. "Development of a Biomembrane Sensor Based on Reflectometry." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2013. http://hdl.handle.net/11858/00-1735-0000-0001-BB7E-B.

Повний текст джерела
Анотація:
Membranproteine spielen eine wichtige Rolle in vielen biochemischen Prozessen der Zelle, wie zum Beispiel der Signaltransduktion, der Zelladhesion oder auch der Erkennung von Krankheitserregern. Viele dieser Proteine sind von Bedeutung für die Entwicklung neuer innovativer Medikamente. Somit hat auch die Entwicklung von Sensoren, die die Untersuchung von Membranproteinen in ihrer natürlichen Umgebung erlauben an Bedeutung gewonnen [1]. Thema dieser Doktorarbeit war die Entwicklung von Analysekonzepten die es ermöglichen unterschiedliche Aspekte von Membraninteraktionen zu untersuchen und zu quantifizieren. Als Analysemethode wurde dafür reflektometrische Interferenz Spektroskopie (RIfS) eine markierungsfreie, optische Methode verwendet. RIfS erlaubt es die Höhe dünner transparenter Filme zu bestimmen, indem das Weißlicht-Reflexionspektrum eines solchen Films aufgezeichnet wird. Durch die Überlagerung der in dem Film mehrfach reflektierten Teilstrahlen entsteht ein Interferenzmuster im Reflexionsspektrum, welches Aufschluß gibt über die Schichtdicke und den Brechungsindex des transparenten Films. Es wurde bereits gezeigt, dass RIfS eine geeignete Methode zur Untersuchung von Protein-ProteinWechselwirkungen ist [2]. Aus diesem Grund wurde RIfS als Detektionsverfahren für die Entwicklung eines Membransensors gewählt. Im Laufe dieser Arbeit entstanden zwei Aufbauten für reflektometrische Messungen. Ein Standard RIfS Aufbau und ein Instrument das die Methode mit Fluoreszenz-Mikroskopie kombiniert. Um dieWechselwirkung von Proteinen selbst und Proteinen mit Membranbestandteilen wie Lipiden zu untersuchen, wurde ein Konzept basierend auf festkörperunterstützten Membranen entwickelt. Dieses Experiment erlaubt es die Wechselwirkungen auf artifiziellen Membranen, sowie auf rekonstituierten Zellmembranen zu untersuchen. Zudem wurde ein Analysekonzept mit Nano-BLMs entwickelt, dass es erlaubt den simultanen Transport von Molekülen in ein membranverschlossenes Kompartiment hinein als auch heraus zu beobachten. Neben diesen membranbasierten Experimenten wurde auch ein Konzept entwickelt, welches es erlaubt die molekulare Erkennungsreaktion von sehr kleiner Analyten direkt zu messen. Dieses Messkonzept erlaubt es die Bindung von Molekülen mit sehr kleinem Molekulargewicht an einen auf dem Sensor immobilisierten Partner direkt zu quantifizieren.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chiteri, Kevin Oyale. "Functional & Phylogenetic Analysis of Arabidopsis thaliana Organic Cation Transporters (OCT5 & OCT1) Genes in Polyamine Transport in Plants." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1563038129138996.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Waltz, Fanny. "Etude du transport de l'iode par chémogénomique." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112214/document.

Повний текст джерела
Анотація:
Une importante avancée dans la compréhension des mécanismes gouvernant le processus de transport des ions iodures à l’intérieur des cellules thyroïdiennes a été le clonage en 1996 de la protéine responsable de ce transport : le symporteur Na/I (ou NIS). De nombreuses recherches ont été conduites depuis afin de caractériser cette protéine ainsi que les mécanismes qui régulent son expression et son activité. Les mécanismes cellulaires de régulation du transport et les protéines impliquées dans la régulation post-traductionnelle du symporteur restent toutefois largement inconnus. La compréhension de l’ensemble de ces mécanismes permettrait pourtant d’améliorer le traitement d’un grand nombre de patients. Le transport d’iode est en effet non seulement impliqué dans différentes pathologies de la thyroïde, mais aussi dans les contaminations à l’iode radioactif consécutives aux accidents nucléaires et dans de prometteuses stratégies de thérapie génique anticancéreuses. La chémogénomique, aussi appelée génétique chimique, est une approche multidisciplinaire dont le but est d’explorer les systèmes vivants au moyen de petites molécules organiques. Afin de mieux comprendre les mécanismes qui gouvernent le transport d’iode, notre laboratoire a mis en place une stratégie de génétique chimique qui a permis dans un premier temps de découvrir 10 molécules capables d’inhiber le transport d’iode. L’objectif de cette thèse était d’identifier les cibles protéiques de deux de ces molécules : ITB5 et ITB2. Des études d’électrophysiologie et de flux isotopique ayant montré que ces deux molécules ont un mode d’action différent, leur étude devait permettre d’identifier au moins deux protéines impliquées dans le transport des ions iodures.Afin d’identifier les protéines cibles d’ITB5 et d’ITB2, des sondes ont été synthétisées. Ces sondes sont constituées du composé d’intérêt, d’un groupement photoactivable permettant de créer, sous irradiation lumineuse, une liaison covalente avec la ou les protéine(s) cible(s) et d’une molécule de Biotine ou de Desthiobiotine afin d’extraire les protéines marquées des lysats cellulaires. Une fois marquées et capturées sur des billes d’agarose Streptavidine, les protéines d’intérêt ont été séparées sur des gels SDS-PAGE colorés au nitrate d’argent ou au bleu de Coomassie. Les bandes correspondantes ont été excisées, digérées à la trypsine et les peptides obtenus analysés par spectrométrie de masse. L’interrogation de la base de données Swissprot avec les données issues des expériences menées avec la sonde ITB5-P2 a permis d’identifier 3 protéines interagissant visiblement avec ce composé. Les expériences basées sur le composé ITB2 ont du être suspendues par manque de temps mais des résultats encourageants ont déjà été obtenus. Une bande pouvant correspondre à une protéine marquée spécifiquement par la sonde ITB2-P1 a en effet pu être observée en Western-blot suite à une première expérience de capture sur billes. Elle n’a toutefois pas pu être visualisée sur gel du fait d’une présence trop importante de protéines captées non spécifiquement par les billes. Les conditions expérimentales de capture ayant été optimisées avec le composé ITB5, leur application au composé ITB2 devrait maintenant permettre d’obtenir des gels plus propres à partir desquels la bande d’intérêt pourra être excisée pour être, elle aussi, analysée par spectrométrie de masse
An important breakthrough in the understanding of the mechanisms governing the process of iodide transport inside thyroid cells has been the cloning in 1996 of the protein responsible for this transport : the Na/I symporter (NIS). Different studies have been conducted ever since in order characterize this protein as well as the mechanisms which regulate its expression and its activity. Nevertheless, the cellular mechanisms of transport regulation and the proteins implied in the posttranslational regulation of the symporter remain largely unknown. The full understanding of these mechanisms would allow the treatment improvement of a lot of patients. Iodide transport is indeed involved not only in different thyroid pathologies, but also in radioactive iodide contaminations following nuclear accidents and in promising anticancer strategies by gene transfer. Chemogenomics, also called chemical genetics, is a multidisciplinary approach which goal is to explore the living systems thanks to small organic molecules. To better understand the mechanisms which govern iodide transport, our laboratory has set up a direct chemical genetic strategy which allowed us first to discover 10 molecules able to inhibit iodide transport. The objective of this thesis was to identify the protein targets of two molecules : ITB5 and ITB2. Electrophysiological and isotopic flux studies showed that these two molecules have a different mechanism of action. Their study should then allow the identification of at least two proteins involved in iodide transport.To identify the protein targets of ITB5 and ITB2, different probes were synthesized. These probes are made from the compound of interest, a photoactivable group allowing the creation, under light irradiation, of a covalent bound with the protein target(s) and a Biotin or Desthiobiotine molecule to extract the labeled proteins from cellular lysates. Once labeled and captured on agarose-Streptavidin beads, the proteins of interest were separated on SDS-PAGE gels stained either with silver nitrate or Coomassie blue. The corresponding bands were excised, digested by trypsin and the obtained peptides analyzed by mass spectrometry. A query made in the data bank Swissprot with the data obtained after the experiments conducted with the probe ITB5-P2 allowed us to identify 3 proteins apparently interacting with the compound ITB5. The experiments based on ITB2 had to be suspended because of a lack of time but encouraging results have been obtained. A band which may correspond to a protein specifically labeled by the probe ITB2-P1 has indeed been observed on a Western-blot after a first on-bead capture experiment. However, we couldn’t visualize it on a gel because of the important presence of proteins captured non specifically by the beads. The capture experimental conditions were optimized with the compound ITB5. These conditions will now be applied to the compound ITB2 and this should allow us to obtain cleaner gels on which the band of interest will be excised for an analyze by mass spectrometry
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Piffeteau-Lecoeur, Annie. "Transport et métabolisation de la biotine et de quelques analogues structuraux dans les cellules de E. Coli." Paris 7, 1986. http://www.theses.fr/1986PA077093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

García, Gamuz José Antonio. "Caracterización hidrodinámica y fenomenológica de membranas selectivas." Doctoral thesis, Universidad de Murcia, 2009. http://hdl.handle.net/10803/10842.

Повний текст джерела
Анотація:
El objetivo principal de este trabajo es desarrollar un modelo sencillo que permita la caracterización hidrodinámica de membranas selectivas integradas en sistemas bi-iónicos, mediante la determinación de coeficientes de difusión y de espesores de las capas límite alrededor de la membrana. A tal fin, se empleó una célula de difusión rotatoria (CDR), que permite el establecimiento de condiciones hidrodinámicas bien definidas para el sistema de membrana, dado que la variación de la frecuencia de giro del cilindro interior (ω), permite disminuir el espesor de la capa límite sobre la membrana, lo que favorece el intercambio iónico a su través. Se puede comprobar éste comportamiento, mediante consideraciones en torno al coeficiente de difusión de los cationes en el sistema de membrana y del cálculo del propio espesor de la capa límite. El mencionado coeficiente se obtendrá a partir del flujo iónico en la membrana, determinado a partir de medidas de pH, junto a medidas de conductividad, en la fase externa (receptora), a diferentes temperaturas y a distintas valores de ω.La medida de los flujos, una vez establecida su dependencia con ω, permite obtener los coeficientes de difusión catiónicos en el sistema de membrana, en función de la temperatura y de ω. Las medidas de la conductividad permiten testar el modelo propuesto, mediante su correlación con los valores de pH obtenidos, proporcionando información adicional acerca de los coeficientes de difusión de los cationes.
From the experimental study of the ionic transport through selective membranes in biionic systems, a simple model which allows the characterising hydrodynamic of the membrane systems through the determination of diffusion coefficients and the thickness of the limit layer has been developed. With this purpose, a rotating diffusion cell that allows the setting of hydrodynamic conditions clearly for the membrane system has been used, studying the variation of the conductivity and the pH in the external phase (receiving) at different temperatures from 20ºC to 50ºC and at different rotating velocities ω. The measurement of the fluxes, once set its dependence with ω, allows obtained the diffusion coefficients cationics in the membrane system in accordance with the temperature and ω. The measurements of the conductivity allow the testing of this model, through its correlation with the values of the pH measured, obtaining additional data about the diffusion coefficient of the cations in the receiving phase.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sun, Xiangfei. "Modeling the Biota Population Impact on Polychlorinated Biphenyls Transport and Simulating PCBs Anaerobic Biodegradation in the Lake System." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Biotin transporter"

1

Geological Survey (U.S.), ed. Effects of three high-flow experiments on the Colorado River ecosystem downstream from Glen Canyon Dam, Arizona. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sedel, Frédéric, and Carla E. M. Hollak. Disorders of Thiamine Metabolism. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0028.

Повний текст джерела
Анотація:
Thiamine is a water-soluble vitamin acting in the mitochondria as a cofactor for energy metabolism and, in the cytoplasm, in the pentose phosphate biosynthetic pathway. Its transport through the plasma membrane requires two transporters with overlapping functions: THTR1 encoded by SLC19A2, and THTR2 encoded by SLC19A3. Thiamine is transformed into its active form, thiamine pyrophosphate (TPP) by a kinase encoded by the TPK1 gene. Then it may enter the mitochondria through a TPP transporter encoded by SLC25A19. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anemia (TRMA). Mutations in SLC19A3 cause biotin/thiamine–responsive basal ganglia disease. Mutations in SLC25A19 may cause early microcephaly with death in infancy (also called Amish microcephaly) or a later-onset bilateral striatal necrosis with progressive peripheral neuropathy. Recently, mutations in the TPK1 gene have been associated with recurrent encephalopathy with mild lactic acidosis.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Estimación de la demanda de transporte en la ciudad de San Juan del Río. Santiago de Querétaro, Qro., México: CONCYTEQ, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

George C. Marshall Space Flight Center., ed. Transport phenomena in the micropores of plug-type phase separators. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Transport phenomena in the micropores of plug-type phase separators. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biotin transporter"

1

Eisenberg, Max A. "Biotin: Biogenesis, Transport, and Their Regulation." In Advances in Enzymology - and Related Areas of Molecular Biology, 317–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470122839.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Ligang, and Diqiu Yu. "ABA Regulation of Plant Response to Biotic Stresses." In Abscisic Acid: Metabolism, Transport and Signaling, 409–29. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9424-4_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bienert, Manuela Désirée, Amandine Baijot, and Marc Boutry. "ABCG Transporters and Their Role in the Biotic Stress Response." In Signaling and Communication in Plants, 137–62. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06511-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kendig, Amy E., S. Luke Flory, Erica M. Goss, Robert D. Holt, Keith Clay, Philip F. Harmon, Brett R. Lane, Ashish Adhikari, and Christopher M. Wojan. "The role of pathogens in plant invasions." In Plant invasions: the role of biotic interactions, 208–25. Wallingford: CABI, 2020. http://dx.doi.org/10.1079/9781789242171.0208.

Повний текст джерела
Анотація:
Abstract Plant-pathogen interactions occur throughout the process of plant invasion: pathogens can acutely influence plant survival and reproduction, while the large densities and spatial distributions of invasive plant species can influence pathogen communities. However, interactions between invasive plants and pathogens are often overlooked during the early stages of invasion. As with introductions of invasive plants, the introduction of agricultural crops to new areas can also generate novel host-pathogen interactions. The close monitoring of agricultural plants and resulting insights can inform hypotheses for invasive plants where research on pathogen interactions is lacking. This chapter reviews the known and hypothesized effects of pathogens on the invasion process and the effects of plant invasion on pathogens and infectious disease dynamics throughout the process of invasion. Initially, pathogens may inhibit the transport of potentially invasive plants. After arrival in a new range, pathogens can facilitate or inhibit establishment success of introduced plants depending on their relative impacts on the introduced plants and resident species. As invasive plants spread, they may encounter novel pathogens and alter the abundance and geographic range of pathogens. Pathogens can mediate interactions between invasive plants and resident species and may influence the long-term impacts of invasive plants on ecosystems. As invasive plants shift the composition of pathogen communities, resident species could be subject to higher disease risk. We highlight gaps in invasion biology research by providing examples from the agricultural literature and propose topics that have received little attention from either field.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dwivedi, Dipankar, Jinyun Tang, Katerina Georgiou, Stephany S. Chacon, and William J. Riley. "11. Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists." In Reactive Transport in Natural and Engineered Systems, edited by Jennifer Druhan and Christophe Tournassat, 329–48. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9781501512001-012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ietswaart, Th, L. Breebaart, B. van Zanten, and R. Bijkerk. "Plankton dynamics in the river Rhine during downstream transport as influenced by biotic interactions and hydrological conditions." In Man and River Systems, 1–10. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2163-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Knox, Robert C., David A. Sabatini, and Larry W. Canter. "Biotic Processes." In Subsurface Transport and Fate Processes, 125–206. CRC Press, 2018. http://dx.doi.org/10.1201/9781351076999-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yousuf, Sufiara, Nafiaah Naqash, and Rahul Singh. "Nutrient Cycling: An Approach for Environmental Sustainability." In Environmental Microbiology: Advanced Research and Multidisciplinary Applications, 77–104. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9781681089584122010007.

Повний текст джерела
Анотація:
Nutrient cycling is an important environmental process and has been the focus of ecological research. Nutrient cycling refers to the sufficient supply of key elements provided through the ecological processes within and between various biotic or abiotic components of a cell, community, or ecosystem. Nutrient cycling also includes the recovery and reuse of industrial, agricultural, and municipal organic debris that are considered wastes. Nutrient cycles include biotic and abiotic components involved in biological, geological, and chemical processes known as biogeochemical cycles. Changes occurring in such cycles may indicate or even alter the functioning of the ecosystem. Plants take up soil nutrients in terrestrial ecosystems for healthy growth and development, wherein soil acts as a nutrient reservoir. Nutrients are lost from such sites due to soil erosion, denitrification, and food production, which cause reduced availability of nutrients. Therefore, analyzing nutrients’ assimilation, transport through biota, and their release for subsequent re-assimilation is mandatory. Nutrients to be recycled essentially for the survival of organisms include macronutrients (C, O, H, N, K, P, Ca, Mg, S, and Cl) and micronutrients (Fe, Mn, Mo, Cu, Zn, Bo, Ni, Co, Na, Se, and I). This chapter presents the role of nutrients and nutrient cycling for environmental sustainability
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Braell, William A. "[3] Detection of endocytic vesicle fusion in Vitro, using assay based on avidin-biotin association reaction." In Reconstitution of Intracellular Transport, 12–21. Elsevier, 1992. http://dx.doi.org/10.1016/0076-6879(92)19005-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhang, Deyuan, Huawei Chen, Yonggang Jiang, Jun Cai, Lin Feng, and Xiangyu Zhang. "Transport and deposition structure of cell nano interface." In Micro- and Nano-Bionic Surfaces, 87–125. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-824502-6.00005-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biotin transporter"

1

Heller, Michael J., Dieter Dehlinger, Sadik Esener, and Benjamin Sullivan. "Electric Field Directed Fabrication of Biosensor Devices From Biomolecule Derivatized Nanoparticles." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38093.

Повний текст джерела
Анотація:
An electronic microarray has been used to carry out directed self-assembly of higher order 3D structures from Biotin/Streptavidin and DNA derivatized nanoparticles. Structures with more than forty layers of alternating biotin and streptavidin and DNA nanoparticles were fabricated using a 400 site CMOS microarray system. In this process, reconfigurable electric fields produced by the microarray device have been used to rapidly transport, concentrate and accelerate the binding of 40 and 200 nanometer biotin, streptavidin, DNA and peroxidase derivatized nanoparticles to selected sites on the microarray. The nanoparticle layering process takes less than one minute per layer (10–20 seconds for addressing and binding nanoparticles, 40 seconds for washing). The nanoparticle addressing/binding process can be monitored by changes in fluorescence intensity as each nanoparticle layer is deposited. The final multilayered 3-D structures are about two microns in thickness and 50 microns in diameter. Work is now focused on assembling “micron size” biosensor devices from bio-molecule derivatized luminescent and fluorescent nanoparticles. The proposed structure for a nanolayered glucose sensor device includes a base layer of biotin/streptavidin nanoparticles, a layer of glucose oxidase derivatized nanoparticles, a layer of peroxidase derivatized nanoparticles, a layer of quantum dots, and a final layer of biotin/streptavidin nanoparticles. Such a device will serve as a prototype for a wide variety of applications which includes other biosensor devices, lab-on a-chip devices, in-vivo drug delivery systems and “micron size” dispersible bio/chem sensors for environmental, military and homeland security applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Keshari, Ashish K., Vyom Parashar, Avinash C. Pandey, M. R. Singh, and R. H. Lipson. "Optical Stability and Photoluminescence Enhancement of Biotin Assisted ZnS:Mn[sup 2+] Nanoparticles." In TRANSPORT AND OPTICAL PROPERTIES OF NANOMATERIALS: Proceedings of the International Conference—ICTOPON-2009. AIP, 2009. http://dx.doi.org/10.1063/1.3183429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Singh, Shalini, Norman Lapin, P. K. Singh, Mukhtar A. Khan, Yves J. Chabal, M. R. Singh, and R. H. Lipson. "Attachment Of Streptavidin-Biotin On 3-Aminopropyltriethoxysilane (APTES) Modified Porous Silicon Surfaces." In TRANSPORT AND OPTICAL PROPERTIES OF NANOMATERIALS: Proceedings of the International Conference—ICTOPON-2009. AIP, 2009. http://dx.doi.org/10.1063/1.3183471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Brown, Reid D., Daniel Cadol, and Bonnie Frey. "GEOMORPHIC AND BIOTIC CONTROLS ON THE AEOLIAN TRANSPORT OF URANIUM-BEARING DUST." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Holzbecher, Ekkehard. "Transport Processes across Multiphase Interfaces." In Sixth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2017. http://dx.doi.org/10.1061/9780784480779.147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dangla, P., J. Shen, and M. Thiery. "Reactive Transport of scCO 2 within Cement Paste." In Fifth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412992.243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Karacs, Kristof, and Tamas Roska. "Route number recognition ot Public Transport Vehicles via the Bionic Eyeglass." In 2006 10th International Workshop on Cellular Neural Networks and Their Applications. IEEE, 2006. http://dx.doi.org/10.1109/cnna.2006.341608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gu, Xin, Susan Brantley, and Ruxue Liao. "Biotite oxidation, fracturing and subsurface particle transport under a granitoid watershed." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pugliese, L., T. G. Poulsen, and S. Straface. "Relating solute and Gas Dispersion in Granite at Different Transport Velocities." In Fifth Biot Conference on Poromechanics. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412992.259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kong, Lingbao, Zhenzhen Xu, and Min Xu. "Research and design of functional microstructures with directional transport for bionic microfluidics." In Micro- and Nano-Optics, Catenary Optics, and Subwavelength Electromagnetics, edited by Reinhart Poprawe, Bin Fan, Xiong Li, Min Gu, Mingbo Pu, and Xiangang Luo. SPIE, 2019. http://dx.doi.org/10.1117/12.2504802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biotin transporter"

1

Beck, Aaron. NAPTRAM - Plastiktransportmechanismen, Senken und Interaktionen mit Biota im Nordatlantik / NAPTRAM - North Atlantic plastic transport mechanisms, sinks, and interactions with biota, Cruise No. SO279, Emden (Germany) – Emden (Germany), 04.12.2020 – 05.01.2021. Gutachterpanel Forschungsschiffe Bonn, 2021. http://dx.doi.org/10.3289/cr_so279.

Повний текст джерела
Анотація:
The coastal and open oceans represent a major, but yet unconstrained, sink for plastics. It is likely that plastic-biota interactions are a key driver for the fragmentation, aggregation, and vertical transport of plastic litter from surface waters to sedimentary sinks. Cruise SO279 conducted sampling to address core questions of microplastic distribution in the open ocean water column, biota, and sediments. Seven stations were sampled between the outer Bay of Biscay and the primary working area south of the Azores. Additional samples were collected from surface waters along the cruise track to link European coastal and shelf waters with the open ocean gyre. Microplastic samples coupled with geochemical tracer analyses will build a mechanistic understanding of MP transport and its biological impact reaching from coastal seas to the central gyre water column and sinks at the seabed. Furthermore, floating plastics were sampled for microbial community and genetic analyses to investigate potential enzymatic degradation pathways. Cruise SO279 served as the third cruise of a number of connected research cruises to build an understanding of the transport pathways of plastic and microplastic debris in the North Atlantic from the input through rivers and air across coastal seas into the accumulation spots in the North Atlantic gyre and the vertical export to its sink at the seabed. The cruise was an international effort as part of the JPI Oceans project HOTMIC (“HOrizontal and vertical oceanic distribution, Transport, and impact of MICroplastics”) and the BMBF funded project PLASTISEA (‘Harvesting the marine Plastisphere for novel cleaning concepts’), and formed a joint effort of HOTMIC and PLASTISEA researchers from a range of countries and institutes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McKenzie, D. H., L. L. Cadwell, K. A. Gano, W. E. Jr Kennedy, B. A. Napier, R. A. Peloquin, L. A. Prohammer, and M. A. Simmons. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Estimation of radiation dose to man resulting from biotic transport: the BIOPORT/MAXI1 software package. Volume 5. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/5852287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gallegos, A. F., and W. J. Wenzel. Runoff and sediment yield model for predicting nuclide transport in watersheds using BIOTRAN. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6445953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abdelghani, A., Y. Pramar, and T. Mandal. Biotic and abiotic studies on the biological fate, transport and ecotoxicity of toxic and hazardous waste in the Mississippi River basin. Office of Scientific and Technical Information (OSTI), May 1996. http://dx.doi.org/10.2172/254367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Caritat, P. de, and U. Troitzsch. Towards a regolith mineralogy map of the Australian continent: a feasibility study in the Darling-Curnamona-Delamerian region. Geoscience Australia, 2021. http://dx.doi.org/10.11636/record.2021.035.

Повний текст джерела
Анотація:
Bulk quantitative mineralogy of regolith is a useful indicator of lithological precursor (protolith), degree of weathering, and soil properties affecting various potential landuse decisions. To date, no national-scale maps of regolith mineralogy are available in Australia. Catchment outlet sediments collected over 80% of the continent as part of the National Geochemical Survey of Australia (NGSA) afford a unique opportunity to rapidly and cost-effectively determine regolith mineralogy using the archived sample material. This report releases mineralogical data and metadata obtained as part of a feasibility study in a selected pilot area for such a national regolith mineralogy database and atlas. The area chosen for this study is within the Darling-Curnamona-Delamerian (DCD) region of southeastern Australia. The DCD region was selected as a ‘deep-dive’ data acquisition and analysis by the Exploration for the Future (2020-2024) federal government initiative managed at Geoscience Australia. One hundred NGSA sites from the DCD region were prepared for X-Ray Diffraction (XRD) analysis, which consisted of qualitative mineral identification of the bulk samples (i.e., ‘major’ minerals), qualitative clay mineral identification of the <2 µm grain-size fraction, and quantitative analysis of both ‘major’ and clay minerals of the bulk sample. The identified mineral phases were quartz, plagioclase, K-feldspar, calcite, dolomite, gypsum, halite, hematite, goethite, rutile, zeolite, amphibole, talc, kaolinite, illite (including muscovite and biotite), palygorskite (including interstratified illite-smectite and vermiculite), smectite (including interstratified illite-smectite), vermiculite, and chlorite. Poorly diffracting material (PDM) was also quantified and reported as ‘amorphous’. Mineral identification relied on the EVA® software, whilst quantification was performed using Siroquant®. Resulting mineral abundances are reported with a Chi-squared goodness-of-fit between the actual diffractogram and a modelled diffractogram for each sample, as well as an estimated standard error (esd) measurement of uncertainty for each mineral phase quantified. Sensitivity down to 0.1 wt% (weight percent) was achieved, with any mineral detection below that threshold reported as ‘trace’. Although detailed interpretation of the mineralogical data is outside the remit of the present data release, preliminary observations of mineral abundance patterns suggest a strong link to geology, including proximity to fresh bedrock, weathering during sediment transport, and robust relationships between mineralogy and geochemistry. The mineralogical data generated by this study are presented in Appendix A of this report and are downloadable as a .csv file. Mineral abundance or presence/absence maps are shown in Appendices B and C to document regional mineralogical patterns.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Epel, Bernard L., Roger N. Beachy, A. Katz, G. Kotlinzky, M. Erlanger, A. Yahalom, M. Erlanger, and J. Szecsi. Isolation and Characterization of Plasmodesmata Components by Association with Tobacco Mosaic Virus Movement Proteins Fused with the Green Fluorescent Protein from Aequorea victoria. United States Department of Agriculture, September 1999. http://dx.doi.org/10.32747/1999.7573996.bard.

Повний текст джерела
Анотація:
The coordination and regulation of growth and development in multicellular organisms is dependent, in part, on the controlled short and long-distance transport of signaling molecule: In plants, symplastic communication is provided by trans-wall co-axial membranous tunnels termed plasmodesmata (Pd). Plant viruses spread cell-to-cell by altering Pd. This movement scenario necessitates a targeting mechanism that delivers the virus to a Pd and a transport mechanism to move the virion or viral nucleic acid through the Pd channel. The identity of host proteins with which MP interacts, the mechanism of the targeting of the MP to the Pd and biochemical information on how Pd are alter are questions which have been dealt with during this BARD project. The research objectives of the two labs were to continue their biochemical, cellular and molecular studies of Pd composition and function by employing infectious modified clones of TMV in which MP is fused with GFP. We examined Pd composition, and studied the intra- and intercellular targeting mechanism of MP during the infection cycle. Most of the goals we set for ourselves were met. The Israeli PI and collaborators (Oparka et al., 1999) demonstrated that Pd permeability is under developmental control, that Pd in sink tissues indiscriminately traffic proteins of sizes of up to 50 kDa and that during the sink to source transition there is a substantial decrease in Pd permeability. It was shown that companion cells in source phloem tissue export proteins which traffic in phloem and which unload in sink tissue and move cell to cell. The TAU group employing MP:GFP as a fluorescence probe for optimized the procedure for Pd isolation. At least two proteins kinases found to be associated with Pd isolated from source leaves of N. benthamiana, one being a calcium dependent protein kinase. A number of proteins were microsequenced and identified. Polyclonal antibodies were generated against proteins in a purified Pd fraction. A T-7 phage display library was created and used to "biopan" for Pd genes using these antibodies. Selected isolates are being sequenced. The TAU group also examined whether the subcellular targeting of MP:GFP was dependent on processes that occurred only in the presence of the virus or whether targeting was a property indigenous to MP. Mutant non-functional movement proteins were also employed to study partial reactions. Subcellular targeting and movement were shown to be properties indigenous to MP and that these processes do not require other viral elements. The data also suggest post-translational modification of MP is required before the MP can move cell to cell. The USA group monitored the development of the infection and local movement of TMV in N. benthamiana, using viral constructs expressing GFP either fused to the MP of TMV or expressing GFP as a free protein. The fusion protein and/or the free GFP were expressed from either the movement protein subgenomic promoter or from the subgenomic promoter of the coat protein. Observations supported the hypothesis that expression from the cp sgp is regulated differently than expression from the mp sgp (Szecsi et al., 1999). Using immunocytochemistry and electron microscopy, it was determined that paired wall-appressed bodies behind the leading edge of the fluorescent ring induced by TMV-(mp)-MP:GFP contain MP:GFP and the viral replicase. These data suggest that viral spread may be a consequence of the replication process. Observation point out that expression of proteins from the mp sgp is temporary regulated, and degradation of the proteins occurs rapidly or more slowly, depending on protein stability. It is suggested that the MP contains an external degradation signal that contributes to rapid degradation of the protein even if expressed from the constitutive cp sgp. Experiments conducted to determine whether the degradation of GFP and MP:GFP was regulated at the protein or RNA level, indicated that regulation was at the protein level. RNA accumulation in infected protoplast was not always in correlation with protein accumulation, indicating that other mechanisms together with RNA production determine the final intensity and stability of the fluorescent proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії