Добірка наукової літератури з теми "Biophotonic fiber"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biophotonic fiber".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biophotonic fiber":

1

Kang, Taeyoung, Yongjun Cho, Kyeong Min Yuk, Chan Yeong Yu, Seung Ho Choi, and Kyung Min Byun. "Fabrication and Characterization of Novel Silk Fiber-Optic SERS Sensor with Uniform Assembly of Gold Nanoparticles." Sensors 22, no. 22 (November 21, 2022): 9012. http://dx.doi.org/10.3390/s22229012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Biocompatible optical fibers and waveguides are gaining attention as promising platforms for implantable biophotonic devices. Recently, the distinct properties of silk fibroin were extensively explored because of its unique advantages, including flexibility, process compatibility, long-term biosafety, and controllable biodegradability for in vitro and in vivo biomedical applications. In this study, we developed a novel silk fiber for a sensitive optical sensor based on surface-enhanced Raman spectroscopy (SERS). In contrast to conventional plasmonic nanostructures, which employ expensive and time-consuming fabrication processes, gold nanoparticles were uniformly patterned on the top surface of the fiber employing a simple and cost-effective convective self-assembly technique. The fabricated silk fiber-optic SERS probe presented a good performance in terms of detection limit, sensitivity, and linearity. In particular, the uniform pattern of gold nanoparticles contributed to a highly linear sensing feature compared to the commercial multi-mode fiber sample with an irregular and aggregated distribution of gold nanoparticles. Through further optimization, silk-based fiber-optic probes can function as useful tools for highly sensitive, cost-effective, and easily tailored biophotonic platforms, thereby offering new capabilities for future implantable SERS devices.
2

Taylor, James R. "Tutorial on fiber-based sources for biophotonic applications." Journal of Biomedical Optics 21, no. 6 (June 10, 2016): 061010. http://dx.doi.org/10.1117/1.jbo.21.6.061010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Monti, Tamara, and Gabriele Gradoni. "Hollow-Core Coaxial Fiber Sensor for Biophotonic Detection." IEEE Journal of Selected Topics in Quantum Electronics 20, no. 2 (March 2014): 134–42. http://dx.doi.org/10.1109/jstqe.2013.2280497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Runcorn, Timothy H., Frederik G. Gorlitz, Robert T. Murray, and Edmund J. R. Kelleher. "Visible Raman-Shifted Fiber Lasers for Biophotonic Applications." IEEE Journal of Selected Topics in Quantum Electronics 24, no. 3 (May 2018): 1–8. http://dx.doi.org/10.1109/jstqe.2017.2770101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pallarés-Aldeiturriaga, David, Pablo Roldán-Varona, Luis Rodríguez-Cobo, and José Miguel López-Higuera. "Optical Fiber Sensors by Direct Laser Processing: A Review." Sensors 20, no. 23 (December 6, 2020): 6971. http://dx.doi.org/10.3390/s20236971.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The consolidation of laser micro/nano processing technologies has led to a continuous increase in the complexity of optical fiber sensors. This new avenue offers novel possibilities for advanced sensing in a wide set of application sectors and, especially in the industrial and medical fields. In this review, the most important transducing structures carried out by laser processing in optical fiber are shown. The work covers different types of fiber Bragg gratings with an emphasis in the direct-write technique and their most interesting inscription configurations. Along with gratings, cladding waveguide structures in optical fibers have reached notable importance in the development of new optical fiber transducers. That is why a detailed study is made of the different laser inscription configurations that can be adopted, as well as their current applications. Microcavities manufactured in optical fibers can be used as both optical transducer and hybrid structure to reach advanced soft-matter optical sensing approaches based on optofluidic concepts. These in-fiber cavities manufactured by femtosecond laser irradiation followed by chemical etching are promising tools for biophotonic devices. Finally, the enhanced Rayleigh backscattering fibers by femtosecond laser dots inscription are also discussed, as a consequence of the new sensing possibilities they enable.
6

Tseng, Sheng-Hao, Tzu-Feng Huang, Jun-Liang Yeh, and Ming-Che Chan. "Signal Enhancement by Fiber-Dispersion in Sub-GHz Frequency Domain Biophotonic Diagnosis Systems." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 1 (January 2019): 1–7. http://dx.doi.org/10.1109/jstqe.2018.2846054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hurot, Charlotte, Wan Zakiah Wan Ismail, and Judith M. Dawes. "Random laser in a fiber: combined effects of guiding and scattering lead to a reduction of the emission threshold." Optical Data Processing and Storage 3, no. 1 (September 26, 2017): 97–100. http://dx.doi.org/10.1515/odps-2017-0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Random fiber lasers incorporate scattering particles with optical gain in a fiber geometry and offer potential for sensing and biophotonics applications. In this work, the combined effects of waveguiding and scattering in random fiber lasers were investigated. A dye solution with nanoparticles was inffltrated into the hollow core of the microstructured optical fibers and the fibers were side pumped by a frequency-doubled Nd:YAG laser. The resulting emission threshold was reduced in comparison with the bulk solution.We used a Matlab model to gain a better understanding of the competing feedback mechanisms involved.
8

Månefjord, Hampus, Meng Li, Christian Brackmann, Nina Reistad, Anna Runemark, Jadranka Rota, Benjamin Anderson, Jeremie T. Zoueu, Aboma Merdasa, and Mikkel Brydegaard. "A biophotonic platform for quantitative analysis in the spatial, spectral, polarimetric, and goniometric domains." Review of Scientific Instruments 93, no. 11 (November 1, 2022): 113709. http://dx.doi.org/10.1063/5.0095133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Advanced instrumentation and versatile setups are needed for understanding light interaction with biological targets. Such instruments include (1) microscopes and 3D scanners for detailed spatial analysis, (2) spectral instruments for deducing molecular composition, (3) polarimeters for assessing structural properties, and (4) goniometers probing the scattering phase function of, e.g., tissue slabs. While a large selection of commercial biophotonic instruments and laboratory equipment are available, they are often bulky and expensive. Therefore, they remain inaccessible for secondary education, hobbyists, and research groups in low-income countries. This lack of equipment impedes hands-on proficiency with basic biophotonic principles and the ability to solve local problems with applied physics. We have designed, prototyped, and evaluated the low-cost Biophotonics, Imaging, Optical, Spectral, Polarimetric, Angular, and Compact Equipment (BIOSPACE) for high-quality quantitative analysis. BIOSPACE uses multiplexed light-emitting diodes with emission wavelengths from ultraviolet to near-infrared, captured by a synchronized camera. The angles of the light source, the target, and the polarization filters are automated by low-cost mechanics and a microcomputer. This enables multi-dimensional scatter analysis of centimeter-sized biological targets. We present the construction, calibration, and evaluation of BIOSPACE. The diverse functions of BIOSPACE include small animal spectral imaging, measuring the nanometer thickness of a bark-beetle wing, acquiring the scattering phase function of a blood smear and estimating the anisotropic scattering and the extinction coefficients, and contrasting muscle fibers using polarization. We provide blueprints, component list, and software for replication by enthusiasts and educators to simplify the hands-on investigation of fundamental optical properties in biological samples.
9

Novta, Evgenije, Tijana Lainovic, Dusan Grujic, Jelena Komsic, Dejan Pantelic, and Larisa Blazic. "Novel biophotonics-based techniques in dental medicine - a literature review." Medical review 73, no. 11-12 (2020): 364–68. http://dx.doi.org/10.2298/mpns2012364n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction. Biophotonics deals with interactions between light and biological matter, integrating knowledge of physics, chemistry, engineering, biology, and medicine for solving specific biomedical or life science problems. Due to the ability to provide non-invasive, highly sensitive tissue information and inducing specific localized tissue ablation, biophotonics-based technologies may be of utmost importance in improving dental healthcare. The aim of this review article is to give an overview of contemporary biophotonics-based technologies and their applications in dental research and clinical practice. Various applications of biophotonics-based technologies. Biomedical imaging techniques (nonlinear microscopy methods and optical coherence tomography), photo-mechanical methods (digital holographic interferometry, photo-elasticity, digital image correlation, Moir? interferometry), optical spectroscopy techniques (Raman and Fourier transform infrared spectroscopy, Brillouin light scattering spectroscopy), fiber Bragg grating sensors, photodynamic therapy, photo-biostimulation, and femtosecond laser applications are presented in this paper. Conclusion. In accordance with the modern tendencies of prevention and timely diagnosis of oral diseases, biophotonics may be considered the leading scientific discipline on the path of progress of dental medicine and technology. Therefore, this paper provides an overview of modern methods based on biophotonics and summarizes their applicability focusing on the field of dental medicine.
10

Tu, Haohua, and Stephen A. Boppart. "Coherent fiber supercontinuum for biophotonics." Laser & Photonics Reviews 7, no. 5 (July 23, 2012): 628–45. http://dx.doi.org/10.1002/lpor.201200014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biophotonic fiber":

1

Hongisto, Mikko. "Développement de verres et vitrocéramiques dopés ytterbium pour l'optique et réponses sous différents types de traitements." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse propose une étude sur la modification des propriétés des composés vitreux dopés par des ions Yb3+, à travers des variations de composition, de traitements thermiques ou par rayonnement ainsi que par immersion en milieu aqueux. De nouveaux verres/vitrocéramique type oxyfluorophosphate dopés Yb3+ ont été développés et caractérisés pour obtenir des informations fondamentales sur la cristallisation. L’étude propose également le développement de fibres bioactives cylindriques et rectangulaires à base de verre borosilicate dopées et non dopées constituant respectivement le cœur et la gaine de la fibre. La stabilité de ces fibres en milieu aqueux est suivie en fonction de la géométrie. Cette étude fournit également des informations sur la résistance aux défauts en fonction de la nature du réseau et sur le développement de nouvelles fibres bioactives, dont l’émission pourrait être utilisée pour suivre la dissolution de la fibre dans le milieu aqueux. Cette étude contribue à une meilleure compréhension fondamentale sur la façon dont les modifications de composition et les processus thermiques / de rayonnement peuvent moduler les paramètres de performance des matériaux vitreux dopés par des ions Yb3+
This thesis studies the modification of the properties of glass compounds doped with Yb3+ ions, through variations in composition, thermal or radiation treatments as well as by immersion in aqueous medium. New Yb3+ doped oxyfluorophosphate glass/glass-ceramics have been developed and characterized to obtain fundamental information on crystallization. The study also proposes the development of cylindrical and rectangular bioactive fibers based on doped and non-doped borosilicate glass constituting the core and the clad of the fiber respectively. The stability of these fibers in aqueous medium is monitored according to the geometry. This study also provides information on resistance to defects depending on the nature of the network and on the development of new bioactive fibers, the emission of which could be used to follow the dissolution of the fiber in aqueous medium. This study contributes to a better fundamental understanding of how composition changes and thermal/radiation processes can modulate the performance parameters of glass materials doped by Yb3+ ions
2

Oliveira, Teixeira Leite Ivo Jorge. "Advanced fibre-based endoscopy for biophotonics applications." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/c6ec5e01-199a-4caf-a154-a51633706ed2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Despite the tremendous advances witnessed in light microscopy over the past two decades, non-invasive optical imaging is still limited to penetration depths smaller than 1 mm into tissue. Multiple scattering caused by the refractive index inhomogeneities of biological matter rapidly distort any optical wavefront prop-agating through, rendering tissues opaque. Such turbidity restricts imaging, as well as other biophotonics techniques, to the most superficial layers of tissue. A perspective strategy to overcome the turbidity of living matter exploits holographic light control in multimode optical fibres. This allows devising min-imally invasive imaging probes with footprints far bellow those of conventional endoscopes, as well as enhanced spatial resolution up to the diffraction limit de-termined by the numerical aperture (NA) of the fibre. In this Thesis, high-resolution focussing is demonstrated with unprecedented ability across novel specialty fibres offering very-high NAs, by devising a system and methodologies which allow counteracting the severe mode-dependent loss affecting such fibres. The high quality and NA of the generated foci is capable of 3D optical confinement of dielectric microparticles, thus enabling the deliv-ery of holographic optical tweezers introduced through a bare optical fibre with cross-section comparable to a single cell. The holographic methods developed allow the manipulation of complex 3D arrangements of particles, as well as their independent positioning with nanometre-scale precision in all three dimensions. Separately, a multimode fibre based deep-brain fluorescence imaging is demonstrated in animal models in vivo, allowing the identification of neuronal structures at depths exceeding 2 mm and resolving fine details down to ≈1 µm resolution.
3

CECI, GINISTRELLI EDOARDO. "Advanced application of phosphate glass optical fibres in photonics and biophotonics." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2703875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The work of this thesis is focused on two research lines: the first on the development of high power fibre lasers, the second on the development of bioresorbable, inorganic optical devices. The common aspect of these two lines is the use of phosphate glasses as a base material for the fabrication of specialty optical fibres. Phosphate glasses are extremely interesting materials in virtue of the unique combination of their properties. They have been widely exploited in laser science as active gain media, due to the high solubility of rare earths in the glass matrix, and to the high absorption/emission cross section. Calcium phosphate glasses, on the other hand, have been studied as promising biomaterials due to their solubility in aqueous media, and to the ability of being safely reabsorbed by the human body. The thesis starts with a literature review on the use of phosphate glasses in the fabrication of optical fibres and lasers. The properties of rare earth doped glasses are reviewed and a detailed description of the quenching phenomena in doped glasses reported and compared to the major results obtained in the literature. The study of the literature reveals how the issues of heat dissipation, thermal expansion and mechanical stability are still relevant problems in the field of high power lasers. These issues were studied in the course of the thesis. Results obtained on the development of a Nd3+- doped phosphate cane laser are reported in Chapter 5. Cane lasers have the same core/cladding structure that is typical of an optical fibre, but present a much larger diameter. This allows an increased mechanical stability of the device, combined with the easy cooling and good beam quality that are typical for a fibre laser. The development of a first prototype of a phosphate cane laser required the fabrication of a suitable glass (namely CL) that is featured by an exceptional matching of thermo-mechanical properties between core and cladding. A core glass composition (CL1:Nd) and a cladding glass composition (CL1) that present a difference in the glass transition temperature of only 8°C and identical coefficient of thermal expansion were fabricated ad-hoc for this scope. The materials were fully characterized and used for the fabrication of a cane with a diameter of 800μm. Power scaling experiments, performed on a 60mm-long section of the cane, show laser emission at 1054mm, with a maximum output power of 2.5W and a slope efficiency of 44% with respect to the absorbed power. Another issue that emerged from the literature and from the studies of fibre/cane lasers is the interest in developing new fibres with complex geometry. Chapter 4 of this thesis describes work carried on this topic, focusing on the critical step of fabricating and assembling a fibre preform. With the aim to develop rapidly and effectively optical fibre preforms with a wide range of geometries, a project for the in-house development of an extrusion facility in Politecnico di Torino was kick-started. A first prototype of the facility is available, and preliminary results on the extrusion of phosphate glasses are presented. The second part of the thesis is dedicated to the development of resorbable optical materials. An overview on the use of calcium phosphate glasses in the biomedical field is given, with particular interest in the use of glass fibres in biomedical applications. Subsequently, the results obtained on the use of resorbable glasses in biophotonics are reported. The idea at the basis of this research is to combine in a single device the two main field of application of phosphate glasses: the biomedical field and the optical one. This becomes particularly interesting as it enables fabricating multifunctional optical devices, which are of interest in optical sensing and photo-therapy. In particular, the bioresorbability minimizes the impact of the therapies, eliminating the need of removal surgery. Chapter 4 reports a detailed description of the design, fabrication and characterization of transparent calcium phosphate glasses. The materials show a window of transparency ranging from 240 to 2600nm, therefore are able to guide light in the near UV region, and the refractive index can be tailored according to the composition. The glasses proved to be stable against devitrification and suitable for fibre drawing. Single material fibres were fabricated and proved to be soluble in aqueous media, in simulated physiological conditions. Once the fabrication of the material is complete, resorbable glasses were used for the fabrication of single and multi-mode optical fibres. Step index fibres were fabricated using the rod in tube technique and the attenuation loss was measured by cut-back method. The fibres showed values of attenuation loss between 5 and 15dB/m in the visible region and from 2 to 5dB/m in the near infra-red. These values are from one to two orders of magnitude lower than those reported in literature for other resorbable optical devices. These results paved the way towards the application of such fibres for the inscription of fibre Bragg-gratings and for the use in time-domain diffuse optics experiments. Preliminary results on these topics are presented in Chapter 6. Finally, resorbable hollow fibres were fabricated by drawing a tube-shaped preform. These fibres were used for obtaining a controlled release of a photosensitive drug, that could be activated by the light guided trough the same fibre. Experiments on the controlled release of drugs are still ongoing, and involved the development of a silanization method for phosphate glasses, in order to increase the release time of drugs.
4

Cheung, Ka-yi, and 張嘉兒. "Optical parametric processes in biophotonics and microwave photonics applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45207835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Manesco, Clara. "Etude photonique et nano-mécanique pour le suivi sans marquage de la cicatrice fibrotique dans les lésions de la moelle épinière chez la souris." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les lésions de la moelle épinière (LME) font partie des plus graves maladies du système nerveux central (SNC). Elles peuvent induire des effets physiques et psycho-sociaux dramatiques chez les patients et d’importants coûts pour le système de santé. Après une lésion, une cascade d’évènements est enclenchée perturbant les structures et populations cellulaires à proximité. Une des conséquences est la formation de la cicatrice gliale, constituée de diverses populations cellulaires telles que les formes activées de microglies et d’astrocytes. Les fibroblastes produisant du collagène sous l’action d’astrocytes participent au processus fibrotique. La cicatrice gliale constitue une dense barrière physique et chimique, aux effets à la fois bénéfiques et délétères. Aucun traitement curatif n’existe à l’heure actuelle. Cependant, des thérapies pharmaceutiques ont été développées, notamment par la déplétion transitoire de la microglie en utilisant le GW2580, un traitement qui inhibe le récepteur CSF1R impliqué dans la partie proliférative des cellules gliales.Le rôle du collagène dans la formation de la cicatrice gliale a été peu exploré comparé à ceux de la microglie et des astrocytes. Le collagène fibrillaire tel que le collagène de type I est bien connu dans les processus de cicatrisation classiques et se caractérise par une organisation supramoléculaire en fibrilles striées regroupées en une structure cylindre et finalement associées en fibres. Cet assemblage lui confère des propriétés optiques uniques pouvant être directement détectées par des mesures d’optique non-linéaire (ONL) telle que la génération de seconde harmonique (GSH) sans préparation ou un marquage de l’échantillon. De plus, la GSH est un signal cohérent dépendant de la polarisation du laser incident, et des mesures de GSH résolue en polarisation (P-GSH) peuvent déterminer l’arrangement supramoléculaire des fibres de collagène associé à la symétrie des fibrilles. L’approche globale proposée était d’exploiter le potentiel de l’ONL pour détecter et caractériser le collagène fibrillaire dans un modèle murin de LME, corrélant les informations structurales avec le comportement biomécanique du tissu, déterminé par microscopie à force atomique (MFA) en mesurant les forces appliquées lors de micro-nano indentations. Les fibres de collagène visibles grâce à leur signal en GSH ont été caractérisées via deux méthodes : le logiciel CurveAlign dédié à l’analyse des fibres de collagène dans les échantillons biologiques, et un algorithme codé au sein de l’équipe basé sur le «Fingerprint algorithm» pour une analyse plus adaptée à notre étude. Un « squelette » de fibres généré par cet algorithme a permis d’extraire des métriques pertinentes comme la densité de fibres, leur tortuosité, ainsi que leur orientation à un niveau local (calculant la variation circulaire de l’alignement local) et global (calculant l’entropie statistique). Le but de notre approche d’imagerie multimodale sans marquage était de révéler et suivre des biomarqueurs de la structure fibrotique, suivre l’élasticité de tissus de moelle épinière lésée à différent temps après lésion, et évaluer le potentiel effet d’un traitement au GW2580 à 6 semaines post lésion. Le signal GSH émis par le collagène fibrillaire a permis de l’identifier comme biomarqueur de la lésion. Une augmentation de la densité de fibres ainsi que la présence de fibres plus tortueuses ont été observées entre 1 et 6 semaines post lésion. Les mesures en P-GSH ont révélé la présence de deux types de symétrie des fibrilles (cylindrique et trigonal) à tous les temps après lésion. L’étude des propriétés nano-mécaniques a montré un durcissement notable de la zone lésée à partir d’une semaine post lésion, certainement corrélé à la formation de fibres de collagène.Ces observations indiquent la concomitance d’importantes modifications structurales et mécaniques au cours de l’évolution de la cicatrice fibrotique suite à une LME chez la souris
Spinal cord injuries (SCI) are part of the most impactful pathologies in the central nervous system (CNS). They can induce dramatic physical and psycho-social effects for the patients, associated with a consequent impact on the health care system. When an injury occurs, it induces a cascade of events disturbing the surrounding structures and cell populations, and includes the formation of a glial scar. This scar is composed of various cell populations such as activated microglial and astrocytes. Fibroblasts are producing collagen with the support of reactive astrocytes and are involved in the fibrotic process. The glial scar is a dense chemical and physical barrier with dual effects on the recovery. No curative treatment is currently available. However, promising pharmaceutical approaches have been developed through the transient depletion of microglia using a GW2580 treatment, an inhibitor of CSF1R receptor that specifically regulates the proliferative part of microglial cells.The exploration of collagen in the glial scar formation has raised poor attention comparing to the interest in microglia and astrocytes roles. Fibrillar collagen as collagen I is well known in common wound healing processes occurring in the rest of the body, and is defined by a supramolecular organization in cross-striated fibril shaped into a cylindrical structure and eventually associated into fibers. This assembly leads to unique optical properties that can be directly monitored by non-linear optical measurements (NLO), such as Second Harmonic Generation (SHG), without special sample preparation and without any exogenous labeling. As SHG is a coherent signal that depends on the polarization of the incident laser by performing Polarization-resolved SHG (P-SHG) collagen fibers arrangement at a supramolecular level can be assessed related to the fibrils nature (related to their symmetry profiles).The global approach proposed in our work was to exploit the potential of NLO optics in detecting and characterizing fibrillar collagen in SCI (using Multiphoton microscopy to visualize simultaneously 2-photon excited fluorescence and SHG signals) in a mouse model and to correlate the structural information to the biomechanical behavior of the tissue via micro/nano-indentation force measurements with Atomic Force Microscopy (AFM). Collagen fibers exhibited by their SHG signal were characterized with two methods: CurveAlign software dedicated to collagen fibers analysis in biological samples and a home-build Fingerprint algorithm establishing an analysis pipeline more adapted to our study. We eventually generated a skeleton map of the fibers to extract relevant metrics such as the fibers’ density, tortuosity and orientation at local level (calculating the circular variance of the local orientation) and at global level (calculating the statistical entropy). Our multimodal label-free imaging approach was thus dedicated to reveal and monitor lesion biomarkers from the fibrotic structure and the elasticity of injured spinal cord tissues after various time-points post-injury and to investigate the potential effect of a pharmacological treatment with GW2580 at 6 weeks post injury. The SHG signal exhibited by fibrillar collagen enabled to specifically monitor it as a biomarker of the lesion. An increase in collagen fibers density and the formation of more tortuous fibers overtime from 1 week to 6 weeks post-injury was observed. P-SHG measurements revealed both fibrils symmetry types (cylindrical and trigonal) at all the time-points post injury. Nano-mechanical investigations revealed a noticeable hardening of the injured area from 1week post injury, correlated with collagen fibers’ formation.These observations indicate the concomitance of important structural and mechanical modifications during the fibrotic scar evolution following a spinal cord injury in mice
6

Chan, Ming-Che, and 詹明哲. "Fiber-Delivered Femtosecond Light Sources and Their Industrial and Biophotonic Applications." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/95966869179818134918.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
博士
國立臺灣大學
光電工程學研究所
97
In this thesis, for different applications, various fiber-delivered femtosecond light sources and systems were built up to make the fiber-optics pulsed sources more promising and more practical in biophotonic and industrial applications. Subsequently, the purpose of this thesis is threefold. First, it is to develop different fiber-delivered femtoscond sources for nonlinear microscopy and nonlinear endoscopy. Secondly, it is to develop a widely wavelength tunable fiber-delivered femtosecond source, which is highly desirable for many different applications. Finally, the third objective is to present a new application of the demonstrated fiber-delivered wavelength tunable source on the photonic true time delays. In the regard of practical nonlinear light microscopy, a compact, self-starting high-power femtosecond Cr:Forsterite laser was set up. Delivered by a large-mode-area photonic crystal fiber, the generated chirped laser pulses can be compressed down to be with a nearly transform limited pulsewidth. Based on this fiber-delivered and fiber-enhanced Cr:Forsterite laser source, a compact and reliable two-photon fluorescence microscopy system can thus be realized. In regard to practical clinical applications, following the previous demonstration of nonlinear light microscopy, a beam-scanning nonlinear light endoscope based on a flexible fiber bundle was setup. Excited with a femtosecond Cr:Forsterite laser, the degradation in multi-photon multi-harmonic excitation efficiency due to the pulse broadening effect was significantly reduced without utilizing any external pulse-compression or spectral-compression devices. The system’s spatial resolution has been characterized and several image examples will be given. Moreover, except the delivery function, optical fibers can be utilized as broadband wavelength shifters. A widely tunable femtosecond light source, based on the soliton-self-frequency-shift effect of high power Cr:Forsterite laser pulses propagating inside a highly nonlinear photonic crystal fiber, was successfully set up. A record 910nm wavelength tuning range from 1.2

Книги з теми "Biophotonic fiber":

1

Li, Xingde. Optical sensors and biophotonics: 2-6 November 2009, Shanghai, China. Edited by Optical Society of America and SPIE (Society). Bellingham, Wash: SPIE, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Luo, Qingming. Optical sensors and biophotonics II: 8-12 December 2010, Shanghai, China. Edited by SPIE (Society). Bellingham, Wash: SPIE, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Biophotonic fiber":

1

Keiser, Gerd. "Optical Fibers for Biophotonic Applications." In Graduate Texts in Physics, 55–95. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3482-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Keiser, Gerd. "Optical Fibers for Biophotonics Applications." In Graduate Texts in Physics, 53–89. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0945-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andresen, Esben R., and Hervé Rigneault. "Applications of Nonlinear Optical Fibers and Solitons in Biophotonics and Microscopy." In Shaping Light in Nonlinear Optical Fibers, 199–223. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119088134.ch7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ismail, Nur, Fei Sun, Fehmi Civitci, Kerstin Wörhoff, René M. De Ridder, Markus Pollnau, and Alfred Driessen. "Integrated Waveguide Probes as Alternatives to Fiber-Optic Probes for Backscattering and Fluorescence Measurements." In Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation, 395–96. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9977-8_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zheltikov, Aleksei M. "Microstructure Fibers in Biophotonics." In Handbook of Biophotonics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527643981.bphot011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yu, Linhui, Radhika K. Poduval, and Kartikeya Murari. "Optical fiber-based biosensing: applications in biology and medicine." In Biophotonics and Biosensing, 215–42. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-44-318840-4.00015-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Biophotonic fiber":

1

Wu, Huawen, Thomas Huser, Atul Parikh, and Yin Yeh. "Study of Membrane Dynamics with Biophotonic Techniques." In Asia Optical Fiber Communication and Optoelectronic Exposition and Conference. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/aoe.2008.sad3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Silvestre, Oscar F., Mark D. Holton, Huw D. Summers, Paul J. Smith, and Rachel J. Errington. "Hollow fiber: a biophotonic implant for live cells." In SPIE BiOS: Biomedical Optics, edited by Daniel L. Farkas, Dan V. Nicolau, and Robert C. Leif. SPIE, 2009. http://dx.doi.org/10.1117/12.809391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Krohn, David A. "Biophotonic sensors and smart fiber optic sensor networks." In Optics East 2005, edited by Arthur J. SedlacekIII, Steven D. Christesen, Roger J. Combs, and Tuan Vo-Dinh. SPIE, 2005. http://dx.doi.org/10.1117/12.632436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rius, Cristina, Tobias N. Ackermann, Beatriz Dorado, Xavier Muñoz-Berbel, Vicente Andrés, and Andreu Llobera. "Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease." In SPIE Microtechnologies, edited by Sander van den Driesche. SPIE, 2015. http://dx.doi.org/10.1117/12.2179062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chandrasekaran, Arvind, and Muthukumaran Packirisamy. "MOEMS based integrated microfluidic fiber-optic waveguides for biophotonic applications." In Photonics North 2005, edited by Warren C. W. Chan, Kui Yu, Ulrich J. Krull, Richard I. Hornsey, Brian C. Wilson, and Robert A. Weersink. SPIE, 2005. http://dx.doi.org/10.1117/12.628593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Basu, H., A. K. Dharmadhikari, J. A. Dharmadhikari, S. Sharma, and D. Mathur. "A biophotonic study of live, flowing red blood cells in an optical trap." In International Conference on Fiber Optics and Photonics, edited by Sunil K. Khijwania, Banshi D. Gupta, Bishnu P. Pal, and Anurag Sharma. SPIE, 2010. http://dx.doi.org/10.1117/12.897952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cheng, Ya, Jian Xu, Zhizhan Xu, Koji Sugioka, and Katsumi Midorikawa. "Femtosecond Laser Integration for Biophotonic Applications: A "Magic Brush" in the Micro/Nano-World." In Asia Optical Fiber Communication and Optoelectronic Exposition and Conference. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/aoe.2008.suh1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tu, Haohua, and Stephen A. Boppart. "Versatile photonic crystal fiber-enabled source for multi-modality biophotonic imaging beyond conventional multiphoton microscopy." In BiOS, edited by Ammasi Periasamy, Peter T. C. So, and Karsten König. SPIE, 2010. http://dx.doi.org/10.1117/12.841298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rivero, Desiree Santano, Lijiao Zu, Jiwei Xie, Peng Liu, Xuejun Zhang, Lei Shi, Abián B. Socorro Leránoz, et al. "Biophotonic Platform for Detection of Hallmarks of Alzheimer's Disease via Combined Microfluidics and Nanofunctionalized Fiber Sensors." In 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2023. http://dx.doi.org/10.1109/cleo/europe-eqec57999.2023.10231804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chiou, Arthur. "Biophotonics - a tutorial overview." In 2007 Asia Optical Fiber Communication and Optoelectronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/aoe.2007.4410697.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Biophotonic fiber":

1

Sharping, Jay E. Compact Fiber-Parametric Devices for Biophotonics Applications. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada565742.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії