Добірка наукової літератури з теми "Biomolecular encryption"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biomolecular encryption".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Biomolecular encryption"

1

Fischer, T., M. Neebe, T. Juchem, and N. A. Hampp. "Biomolecular optical data storage and data encryption." IEEE Transactions on Nanobioscience 2, no. 1 (March 2003): 1–5. http://dx.doi.org/10.1109/tnb.2003.810163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

K, Menaka. "ENHANCING INFORMATION ENCRYPTION WITH BIOMOLECULAR SEQUENCES USING NDES ALGORITHM." International Journal of Advanced Research in Computer Science 8, no. 9 (September 30, 2017): 482–85. http://dx.doi.org/10.26483/ijarcs.v8i9.5006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Benyahia, Kadda, Abdelkader Khobzaoui, and Soumia Benbakreti. "DNA sequences for robust encryption: a strategy for IoT security enhancement." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 1 (April 22, 2024): 1296–316. http://dx.doi.org/10.54021/seesv5n1-067.

Повний текст джерела
Анотація:
As the Internet of Things (IoT) permeates our lives, connecting everything from household appliances to complex industrial systems, the imperative to secure these devices intensifies. Cryptography, as a cornerstone of digital security, plays a crucial role in safeguarding transmission channels from intrusions and misuse. Cryptography secures communications and data within IoT networks by ensuring three key functions: confidentiality, integrity, and authentication. DNA-based cryptography emerges as a promising innovation in the field of cybersecurity, particularly for the Internet of Things (IoT), where data and communication security is an escalating concern. Utilizing the unique properties of DNA, such as its massive storage capacity and biomolecular complexity, this approach introduces a novel dimension of security. This study introduces a balanced approach within DNA cryptography to enhance message security in Internet of Things (IoT) settings. It outlines a method for creating secure symmetric keys using DNA sequences, typically derived from human chromosomes, and then applies biological techniques like transcription and a biological Xor operation. This step is succeeded by a translation phase that utilizes an index table created from an initial key, making the process more complex.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Abbasi, Ali Asghar, Mahdi Mazinani, and Rahil Hosseini. "Evolutionary-based image encryption using biomolecules and non-coupled map lattice." Optics & Laser Technology 140 (August 2021): 106974. http://dx.doi.org/10.1016/j.optlastec.2021.106974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Abbasi, Ali Asghar, Mahdi Mazinani, and Rahil Hosseini. "Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice." Optik 219 (October 2020): 164949. http://dx.doi.org/10.1016/j.ijleo.2020.164949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gao, Rui, Zhuang Cai, Jianbang Wang, and Huajie Liu. "Condensed DNA Nanosphere for DNA Origami Cryptography." Chemistry 5, no. 4 (November 8, 2023): 2406–17. http://dx.doi.org/10.3390/chemistry5040159.

Повний текст джерела
Анотація:
Maintaining the confidentiality and integrity of the messages during a transmission is one of the most important aims of encrypted communication systems. Many achievements were made using biomolecules to improve the quality of the messages in communication. At the same time, it is still a challenge to construct cooperative communications based on the interactions between biomolecules to achieve the confidentiality and integrity of the transmitted messages. DNA-based encrypted communications have been developed, and in particular, DNA-origami-based message encryption can combine steganography and pattern encryption and exhibits extremely high confidentiality. Nevertheless, limited by biological characteristics, encrypted messages based on DNA require a strict storage environment in the process of transmission. The integrity of the message encoded in the DNA may be damaged when the DNA is in an unfriendly and hard environment. Therefore, it is particularly significant to improve the stability of DNA when it is exposed to a harsh environment during transmission. Here, we encoded the information into the DNA strands that were condensed for encryption to form a nanosphere covered with a shell of SiO2, which brings high-density messages and exhibits higher stability than separated DNA. The solid shell of SiO2 could prevent DNA from contacting the harsh environment, thereby protecting the DNA structure and maintaining the integrity of the information. At the same time, DNA nanospheres can achieve high throughput input and higher storage density per unit volume, which contribute to confusing the message strand (M-strand) with the interference strand in the stored information. Condensing DNA into the nanosphere that is used for DNA origami cryptography has the potential to be used in harsh conditions with higher confidentiality and integrity for the transmitted messages.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sun, Lining. "(Digital Presentation) Tailored Rare Earth-Doped Nanomaterials Toward Information Storage and Deep Learning Decoding." ECS Meeting Abstracts MA2022-02, no. 51 (October 9, 2022): 1981. http://dx.doi.org/10.1149/ma2022-02511981mtgabs.

Повний текст джерела
Анотація:
Lanthanide-doped nanoparticles have been considered as one of the most promising luminescent materials due to their excellent properties such as high photochemical stability, long-lived (μs-ms) luminescence, narrow emission band, and low toxicity.Moreover, benefiting from a unique electronic structure (4fn5s25p6 , n = 0-14), lanthanides have discrete energy levels and exhibit practical wavelength conversion via downshifting and upconversion processes. Hence, their emissions cover the spectral regions from ultraviolet (UV) to near-infrared (NIR).[1,2] Here, my talk is mainly devoted to our recent developments, including (1) recently, we present a new composition of Er3+-based upconversion nanoparticles with color-switchable output under irradiation with 980, 808, or 1535 nm light for information security. The variation of excitation wavelengths changes the intensity ratio of visible (Vis)/near-infrared 1535 nm (NIR-II) emissions. Taking advantage of the Vis/NIR-II multi-modal emissions of upconversion nanoparticles and deep learning, we successfully demonstrated the storage and decoding of visible light information in pork tissue.[3] (2) we construct heterostructured nanocomposites based on upconversion nanoparticles and EuSe semiconductors by using cation exchange method. It is generally considered that epitaxial growth is difficult when the lattice mismatch is large between two materials. In this case, the cation exchange of Eu3+ ions and other rare-earth ions could promote the formation of buffer layers to reduce the lattice mismatch and promote the heterogeneous epitaxial growth of EuSe on the upconversion nanoparticles. The heterostructured nanocomposites can emit tunable multicolor fluorescence under excitation of UV, continuous NIR, and pulsed NIR light. Based on the advantage of multiple tunable luminescence, the nanocomposites are designed as optical modules to load optical information. This work enables multi-dimensional storage of information and provides new insights into the design and fabrication of next-generation storage materials. References [1] L. N. Sun, R. Wei, J. Feng, and H. J. Zhang, Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects, Coordination Chemistry Reviews, 2018, 364, 10-32. [2] G. Sun, Y. Xie, L. N. Sun, and H. J. Zhang, Lanthanide Upconversion and Downshifting Luminescence for Biomolecules Detection, Nanoscale Horizons, 2021, 6(10), 766 – 780. [3] Y. Song, M. Lu, G. A. Mandl, Y. Xie, G. Sun,J. Chen, X. Liu,J. A. Capobianco, and L. N. Sun, “Energy Migration Control of Multimodal Emissions in an Er3+-Doped Nanostructure for Information Encryption and Deep-Learning Decoding”, Angewandte Chemie International Edition , 2021, 60(44), 23790–23796.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Yinan, Fei Wang, Jie Chao, Mo Xie, Huajie Liu, Muchen Pan, Enzo Kopperger, et al. "DNA origami cryptography for secure communication." Nature Communications 10, no. 1 (November 29, 2019). http://dx.doi.org/10.1038/s41467-019-13517-3.

Повний текст джерела
Анотація:
AbstractBiomolecular cryptography exploiting specific biomolecular interactions for data encryption represents a unique approach for information security. However, constructing protocols based on biomolecular reactions to guarantee confidentiality, integrity and availability (CIA) of information remains a challenge. Here we develop DNA origami cryptography (DOC) that exploits folding of a M13 viral scaffold into nanometer-scale self-assembled braille-like patterns for secure communication, which can create a key with a size of over 700 bits. The intrinsic nanoscale addressability of DNA origami additionally allows for protein binding-based steganography, which further protects message confidentiality in DOC. The integrity of a transmitted message can be ensured by establishing specific linkages between several DNA origamis carrying parts of the message. The versatility of DOC is further demonstrated by transmitting various data formats including text, musical notes and images, supporting its great potential for meeting the rapidly increasing CIA demands of next-generation cryptography.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sheng, Chengju, Xiujuan Gao, Yanjun Ding та Mingming Guo. "Water‐Soluble Luminescent Polymers with Room Temperature Phosphorescence Based on the α‐Amino Acids". Macromolecular Rapid Communications, 15 травня 2024. http://dx.doi.org/10.1002/marc.202400201.

Повний текст джерела
Анотація:
AbstractNonconventional luminophores have received increasing attention, owing to their fundamental importance, advantages in outstanding biocompatibility, easy preparation, environmental friendliness and potential applications in sensing, imaging and encryption, etc. Purely organic molecules with outstanding fluorescence and room‐temperature phosphorescence (RTP) have emerged as a new library of benign afterglow agents. However, the cost, toxicity, high reactivity and poor stability of materials also limit their practical applications. Therefore, some natural products, synthetic compounds and biomolecules have entered horizons of people. The as‐designed exhibits sky blue and green fluorescence emission and green RTP emission (a lifetime of 343 ms and phosphorescence quantum of 15.3%) under air condition. This study presents an organic fluorescence for biological imaging and RTP for anti‐counterfeiting and encryption based on amino acids, maleic anhydride (MAH) and 4‐Vinylbenzenesulfonic acid sodium salt hydrate (SSS). This study provides a strategy for nonconventional luminophores in designing and synthesizing pure organic RTP materials.This article is protected by copyright. All rights reserved
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Xin, Yang Xu, Dan Luo, Gang Xu, Neal Xiong, and Xiu-Bo Chen. "The secure judgment of graphic similarity against malicious adversaries and its applications." Scientific Reports 13, no. 1 (March 21, 2023). http://dx.doi.org/10.1038/s41598-023-30741-6.

Повний текст джерела
Анотація:
AbstractWith the advent of the era of big data, privacy computing analyzes and calculates data on the premise of protecting data privacy, to achieve data ‘available and invisible’. As an important branch of secure multi-party computation, the geometric problem can solve practical problems in the military, national defense, finance, life, and other fields, and has important research significance. In this paper, we study the similarity problem of geometric graphics. First, this paper proposes the adjacency matrix vector coding method of isomorphic graphics, and use the Paillier variant encryption cryptography to solve the problem of isomorphic graphics confidentiality under the semi-honest model. Using cryptography tools such as elliptic curve cryptosystem, zero-knowledge proof, and cut-choose method, this paper designs a graphic similarity security decision protocol that can resist malicious adversary attacks. The analysis shows that the protocol has high computational efficiency and has wide application value in terrain matching, mechanical parts, biomolecules, face recognition, and other fields.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Biomolecular encryption"

1

Berton, Chloé. "Sécurité des données stockées sur molécules d’ADN." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.

Повний текст джерела
Анотація:
La quantité de données numériques produites dans le monde chaque année augmente exponentiellement et les supports actuels de stockage atteignent leurs limites. Dans ce contexte, le stockage de données sur molécules d'ADN est très prometteur. Stockant jusqu’à 10¹⁸ octets par gramme d'ADN pour une consommation d'énergie quasi nulle, il a une durée de vie 100 fois plus longue que les disques durs. Cette technologie de stockage étant en développement, il est opportun d’y intégrer nativement des mécanismes pour sécuriser les données. C’est l’objet de cette thèse. Notre première contribution est une analyse des risques de l’ensemble de la chaîne de stockage, qui nous a permis d’identifier des vulnérabilités des procédés numériques et biologiques, en termes de confidentialité, d’intégrité, de disponibilité et de traçabilité. Une seconde contribution est l’identification d’opérateurs élémentaires permettant des manipulations simples de l’ADN. Avec ceux-ci, nous avons développé notre troisième contribution, une solution de chiffrement DNACipher qui impose un déchiffrement biomoléculaire des molécules avant de pouvoir lire les données correctement. Cette solution, qui repose sur des enzymes, a nécessité le développement d’un codage des données numériques en séquences ADN appelée DSWE ; notre quatrième contribution. Cet algorithme respecte les contraintes liées aux procédés biologiques (e.g. homopolymères) et à notre DNACipher. Enfin, notre dernière contribution est une validation expérimentale de notre chaîne de stockage sécurisée. C’est la première preuve de concept montrant qu’il est possible de sécuriser ce nouveau support de stockage sur la base de manipulations biomoléculaires
The volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії