Зміст
Добірка наукової літератури з теми "Biomolecular encryption"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biomolecular encryption".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Biomolecular encryption"
Fischer, T., M. Neebe, T. Juchem, and N. A. Hampp. "Biomolecular optical data storage and data encryption." IEEE Transactions on Nanobioscience 2, no. 1 (March 2003): 1–5. http://dx.doi.org/10.1109/tnb.2003.810163.
Повний текст джерелаK, Menaka. "ENHANCING INFORMATION ENCRYPTION WITH BIOMOLECULAR SEQUENCES USING NDES ALGORITHM." International Journal of Advanced Research in Computer Science 8, no. 9 (September 30, 2017): 482–85. http://dx.doi.org/10.26483/ijarcs.v8i9.5006.
Повний текст джерелаBenyahia, Kadda, Abdelkader Khobzaoui, and Soumia Benbakreti. "DNA sequences for robust encryption: a strategy for IoT security enhancement." STUDIES IN ENGINEERING AND EXACT SCIENCES 5, no. 1 (April 22, 2024): 1296–316. http://dx.doi.org/10.54021/seesv5n1-067.
Повний текст джерелаAbbasi, Ali Asghar, Mahdi Mazinani, and Rahil Hosseini. "Evolutionary-based image encryption using biomolecules and non-coupled map lattice." Optics & Laser Technology 140 (August 2021): 106974. http://dx.doi.org/10.1016/j.optlastec.2021.106974.
Повний текст джерелаAbbasi, Ali Asghar, Mahdi Mazinani, and Rahil Hosseini. "Evolutionary-based image encryption using biomolecules operators and non-coupled map lattice." Optik 219 (October 2020): 164949. http://dx.doi.org/10.1016/j.ijleo.2020.164949.
Повний текст джерелаGao, Rui, Zhuang Cai, Jianbang Wang, and Huajie Liu. "Condensed DNA Nanosphere for DNA Origami Cryptography." Chemistry 5, no. 4 (November 8, 2023): 2406–17. http://dx.doi.org/10.3390/chemistry5040159.
Повний текст джерелаSun, Lining. "(Digital Presentation) Tailored Rare Earth-Doped Nanomaterials Toward Information Storage and Deep Learning Decoding." ECS Meeting Abstracts MA2022-02, no. 51 (October 9, 2022): 1981. http://dx.doi.org/10.1149/ma2022-02511981mtgabs.
Повний текст джерелаZhang, Yinan, Fei Wang, Jie Chao, Mo Xie, Huajie Liu, Muchen Pan, Enzo Kopperger, et al. "DNA origami cryptography for secure communication." Nature Communications 10, no. 1 (November 29, 2019). http://dx.doi.org/10.1038/s41467-019-13517-3.
Повний текст джерелаSheng, Chengju, Xiujuan Gao, Yanjun Ding та Mingming Guo. "Water‐Soluble Luminescent Polymers with Room Temperature Phosphorescence Based on the α‐Amino Acids". Macromolecular Rapid Communications, 15 травня 2024. http://dx.doi.org/10.1002/marc.202400201.
Повний текст джерелаLiu, Xin, Yang Xu, Dan Luo, Gang Xu, Neal Xiong, and Xiu-Bo Chen. "The secure judgment of graphic similarity against malicious adversaries and its applications." Scientific Reports 13, no. 1 (March 21, 2023). http://dx.doi.org/10.1038/s41598-023-30741-6.
Повний текст джерелаДисертації з теми "Biomolecular encryption"
Berton, Chloé. "Sécurité des données stockées sur molécules d’ADN." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0431.
Повний текст джерелаThe volume of digital data produced worldwide every year is increasing exponentially, and current storage solutions are reaching their limits. In this context, data storage on DNA molecules holds great promise. Storing up to 10¹⁸ bytes per gram of DNA for almost no energy consumption, it has a lifespan 100 times longer than hard disks. As this storage technology is still under development, the opportunity presents itself to natively integrate data security mechanisms. This is the aim of this thesis. Our first contribution is a risk analysis of the entire storage chain, which has enabled us to identify vulnerabilities in digital and biological processes, particularly in terms of confidentiality, integrity, availability and traceability. A second contribution is the identification of elementary biological operators for simple manipulations of DNA. Using these operators, we have developed a DNACipher encryption solution that requires biomolecular decryption (DNADecipher) of the molecules before the data can be read correctly. This third contribution, based on enzymes, required the development of a coding algorithm for digital data into DNA sequences, a contribution called DSWE. This algorithm respects the constraints of biological processes (e.g. homopolymers) and our encryption solution. Our final contribution is an experimental validation of our secure storage chain. This is the first proof of concept showing that it is possible to secure this new storage medium using biomolecular manipulations