Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Biomoleculaire.

Статті в журналах з теми "Biomoleculaire"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Biomoleculaire".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Tongzhou Wang, Tongzhou Wang, Liping Xie Liping Xie, Haley Huang Haley Huang, Xin Li Xin Li, Ruliang Wang Ruliang Wang, Guang Yang Guang Yang, Yanan Du Yanan Du, and Guoliang Huang Guoliang Huang. "Label-free biomolecular imaging using scanning spectral interferometry." Chinese Optics Letters 11, no. 11 (2013): 111102–5. http://dx.doi.org/10.3788/col201311.111102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sainz de Murieta, Inaki, Jesus M. Miro-Bueno, and Alfonso Rodriguez-Paton. "Biomolecular Computers." Current Bioinformatics 6, no. 2 (June 1, 2011): 173–84. http://dx.doi.org/10.2174/1574893611106020173.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

OZAWA, Takeaki. "Biomolecular Science." TRENDS IN THE SCIENCES 16, no. 5 (2011): 53–57. http://dx.doi.org/10.5363/tits.16.5_53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

DOI, Junta. "Biomolecular Visualization." Journal of the Visualization Society of Japan 10, no. 39 (1990): 222–27. http://dx.doi.org/10.3154/jvs.10.222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hulme, John P., Jihye Gwak, and Yuji Miyahara. "Biomolecular Embossing." Journal of the American Chemical Society 128, no. 2 (January 2006): 390–91. http://dx.doi.org/10.1021/ja055805r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Brown, Keri A., and Terence A. Brown. "Biomolecular Archaeology." Annual Review of Anthropology 42, no. 1 (October 21, 2013): 159–74. http://dx.doi.org/10.1146/annurev-anthro-092412-155455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

HILGARTNER, STEPHEN. "Biomolecular Databases." Science Communication 17, no. 2 (December 1995): 240–63. http://dx.doi.org/10.1177/1075547095017002009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hemaspaandra, Lane A. "Biomolecular computing." ACM SIGACT News 30, no. 2 (June 1999): 22–30. http://dx.doi.org/10.1145/568547.568557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hess, Henry, and George D. Bachand. "Biomolecular motors." Materials Today 8, no. 12 (December 2005): 22–29. http://dx.doi.org/10.1016/s1369-7021(05)71286-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Koehler, M., and S. Diekmann. "Biomolecular nanotechnology." Reviews in Molecular Biotechnology 82, no. 1 (November 2001): 1–2. http://dx.doi.org/10.1016/s1389-0352(01)00031-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

TIRRELL, JANE G., MAURILLE J. FOURNIER, THOMAS L. MASON, and DAVID A. TIRREL. "Biomolecular Materials." Chemical & Engineering News 72, no. 51 (December 19, 1994): 40–51. http://dx.doi.org/10.1021/cen-v072n051.p040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Yamamura, Masayuki, Tom Head, and Masami Hagiya. "Biomolecular computing." New Generation Computing 20, no. 3 (September 2002): 215–16. http://dx.doi.org/10.1007/bf03037356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mantsch, H. "Biomolecular spectroscopy." TrAC Trends in Analytical Chemistry 13, no. 8 (September 1994): 338–39. http://dx.doi.org/10.1016/0165-9936(94)87007-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Mantsch, H. H. "Biomolecular spectroscopy." TrAC Trends in Analytical Chemistry 13, no. 6 (June 1994): xi—xii. http://dx.doi.org/10.1016/0165-9936(94)87053-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mason, Stephen. "Biomolecular homochirality." Chemical Society Reviews 17 (1988): 347. http://dx.doi.org/10.1039/cs9881700347.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Mason, Stephen F. "Biomolecular handedness." Biochemical Pharmacology 37, no. 1 (January 1988): 1–7. http://dx.doi.org/10.1016/0006-2952(88)90748-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Middelberg, Anton. "Biomolecular Engineering." Chemical Engineering Science 61, no. 3 (February 2006): 875. http://dx.doi.org/10.1016/j.ces.2005.08.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hoff, A. J. "Biomolecular spectroscopy." Spectrochimica Acta Part A: Molecular Spectroscopy 50, no. 2 (February 1994): 379–80. http://dx.doi.org/10.1016/0584-8539(94)80069-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Miró, Jesús M., and Alfonso Rodríguez-Patón. "Biomolecular Computing Devices in Synthetic Biology." International Journal of Nanotechnology and Molecular Computation 2, no. 2 (April 2010): 47–64. http://dx.doi.org/10.4018/978-1-59904-996-0.ch014.

Повний текст джерела
Анотація:
Synthetic biology and biomolecular computation are disciplines that fuse when it comes to designing and building information processing devices. In this chapter, we study several devices that are representative of this fusion. These are three gene circuits implementing logic gates, a DNA nanodevice and a biomolecular automaton. The operation of these devices is based on gene expression regulation, the so-called competitive hybridization and the workings of certain biomolecules like restriction enzymes or regulatory proteins. Synthetic biology, biomolecular computation, systems biology and standard molecular biology concepts are also defined to give a better understanding of the chapter. The aim is to acquaint readers with these biomolecular devices born of the marriage between synthetic biology and biomolecular computation.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Raković, D., M. Dugić, M. B. Plavšić, G. Keković, Irena Ćosić, and David Davidović. "Quantum Decoherence and Quantum-Holographic Information Processes: From Biomolecules to Biosystems." Materials Science Forum 518 (July 2006): 485–90. http://dx.doi.org/10.4028/www.scientific.net/msf.518.485.

Повний текст джерела
Анотація:
Our recently proposed quantum approach to biomolecular recognition processes is hereby additionally supported by biomolecular Resonant Recognition Model and by quantum-chemical theory of biomolecular non-radiative resonant transitions. Previously developed general quantumdecoherence framework for biopolymer conformational changes in very selective ligandproteins/ target-receptors key/lock biomolecular recognition processes (with electron-conformational coupling, giving rise to dynamical modification of many-electron energy-state hypersurface of the cellular quantum-ensemble ligand-proteins/target-receptors biomolecular macroscopic quantum system, with revealed possibility to consider cellular biomolecular recognition as a Hopfield-like quantum-holographic associative neural network) is further extended from nonlocal macroscopicquantum level of biological cell to nonlocal macroscopic-quantum level of biological organism, based on long-range coherent microwave excitations (as supported by macroscopic quantum-like microwave resonance therapy of the acupuncture system) - which might be of fundamental importance in understanding of underlying macroscopic quantum (quantum-holographic Hopfieldlike) control mechanisms of embryogenesis/ontogenesis and morphogenesis, and their backward influence on the expression of genes.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ishihama, Yasushi, and Tatsuya Higashi. "“Biomolecular Mass Spectrometry”." Analytical Sciences 34, no. 9 (September 10, 2018): 989. http://dx.doi.org/10.2116/analsci.ge1809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Bollinger, Terry. "Biomolecular Quantum Computation." Terry's Archive Online 2020, no. 10 (October 22, 2020): 1007. http://dx.doi.org/10.48034/20201007.

Повний текст джерела
Анотація:
In terms of leveraging the total power of quantum computing, the prevalent current (2020) model of designing quantum computation devices to follow the von Neuman model of abstraction is highly unlikely to be making full use of the full range of computational assistance possible at the atomic and molecular level. This is particularly the case for molecular modeling, in using computational models that more directly leverage the quantum effects of one set of molecules to estimate the behavior of some other set of molecules would remove the bottleneck of insisting that modeling first be converted to the virtual binary or digital format of quantum von Neuman machines. It is argued that even though this possibility of “fighting molecular quantum dynamics with molecular quantum dynamics” was recognized by early quantum computing founders such as Yuri Manin and Richard Feynman, the idea was quickly overlooked in favor of the more computer-compatible model that later developed into qubits and qubit processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Mulholland, Adrian J. "Introduction. Biomolecular simulation." Journal of The Royal Society Interface 5, suppl_3 (September 30, 2008): 169–72. http://dx.doi.org/10.1098/rsif.2008.0385.focus.

Повний текст джерела
Анотація:
‘Everything that living things do can be understood in terms of the jigglings and wigglings of atoms’ as Richard Feynman provocatively stated nearly 50 years ago. But how can we ‘see’ this wiggling and jiggling and understand how it drives biology? Increasingly, computer simulations of biological macromolecules are helping to meet this challenge.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Olson, Arthur J. "Visualizing Biomolecular Interactions." Clinical Chemistry 37, no. 4 (April 1, 1991): 607–8. http://dx.doi.org/10.1093/clinchem/37.4.607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Tang, Lei. "Artificial biomolecular condensates." Nature Methods 16, no. 1 (December 20, 2018): 23. http://dx.doi.org/10.1038/s41592-018-0288-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Dunn, F. "Biomolecular ultrasound absorption." Journal of the Acoustical Society of America 81, S1 (May 1987): S70—S71. http://dx.doi.org/10.1121/1.2024373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Scolozzi, C. "PKD: Biomolecular Aspects." Giornale di Tecniche Nefrologiche e Dialitiche 24, no. 4 (October 2012): 92–94. http://dx.doi.org/10.1177/039493621202400402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bren, Kara L. "Engineered Biomolecular Catalysts." Journal of the American Chemical Society 139, no. 41 (October 4, 2017): 14331–34. http://dx.doi.org/10.1021/jacs.7b09896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wolynes, P. G. "Computational biomolecular science." Proceedings of the National Academy of Sciences 95, no. 11 (May 26, 1998): 5848. http://dx.doi.org/10.1073/pnas.95.11.5848.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Insana, Michael F., and Samuel A. Wickline. "Multimodality Biomolecular Imaging." Proceedings of the IEEE 96, no. 3 (March 2008): 378–81. http://dx.doi.org/10.1109/jproc.2007.913497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Listinsky, Jay J. "Biomolecular NMR Spectroscopy." Radiology 204, no. 1 (July 1997): 100. http://dx.doi.org/10.1148/radiology.204.1.100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Novotny, Milos V. "Capillary biomolecular separations." Journal of Chromatography B: Biomedical Sciences and Applications 689, no. 1 (February 1997): 55–70. http://dx.doi.org/10.1016/s0378-4347(96)00398-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Gabdoulline, Razif R., and Rebecca C. Wade. "Biomolecular diffusional association." Current Opinion in Structural Biology 12, no. 2 (April 2002): 204–13. http://dx.doi.org/10.1016/s0959-440x(02)00311-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Knowles, Peter. "Biomolecular NMR spectroscopy." Biochemical Education 24, no. 1 (January 1996): 67. http://dx.doi.org/10.1016/s0307-4412(96)80024-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bencsáth, Márta, Aladár Blaskovits, and János Borvendég. "Biomolecular cytokine therapy." Pathology & Oncology Research 9, no. 1 (March 2003): 24–29. http://dx.doi.org/10.1007/bf03033710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Stockley, Peter G. "Biomolecular interaction analysis." Trends in Biotechnology 14, no. 2 (February 1996): 39–41. http://dx.doi.org/10.1016/0167-7799(96)80916-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wilson, W. D. "Analyzing Biomolecular Interactions." Science 295, no. 5562 (March 15, 2002): 2103–5. http://dx.doi.org/10.1126/science.295.5562.2103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Plant, Anne L., Christopher S. Chen, Jay T. Groves, and Atul N. Parikh. "The Biomolecular Interface." Langmuir 19, no. 5 (March 2003): 1449–50. http://dx.doi.org/10.1021/la034035z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Urry, Dan W. "Elastic Biomolecular Machines." Scientific American 272, no. 1 (January 1995): 64–69. http://dx.doi.org/10.1038/scientificamerican0195-64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Wemmer, David. "SnapShot: Biomolecular NMR." Cell 166, no. 6 (September 2016): 1600. http://dx.doi.org/10.1016/j.cell.2016.08.061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Malmqvist, Magnus, and Russ Granzow. "Biomolecular Interaction Analysis." Methods 6, no. 2 (June 1994): 95–98. http://dx.doi.org/10.1006/meth.1994.1012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Cook, Julia L. "Internet Biomolecular Resources." Analytical Biochemistry 268, no. 2 (March 1999): 165–72. http://dx.doi.org/10.1006/abio.1998.3088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Li, Xiaoran, Zhenni Chen, Haimin Zhang, Yan Zhuang, He Shen, Yanyan Chen, Yannan Zhao, Bing Chen, Zhifeng Xiao, and Jianwu Dai. "Aligned Scaffolds with Biomolecular Gradients for Regenerative Medicine." Polymers 11, no. 2 (February 15, 2019): 341. http://dx.doi.org/10.3390/polym11020341.

Повний текст джерела
Анотація:
Aligned topography and biomolecular gradients exist in various native tissues and play pivotal roles in a set of biological processes. Scaffolds that recapitulate the complex structure and microenvironment show great potential in promoting tissue regeneration and repair. We begin with a discussion on the fabrication of aligned scaffolds, followed by how biomolecular gradients can be immobilized on aligned scaffolds. In particular, we emphasize how electrospinning, freeze drying, and 3D printing technology can accomplish aligned topography and biomolecular gradients flexibly and robustly. We then highlight several applications of aligned scaffolds and biomolecular gradients in regenerative medicine including nerve, tendon/ligament, and tendon/ligament-to-bone insertion regeneration. Finally, we finish with conclusions and future perspectives on the use of aligned scaffolds with biomolecular gradients in regenerative medicine.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Dey, D., and T. Goswami. "Optical Biosensors: A Revolution Towards Quantum Nanoscale Electronics Device Fabrication." Journal of Biomedicine and Biotechnology 2011 (2011): 1–7. http://dx.doi.org/10.1155/2011/348218.

Повний текст джерела
Анотація:
The dimension of biomolecules is of few nanometers, so the biomolecular devices ought to be of that range so a better understanding about the performance of the electronic biomolecular devices can be obtained at nanoscale. Development of optical biomolecular device is a new move towards revolution of nano-bioelectronics. Optical biosensor is one of such nano-biomolecular devices that has a potential to pave a new dimension of research and device fabrication in the field of optical and biomedical fields. This paper is a very small report about optical biosensor and its development and importance in various fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Winter, Roland. "Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation." Annual Review of Biophysics 48, no. 1 (May 6, 2019): 441–63. http://dx.doi.org/10.1146/annurev-biophys-052118-115601.

Повний текст джерела
Анотація:
High hydrostatic pressure affects the structure, dynamics, and stability of biomolecular systems and is a key parameter in the context of the exploration of the origin and the physical limits of life. This review lays out the conceptual framework for exploring the conformational fluctuations, dynamical properties, and activity of biomolecular systems using pressure perturbation. Complementary pressure-jump relaxation studies are useful tools to study the kinetics and mechanisms of biomolecular phase transitions and structural transformations, such as membrane fusion or protein and nucleic acid folding. Finally, the advantages of using pressure to explore biomolecular assemblies and modulate enzymatic reactions are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Montagner, Suelen, and Adilson Costa. "Bases biomoleculares do fotoenvelhecimento." Anais Brasileiros de Dermatologia 84, no. 3 (July 2009): 263–69. http://dx.doi.org/10.1590/s0365-05962009000300008.

Повний текст джерела
Анотація:
Com o aumento da expectativa de vida, o estudo do processo de envelhecimento orgânico tem sido estimulado. O envelhecimento da pele, órgão que espelha os sinais do tempo, é processo de deterioração progressiva, tempo-dependente, e pode ser intensificado pela exposição solar, então designado fotoenvelhecimento. O dano das radiações sobre diversas estruturas celulares e cutâneas leva a alterações morfológicas nesses componentes, fruto de modificações biomoleculares. Muitas pesquisas são desenvolvidas com o intuito de combater ou minimizar os efeitos do fotoenvelhecimento, porém a principal estratégia nesse sentido continua sendo a prevenção, só conseguida pelo progressivo desvendar dos mecanismos fisiopatogênicos envolvidos nesse processo.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Liang, Peigang, Jiaqi Zhang, and Bo Wang. "Emerging Roles of Ubiquitination in Biomolecular Condensates." Cells 12, no. 18 (September 21, 2023): 2329. http://dx.doi.org/10.3390/cells12182329.

Повний текст джерела
Анотація:
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Mogaki, Rina, P. K. Hashim, Kou Okuro, and Takuzo Aida. "Guanidinium-based “molecular glues” for modulation of biomolecular functions." Chem. Soc. Rev. 46, no. 21 (2017): 6480–91. http://dx.doi.org/10.1039/c7cs00647k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Keković, G., D. Raković, and David Davidović. "Relevance of Polaron/Soliton-Like Transport Mechanisms in Cascade Resonant Isomeric Transitions of Q1D-Molecular Chains." Materials Science Forum 555 (September 2007): 119–24. http://dx.doi.org/10.4028/www.scientific.net/msf.555.119.

Повний текст джерела
Анотація:
Our recently proposed quantum approach to biomolecular isomeric-conformational changes and recognition processes, additionally supported by biomolecular resonant recognition model and by quantum-chemical theory of biomolecular non-radiative resonant transitions, is hereby extended to cascade resonant transitions via close intermediate participating isomeric states - which might be related to polaron/soliton-like energy and charge transport mechanisms in Q1Dmolecular chains, whose relevance is explored in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Gawthrop, Peter J., and Edmund J. Crampin. "Energy-based analysis of biomolecular pathways." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473, no. 2202 (June 2017): 20160825. http://dx.doi.org/10.1098/rspa.2016.0825.

Повний текст джерела
Анотація:
Decomposition of biomolecular reaction networks into pathways is a powerful approach to the analysis of metabolic and signalling networks. Current approaches based on analysis of the stoichiometric matrix reveal information about steady-state mass flows (reaction rates) through the network. In this work, we show how pathway analysis of biomolecular networks can be extended using an energy-based approach to provide information about energy flows through the network. This energy-based approach is developed using the engineering-inspired bond graph methodology to represent biomolecular reaction networks. The approach is introduced using glycolysis as an exemplar; and is then applied to analyse the efficiency of free energy transduction in a biomolecular cycle model of a transporter protein [sodium-glucose transport protein 1 (SGLT1)]. The overall aim of our work is to present a framework for modelling and analysis of biomolecular reactions and processes which considers energy flows and losses as well as mass transport.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії