Дисертації з теми "Biomedical images"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Biomedical images".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Pham, Hong Nhung. "Graph-based registration for biomedical images." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2258/document.
Повний текст джерелаThe context of this thesis is the image registration for endomicroscopic images. Multiphoton microendoscope provides different scanning trajectories which are considered in this work. First we propose a nonrigid registration method whose motion estimation is cast into a feature matching problem under the Log-Demons framework using Graph Wavelets. We investigate the Spectral Graph Wavelets (SGWs) to capture the shape feature of the images. The data representation on graphs is more adapted to data with complex structures. Our experiments on endomicroscopic images show that this method outperforms the existing nonrigid image registration techniques. We then propose a novel image registration strategy for endomicroscopic images acquired on irregular grids. The Graph Wavelet transform is flexible to apply on different types of data regardless of the data point densities and how complex the data structure is. We also show how the Log-Demons framework can be adapted to the optimization of the objective function defined for images with an irregular sampling
RUNDO, LEONARDO. "Computer-Assisted Analysis of Biomedical Images." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241343.
Повний текст джерелаNowadays, the amount of heterogeneous biomedical data is increasing more and more thanks to novel sensing techniques and high-throughput technologies. In reference to biomedical image analysis, the advances in image acquisition modalities and high-throughput imaging experiments are creating new challenges. This huge information ensemble could overwhelm the analytic capabilities needed by physicians in their daily decision-making tasks as well as by biologists investigating complex biochemical systems. In particular, quantitative imaging methods convey scientifically and clinically relevant information in prediction, prognosis or treatment response assessment, by also considering radiomics approaches. Therefore, the computational analysis of medical and biological images plays a key role in radiology and laboratory applications. In this regard, frameworks based on advanced Machine Learning and Computational Intelligence can significantly improve traditional Image Processing and Pattern Recognition approaches. However, conventional Artificial Intelligence techniques must be tailored to address the unique challenges concerning biomedical imaging data. This thesis aims at proposing novel and advanced computer-assisted methods for biomedical image analysis, also as an instrument in the development of Clinical Decision Support Systems, by always keeping in mind the clinical feasibility of the developed solutions. The devised classical Image Processing algorithms, with particular interest to region-based and morphological approaches in biomedical image segmentation, are first described. Afterwards, Pattern Recognition techniques are introduced, applying unsupervised fuzzy clustering and graph-based models (i.e., Random Walker and Cellular Automata) to multispectral and multimodal medical imaging data processing. Taking into account Computational Intelligence, an evolutionary framework based on Genetic Algorithms for medical image enhancement and segmentation is presented. Moreover, multimodal image co-registration using Particle Swarm Optimization is discussed. Finally, Deep Neural Networks are investigated: (i) the generalization abilities of Convolutional Neural Networks in medical image segmentation for multi-institutional datasets are addressed by conceiving an architecture that integrates adaptive feature recalibration blocks, and (ii) the generation of realistic medical images based on Generative Adversarial Networks is applied to data augmentation purposes. In conclusion, the ultimate goal of these research studies is to gain clinically and biologically useful insights that can guide differential diagnosis and therapies, leading towards biomedical data integration for personalized medicine. As a matter of fact, the proposed computer-assisted bioimage analysis methods can be beneficial for the definition of imaging biomarkers, as well as for quantitative medicine and biology.
Cai, Hongmin. "Quality enhancement and segmentation for biomedical images." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B39380130.
Повний текст джерелаCai, Hongmin, and 蔡宏民. "Quality enhancement and segmentation for biomedical images." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39380130.
Повний текст джерелаLashin, Nabil Aly Mohamed Aly. "Restoration methods for biomedical images in confocal microscopy." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975678167.
Повний текст джерелаAguilar, Chongtay María del Rocío. "Model based system for automated analysis of biomedical images." Thesis, University of Edinburgh, 1997. http://hdl.handle.net/1842/30059.
Повний текст джерелаStanier, Jeffrey. "Segmentation and editing of 3-dimensional medical images." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/10031.
Повний текст джерелаStinson, Eric. "Distortion correction for diffusion weighted magnetic resonance images." Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32587.
Повний текст джерелаL'imagerie par résonance magnétique (IRM) de diffusion est utile dans l'étude du cerveau humain, tant en santé que dysfonctionnel ou atteint de maladie. Malheureusement, cette technique est susceptible à des distortions géometriques qui diminuent la précision et la valeur des données. Un algorithme de correction de ces distortions doit être utilisé pendant le traitement des données. Le but de ce mémoire est de développer, d'implementer et de tester une méthode de correction des distortions pour l'IRM de diffusion. Un algorithme de correction des distortions fut developé et implémenté, puis évalué sur des ensembles de données cérébrales humaines simulées et réelles. L'algorithme fonctionne bien pour des données simulées avec des valeurs b jusqu'à b=2000 s/(mm*mm). La cause des échecs de la correction de distortion fut également étudiée. Les échecs sont attribués à une combinaison de la réduction du rapport signal sur bruit (SNR, pour signal-to-noise ratio) et de l'augmentation des différences de contraste, dans les ensembles de données avec des valeurs-b plus élevées.
Chen, Pei. "Volumetric reconstruction and real-time deformation modeling of biomedical images." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 6.09 Mb., p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3220796.
Повний текст джерелаPrincipal faculty advisors: Kenneth E. Barner, Dept. of Electrical and Computer Engineering; and Karl V. Steiner, Delaware Biotechnology Institute. Includes bibliographical references.
Selagamsetty, Srinivasa Siddhartha. "Exploring a Methodology for Segmenting Biomedical Images using Deep Learning." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573812579683504.
Повний текст джерелаWang, Xiuying. "Automatic and elastic registration for biomedical images / Xiu Ying Wang." Thesis, The University of Sydney, 2005. https://hdl.handle.net/2123/28018.
Повний текст джерелаHatamzadeh-Tabrizi, Joubin. "Using active contours for segmentation of middle-ear images." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=79231.
Повний текст джерелаTwo different active contour approaches, i.e., parametric active contours and discrete dynamic contours, were used and compared for the segmentation of middle-ear images. We used histological and Magnetic Resonance Microscopy (MRM) image datasets for our experiments.
Parametric and discrete dynamic contours show similar boundary identification results for the histological and MRM datasets. Gradient, Gradient Vector Flow (GVF), and the gradient plus pressure were used as the external force. The gradient has the disadvantage of having a restricted capture range. Two solutions for improving the capture range, gradient vector flow and pressure force, were compared. Although GVF provides a good capture range, it sometimes wrongly identifies the low-contrast boundaries. It was also found that GVF may wrongly identify the boundaries of close neighbouring structures. As an alternative, pressure forces have shown promising results for histological and MRM middle-ear images. For the same initial contours, a larger number of iterations is required for the parametric contours to converge to the boundary than with the discrete dynamic contours, when the gradient is used as the external force. However, when using GVF and gradient plus pressure, parametric active contours require a smaller number of iterations for active contour convergence, compared with the discrete dynamic approach.
The use of open contours was demonstrated for shared boundaries and thin structures, in addition to the usual closed contours.
Goldenstein, Janet Helene. "Registration of musculoskeletal images for the analysis of bone structure." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3390045.
Повний текст джерелаSource: Dissertation Abstracts International, Volume: 71-02, Section: B, page: . Advisers: Sharmila Majumdar; Thomas Link.
Srinivasan, Nirmala. "Cross-Correlation Of Biomedical Images Using Two Dimensional Discrete Hermite Functions." University of Akron / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=akron1341866987.
Повний текст джерелаEslava, Rios Javier. "Automatic melanoma detection in dermatological images." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1582857.
Повний текст джерелаMalignant melanoma is one of the most dangerous types of skin cancer. A very important aspect of this type of cancer is that, if detected early, it can be completely removed from the body. These characteristics make the research on automated melanoma detection systems a field with high potential. In this thesis, a system for automatic detection of melanoma is designed, developed and studied. The system is composed of five stages; image acquisition, illumination correction, lesion segmentation, feature extraction and classification. The techniques implemented in illumination correction are based in morphological operators and the Retinex algorithm. The four proposed methods for lesion segmentation include Otsu's method thresholding, GVF Snakes, and two novel methods based in Mean Shift clustering using color and texture information. The classification stage makes use of linear discriminant analysis and SVMs. In addition, a GUI tool that takes advantage of the mentioned techniques is created and presented.
Veeraragoo, Mahalingam. "Pattern recognition to detect fetal alchohol syndrome using stereo facial images." Master's thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/3212.
Повний текст джерелаGolding, Dan. "A comparison of methods for the registration of tractographic fibre images." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/10536.
Повний текст джерелаChen, Ye. "Fuzzy Cognitive Maps: Learning Algorithms and Biomedical Applications." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1423581705.
Повний текст джерелаGauvin, Alain. "Geometrical distortion of magnetic resonance images." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60675.
Повний текст джерелаVarious distortion correction approaches are discussed, and their benefits and drawbacks are evaluated. In the light of this discussion, a recently reported correction method is then presented. This method allows the calculation of an image free from geometrical and intensity distortion from the combined effect of main field inhomogeneity, susceptibility effects and chemical shift.
Munechika, Stacy Mark 1961. "Applying multiresolution and graph-searching techniques for boundary detection in biomedical images." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277091.
Повний текст джерелаIACOMI, Marius Mihail. "Application of the chaotic map algorithm in the analysis of biomedical images." Doctoral thesis, Università degli Studi di Palermo, 2014. http://hdl.handle.net/10447/91293.
Повний текст джерелаTziraki, Maria. "The development of photorefractive holography through turbid media for application to biomedical imaging." Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341934.
Повний текст джерелаOzturk, Caglar. "METHOD FOR DETERMINATION OF KINEMATIC SENSOR POSITION AND ORIENTATION FROM MAGNETIC RESONANCE IMAGES." Cleveland State University / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=csu1377015511.
Повний текст джерелаMajola, Khwezi. "Three-Dimensional Body Volume Measurement From Two-Dimensional Images: Towards A Smartphone Application." Master's thesis, Faculty of Health Sciences, 2021. http://hdl.handle.net/11427/32797.
Повний текст джерелаBolton, Frank. "Automated 3D reconstruction of Lodox Statscan images for forensic application." Master's thesis, University of Cape Town, 2011. http://hdl.handle.net/11427/10128.
Повний текст джерелаLu, Hong. "Machine Learning Based Analysis of Coronary Stent Images in Intravascular Optical Coherence Tomography Pullbacks." Case Western Reserve University School of Graduate Studies / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=case1415548044.
Повний текст джерелаXie, Zhongliu. "Machine learning for efficient recognition of anatomical structures and abnormalities in biomedical images." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/44567.
Повний текст джерелаLi, Guannan. "Locality sensitive modelling approach for object detection, tracking and segmentation in biomedical images." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/81399/.
Повний текст джерелаFeilke, Martina [Verfasser], and Volker [Akademischer Betreuer] Schmid. "Estimation and model selection for dynamic biomedical images / Martina Feilke. Betreuer: Volker Schmid." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1076243274/34.
Повний текст джерелаFeilke, Martina Verfasser], and Volker [Akademischer Betreuer] [Schmid. "Estimation and model selection for dynamic biomedical images / Martina Feilke. Betreuer: Volker Schmid." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2015. http://d-nb.info/1076243274/34.
Повний текст джерелаMadaris, Aaron T. "Characterization of Peripheral Lung Lesions by Statistical Image Processing of Endobronchial Ultrasound Images." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1485517151147533.
Повний текст джерелаNarayanan, Priya Lakshmi. "Development of a tool for automatic segmentation of the cerebellum in MR images of children." Doctoral thesis, University of Cape Town, 2015. http://hdl.handle.net/11427/20262.
Повний текст джерелаDendere, Ronald. "Segmentation of candidate bacillus objects in images of Ziehl-Neelsen-stained sputum smears using deformable models." Master's thesis, University of Cape Town, 2009. http://hdl.handle.net/11427/3232.
Повний текст джерелаIncludes bibliographical references (leaves 83-88).
Automated microscopy for the detection of tuberculosis (TB) in sputum smears seeks to address the strain on technicians and to achieve faster diagnosis in order to cope with the rising number of TB cases. Image processing techniques provide a useful alternative to the conventional, manual analysis of sputum smears for diagnosis. In the project described here, the use of parametric and geometric deformable models was explored for segmentation of TB bacilli in images of Ziehl-Neelsen-stained sputum smears for automated TB diagnosis. The goal of segmentation is to produce candidate bacillus objects for input into a classifier.
Marcotte, Hope Ann 1964. "Expectation maximization methods for processing SPECT images." Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/278351.
Повний текст джерелаBakar, Majd. "An environment for the objective comparison of MRA and DSA images /." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27484.
Повний текст джерелаSuch an environment requires that both angiographic projections be displayed from the same view-point and with the same projection geometry. The two angiograms are displayed side by side and several points on the vascular structure are identified in both modalities. These points are used to estimate, using a Least Squares Minimization, the Homogeneous Transformation Matrix (HTM) characterizing the projection of the DSA image. The resulting HTM is used to generate a corresponding Maximum Intensity Projection (MIP) of the MRA dataset. The number and location of the required homologous point-pairs are determined empirically.
Other alternatives to MIP are presented as well, and their performance relative to DSA is discussed. Images from each modality are displayed stereoscopically to reflect the three dimensional nature of the vascular tree.
Lancashire, Martin John Richard. "The assessment of ureteric function using compressed images from fast-frame renography." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321804.
Повний текст джерелаGedamu, Elias. "Automated quality control procedures for brain magnetic resonance images acquired in multi-centre clinical trials for multiple sclerosis." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103558.
Повний текст джерелаLes procédures automatisées de contrôle de qualité (CQ) sont essentielles afin d'obtenir de manière efficace des mesures précises d'imagerie cérébrale fondées sur la pathologie du cerveau in vivo. Ceci est particulièrement important pour les essais cliniques multicentriques de produits thérapeutiques destinés aux maladies neurologiques, dont les mesures de pathologie cérébrale dérivées des IRMs peuvent être utilisées pour quantifier l'efficacité thérapeutique. Présentement, la littérature met l'accent sur les procédures de CQ pour l'entretien des scanners, en supposant que ce bon entretien du scanner d'IRM produirait une qualité d'image acceptable et, par conséquent, limiterait les erreurs de mesures sur les analyses quantitatives, comme l'efficacité thérapeutique. Malheureusement, ces procédures peuvent ne pas être applicables sur des scans de sujets réels où des conditions non-idéals seraient présents, comme le mouvement du sujet lors d'une prise. L'objectif de cette thèse est de fournir une procédure automatisée de CQ pour les IRM cérébrales acquises lors de plusieurs essais cliniques sur la sclérose en plaques, où la qualité de l'image est évaluée directement à partir de l'IRM elle-même. Cette procédure a été testée, validée et appliquée dans l'industrie.
Wasswa, William. "3D approximation of scapula bone shape from 2D X-ray images using landmark-constrained statistical shape model fitting." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/23777.
Повний текст джерелаSzilágyi, Anna Tünde. "Structural characterization of liver fibrosis in magnetic resonance images." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:1860b1d9-2b10-409f-9220-e12b002a9e32.
Повний текст джерелаPetre, Valentina. "Generating synthetic 3-D images of objects lit by speckle light, providing a test for 3-D reconstruction algorithms." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0002/MQ44033.pdf.
Повний текст джерелаWatson, Jennifer Marie. "Examination of Diagnostic Features in Multiphoton Microscopy and Optical Coherence Tomography Images of Ovarian Tumorigenesis in a Mouse Model." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/293473.
Повний текст джерелаEvanoff, Michael Geoffrey 1964. "Automatic identification of chest orientation in digital radiographic images." Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/282811.
Повний текст джерелаPerring, Steve. "Clinical applications of the three dimensional (3D) analysis and visualisation of medical slice images." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387074.
Повний текст джерелаSu, Hai. "Nuclei/Cell Detection in Microscopic Skeletal Muscle Fiber Images and Histopathological Brain Tumor Images Using Sparse Optimizations." UKnowledge, 2014. http://uknowledge.uky.edu/cs_etds/24.
Повний текст джерелаPrabhu, David. "Automated Plaque Characterization of Intravascular Optical Coherence Tomography (IVOCT) Images Using 3D Cryo-image/Histology Validation." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1556293860943414.
Повний текст джерелаYoumaran, Richard. "Automatic measurement of features in ultrasound images of the eye." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/27092.
Повний текст джерелаTkachenko, Evgeniy. "Measures of Individual Resorption Cavities in Three-Dimensional Images in Cancellous Bone." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1301413780.
Повний текст джерелаRahmatullah, Bahbibi. "Assessment of obstetric ultrasound images using machine learning." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:8f8f1796-7c25-43b9-bb14-d8cdc28f6ca2.
Повний текст джерелаVictora, Ceres. "Images of the body : lay and biomedical views of the reproductive system in Britain and Brazil." Thesis, Brunel University, 1996. http://bura.brunel.ac.uk/handle/2438/7299.
Повний текст джерелаNamayega, Catherine. "A deep learning algorithm for contour detection in synthetic 2D biplanar X-ray images of the scapula: towards improved 3D reconstruction of the scapula." Master's thesis, University of Cape Town, 2020. http://hdl.handle.net/11427/32542.
Повний текст джерела