Дисертації з теми "Bioinformatic, Computational Biology, GPCR"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-20 дисертацій для дослідження на тему "Bioinformatic, Computational Biology, GPCR".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Poudel, Sagar. "GPCR-Directed Libraries for High Throughput Screening." Thesis, University of Skövde, School of Humanities and Informatics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-29.
Повний текст джерелаGuanine nucleotide binding protein (G-protein) coupled receptors (GPCRs), the largest receptor family, is enormously important for the pharmaceutical industry as they are the target of 50-60% of all existing medicines. Discovery of many new GPCR receptors by the “human genome project”, open up new opportunities for developing novel therapeutics. High throughput screening (HTS) of chemical libraries is a well established method for finding new lead compounds in drug discovery. Despite some success this approach has suffered from the near absence of more focused and specific targeted libraries. To improve the hit rates and to maximally exploit the full potential of current corporate screening collections, in this thesis work, identification and analysis of the critical drug-binding positions within the GPCRs were done, based on their overall sequence, their transmembrane regions and their drug binding fingerprints. A proper classification based on drug binding fingerprints on the basis for a successful pharmacophore modelling and virtual screening were done, which facilities in the development of more specific and focused targeted libraries for HTS.
Bahena, Silvia. "Computational Methods for the structural and dynamical understanding of GPCR-RAMP interactions." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-416790.
Повний текст джерелаKallberg, Yvonne. "Bioinformatic methods in protein characterization /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-370-8/.
Повний текст джерелаBrandström, Mikael. "Bioinformatic analysis of mutation and selection in the vertebrate non-coding genome /." Uppsala : Acta Universitatis Upsaliensis Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8240.
Повний текст джерелаLang, Tiange. "Evolution of transmembrane and gel-forming mucins studied with bioinformatic methods /." Göteborg : The Sahlgrenska Academy at Göteborg University, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, 2007. http://hdl.handle.net/2077/7502.
Повний текст джерелаPALOMBO, VALENTINO. "Genomics, Transcriptomics and Computational Biology: new insights into bovine and swine breeding and genetics." Doctoral thesis, Università degli studi del Molise, 2019. http://hdl.handle.net/11695/91489.
Повний текст джерелаEnormous progress has been made in the selection of animals for specific traits using traditional quantitative genetic approaches. Nevertheless, a considerable amount of variation in phenotypes remains unexplained therefore a better knowledge of its genetic basis represents a potential additional gain for animal production. In this regard, the recently developed high-throughput (HT) technologies based on microarray and next-generation sequencing (NGS) methods are a powerful opportunity to prise open the ‘black box’ underlying complex biological processes. These technological advancements have marked the beginning of the ‘omic era’. Broadly, ‘omic’ approaches adopt a holistic view of the molecules that make up a cell, tissue or organism. They are aimed primarily at the universal detection of genes (genomics), RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a specific biological sample. The basic aspect of these approaches is that a complex system can be understood more thoroughly if considered as a whole. At the same time, the large amount of data generated by these revolutionary approaches makes sense only if one is equipped with the necessary resources and tools to manage and explore it. For this reason, along with HT technical progresses, bioinformatics, often known as computational biology, is gaining immense importance. Animal breeding is gaining new momentum from this renewed scenario. Particularly it pushed to move away from traditional approaches toward systems approaches using integrative analysis of ‘omic’ data to better elucidate the genetic architecture controlling the traits of interest and ultimately use this knowledge for selection of candidates. The aim of this thesis is to (1) investigate the differences of genetic basis related to the milk fatty acids profiles in two Italian dairy cattle breeds and (2) delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis in swine, using the state-of-art genomic and transcriptomic analyses. For these reasons, a genome-wide association study (GWAS) on milk fatty acids of Italian Holstein and Italian Simmental cattle breads and an RNASeq study on transcriptional profiles of swine mammary gland are conducted, respectively. In addition, (3) an in-house bioinformatics tool performing an original pathway analysis is presented. The tool, entirely built in R and named PIA (Pathways Interaction Analysis), is designed for post-genomic and transcriptomic data mining.
Moss, Tiffanie. "CHARACTERIZATION OF STRUCTURAL VARIANTS AND ASSOCIATED MICRORNAS IN FLAX FIBER AND LINSEED GENOTYPES BY BIOINFORMATIC ANALYSIS AND HIGH-THROUGHPUT SEQUENCING." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333648149.
Повний текст джерелаSantaniello, F. "CHANGES OF REPLICATION TIMING INDUCED BY PML-RARA." Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/469739.
Повний текст джерелаCoppe, Alessandro. "A bioinformatic and computational approach to regulation of genome function: integrated analysis of genome organization, promoter sequences and gene expression." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426395.
Повний текст джерелаFavara, David M. "The biology of ELTD1/ADGRL4 : a novel regulator of tumour angiogenesis." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:0d00af0a-bb43-44bc-ba0b-1f8acbe34bc5.
Повний текст джерелаNOTARO, MARCO. "HIERARCHICAL ENSEMBLE METHODS FOR ONTOLOGY-BASED PREDICTIONS IN COMPUTATIONAL BIOLOGY." Doctoral thesis, Università degli Studi di Milano, 2019. http://hdl.handle.net/2434/606185.
Повний текст джерелаThe standardized annotation of biomedical related objects, often organized in dedicated catalogues, strongly promoted the organization of biological concepts into controlled vocabularies, i.e. ontologies by which related terms of the underlying biological domain are structured according to a predefined hierarchy. Indeed large ontologies have been developed by the scientific community to structure and organize the gene and protein taxonomy of all the living organisms from Archea to Metazoa, i.e. the Gene Ontology, or human specific ontologies, such as the Human Phenotype Ontology, that provides a structured taxonomy of the abnormal human phenotypes associated with diseases. These ontologies, offering a coded and well-defined classification space for biological entities such as genes and proteins, favor the development of machine learning methods able to predict features of biological objects like the association between a human gene and a disease, with the aim to drive wet lab research allowing a reduction of the costs and a more effective usage of the available research funds. Despite the soundness of the aforementioned objectives, the resulting multi-label classification problems raise so complex machine learning issues that until recently the far common approach was the “flat” prediction, i.e. simply training a classifier for each term in the controlled vocabulary and ignoring the relationships between terms. This approach was not only justified by the need to reduce the computational complexity of the learning task, but also by the somewhat “unstable” nature of the terms composing the controlled vocabularies, because they were (and are) updated on a monthly basis in a process performed by expert curators and based on biomedical literature, and wet and in-silico experiments. In this context, two main general classes of classifiers have been proposed in literature. On the one hand, “hierarchy-unaware” learning methods predict labels in a “flat” way without exploiting the inherent structure of the annotation space. On the other hand, “hierarchy-aware” learning methods can improve the accuracy and the precision of the predictions by considering the hierarchical relationships between ontology terms. Moreover these methods can guarantee the consistency of the predicted labels according to the “true path rule”, that is the biological and logical rule that governs the internal coherence of biological ontologies. To properly handle the hierarchical relationships linking the ontology terms, two main classes of structured output methods have been proposed in literature: the first one is based on kernelized methods for structured output spaces, the second on hierarchical ensemble methods for ontology-based predictions. However both these approaches suffer of significant drawbacks. The kernel-based methods for structured output space are computationally intensive and do not scale well when applied to complex multi-label bio-ontologies. Most hierarchical ensemble methods have been conceived for tree-structured taxonomies and the few ones specifically developed for the prediction in DAG-structured output spaces are, in most cases, unable to improve prediction performances over flat methods. To overcome these limitations, in this thesis novel “ontology-aware” ensemble methods have been developed, able to handle DAG-structured ontologies, leveraging previous results obtained with “true-path-rule”-based hierarchical learning algorithms. These methods are highly modular in the sense that they adopt a “two-step” learning strategy: in the first step they learn separately each term of the ontology using flat methods, and in the second they properly combine the flat predictions according to the hierarchy of the classes. The main contributions of this thesis are both methodological and experimental. From a methodological standpoint, novel hierarchical ensemble methods are proposed, including: a) HTD (Hierarchical Top-Down algorithm for DAG structured ontologies); b) TPR-DAG (True Path Rule ensemble for DAG) with several variants; c) ISO-TPR, a novel ensemble method that combines the True Path Rule approach with Isotonic Regression. For all these methods a formal proof of their consistency, i.e. the guarantee of providing predictions that “respect” the hierarchical relationships between classes, is provided. From an experimental standpoint, extensive genome and ontology-wide results show that the proposed methods: a) are competitive with state-of-the-art prediction algorithms; b) are able to improve flat machine learning classifiers, if the base learners can provide non random predictions; c) are able to predict new associations between genes and human abnormal phenotypes, a crucial step to discover novel genes associated with human diseases ranging from genetic disorders to cancer; d) scale nicely with large datasets and bio-ontologies. Finally HEMDAG, a novel R library implementing the proposed hierarchical ensemble methods has been developed and publicly delivered.
MASPERO, DAVIDE. "Computational strategies to dissect the heterogeneity of multicellular systems via multiscale modelling and omics data analysis." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/368331.
Повний текст джерелаHeterogeneity pervades biological systems and manifests itself in the structural and functional differences observed both among different individuals of the same group (e.g., organisms or disease systems) and among the constituent elements of a single individual (e.g., cells). The study of the heterogeneity of biological systems and, in particular, of multicellular systems is fundamental for the mechanistic understanding of complex physiological and pathological phenomena (e.g., cancer), as well as for the definition of effective prognostic, diagnostic, and therapeutic strategies. This work focuses on developing and applying computational methods and mathematical models for characterising the heterogeneity of multicellular systems and, especially, cancer cell subpopulations underlying the evolution of neoplastic pathology. Similar methodologies have been developed to characterise viral evolution and heterogeneity effectively. The research is divided into two complementary portions, the first aimed at defining methods for the analysis and integration of omics data generated by sequencing experiments, the second at modelling and multiscale simulation of multicellular systems. Regarding the first strand, next-generation sequencing technologies allow us to generate vast amounts of omics data, for example, related to the genome or transcriptome of a given individual, through bulk or single-cell sequencing experiments. One of the main challenges in computer science is to define computational methods to extract useful information from such data, taking into account the high levels of data-specific errors, mainly due to technological limitations. In particular, in the context of this work, we focused on developing methods for the analysis of gene expression and genomic mutation data. In detail, an exhaustive comparison of machine-learning methods for denoising and imputation of single-cell RNA-sequencing data has been performed. Moreover, methods for mapping expression profiles onto metabolic networks have been developed through an innovative framework that has allowed one to stratify cancer patients according to their metabolism. A subsequent extension of the method allowed us to analyse the distribution of metabolic fluxes within a population of cells via a flux balance analysis approach. Regarding the analysis of mutational profiles, the first method for reconstructing phylogenomic models from longitudinal data at single-cell resolution has been designed and implemented, exploiting a framework that combines a Markov Chain Monte Carlo with a novel weighted likelihood function. Similarly, a framework that exploits low-frequency mutation profiles to reconstruct robust phylogenies and likely chains of infection has been developed by analysing sequencing data from viral samples. The same mutational profiles also allow us to deconvolve the signal in the signatures associated with specific molecular mechanisms that generate such mutations through an approach based on non-negative matrix factorisation. The research conducted with regard to the computational simulation has led to the development of a multiscale model, in which the simulation of cell population dynamics, represented through a Cellular Potts Model, is coupled to the optimisation of a metabolic model associated with each synthetic cell. Using this model, it is possible to represent assumptions in mathematical terms and observe properties emerging from these assumptions. Finally, we present a first attempt to combine the two methodological approaches which led to the integration of single-cell RNA-seq data within the multiscale model, allowing data-driven hypotheses to be formulated on the emerging properties of the system.
Suku, Eda. "G-protein coupled receptors activation mechanism: from ligand binding to the transmission of the signal inside the cell." Doctoral thesis, 2019. http://hdl.handle.net/11562/994620.
Повний текст джерелаVALASATAVA, YANA. "NEW COMPUTATIONAL APPROACHES TO THE STUDY OF METALS IN BIOLOGY." Doctoral thesis, 2015. http://hdl.handle.net/2158/998429.
Повний текст джерелаDa, Silva Melissa Elizabeth. "A bioinformatic exploration of poxviruses." Thesis, 2007. http://hdl.handle.net/1828/262.
Повний текст джерела(10716540), Emily A. Kerstiens. "NEW BIOINFORMATIC METHODS OF BACTERIOPHAGE PROTEIN STUDY." Thesis, 2021.
Знайти повний текст джерелаBacteriophages are viruses that infect and kill bacteria. They are the most abundant organism on the planet and the largest source of untapped genetic information. Every year, more bacteriophages are isolated from the environment, purified, and sequenced. Once sequenced, their genomes are annotated to determine the location and putative function of each gene expressed by the phage. Phages have been used in the past for genetic engineering and new research is being done into how they can be used for the treatment of disease, water safety, agriculture, and food safety.
Despite the influx of sequenced bacteriophages, a majority of the genes annotated are hypothetical proteins, also known as No Known Function (NKF) proteins. They are expressed by the phages, but research has not identified a possible function. Wet lab research into the functions of the hundreds of NKF phages genes would be costly and could take years. Bioinformatics methods could be used to determine putative functions and functional categories for these hypothetical proteins. A new bioinformatics method using algorithms such as Domain Assignments, Hidden Markov Models, Structure Prediction, Sub-Cellular Localization, and iterative algorithms is proposed here. This new method was tested on the bacteriophage genome PotatoSplit and dropped the number of NKF genes from 57 to 40. A total of 17 new functions were found. The functional class was identified for an additional six proteins, though no specific functions were named. Structure Prediction and Simulations were tested with a focus on two NKF proteins within lytic phages and both returned possible functional categories with high confidence.
Additionally, this research focuses on the possibility of phage therapy and FDA regulation. A database of phage proteins was built and tested using R Statistical Analysis to determine proteins significant to phage infecting M. tuberculosis and to the lytic cycle of phages. The statistical methods were also tested on both pharmaceutical products recalled by the FDA between 2012 and 2018 to determine ingredients/manufacturing steps that could affect product quality and on the FDA Adverse Event Reporting System (FAERS) data to determine if AERs could be used to judge the quality of a product. Many significant excipients/manufacturing steps were identified and used to score products on their quality. The AERs were evaluated on two case studies with mixed results.
BACCI, GIOVANNI. "Mining Microbiomes. Computational Biology approaches to uncover the complexity of bacterial communities." Doctoral thesis, 2015. http://hdl.handle.net/2158/986409.
Повний текст джерела(7817588), Ziyun Ding. "Computational methods for protein-protein interaction identification." Thesis, 2019.
Знайти повний текст джерелаUnderstanding protein-protein interactions (PPIs) in a cell is essential for learning protein functions, pathways, and mechanisms of diseases. This dissertation introduces the computational method to predict PPIs. In the first chapter, the history of identifying protein interactions and some experimental methods are introduced. Because interacting proteins share similar functions, protein function similarity can be used as a feature to predict PPIs. NaviGO server is developed for biologists and bioinformaticians to visualize the gene ontology relationship and quantify their similarity scores. Furthermore, the computational features used to predict PPIs are summarized. This will help researchers from the computational field to understand the rationale of extracting biological features and also benefit the researcher with a biology background to understand the computational work. After understanding various computational features, the computational prediction method to identify large-scale PPIs was developed and applied to Arabidopsis, maize, and soybean in a whole-genomic scale. Novel predicted PPIs were provided and were grouped based on prediction confidence level, which can be used as a testable hypothesis to guide biologists’ experiments. Since affinity chromatography combined with mass spectrometry technique introduces high false PPIs, the computational method was combined with mass spectrometry data to aid the identification of high confident PPIs in large-scale. Lastly, some remaining challenges of the computational PPI prediction methods and future works are discussed.
MADEDDU, LORENZO. "Machine learning methods for extracting medical knowledge from the human interactome." Doctoral thesis, 2022. http://hdl.handle.net/11573/1639572.
Повний текст джерелаMARTINO, ALESSIO. "Pattern recognition techniques for modelling complex systems in non-metric domains." Doctoral thesis, 2020. http://hdl.handle.net/11573/1364044.
Повний текст джерела