Добірка наукової літератури з теми "Bioinformatic, Computational Biology, GPCR"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bioinformatic, Computational Biology, GPCR".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Bioinformatic, Computational Biology, GPCR"
García-Recio, Adrián, Gemma Navarro, Rafael Franco, Mireia Olivella, Ramon Guixà-González, and Arnau Cordomí. "DIMERBOW: exploring possible GPCR dimer interfaces." Bioinformatics 36, no. 10 (February 25, 2020): 3271–72. http://dx.doi.org/10.1093/bioinformatics/btaa117.
Повний текст джерелаShigeta, R., M. Cline, G. Liu, and M. A. Siani-Rose. "GPCR-GRAPA-LIB--a refined library of hidden Markov Models for annotating GPCRs." Bioinformatics 19, no. 5 (March 22, 2003): 667–68. http://dx.doi.org/10.1093/bioinformatics/btg061.
Повний текст джерелаDavies, M. N., A. Secker, A. A. Freitas, E. Clark, J. Timmis, and D. R. Flower. "Optimizing amino acid groupings for GPCR classification." Bioinformatics 24, no. 18 (August 1, 2008): 1980–86. http://dx.doi.org/10.1093/bioinformatics/btn382.
Повний текст джерелаSreekumar, K. R., Y. Huang, M. H. Pausch, and K. Gulukota. "Predicting GPCR-G-protein coupling using hidden Markov models." Bioinformatics 20, no. 18 (August 5, 2004): 3490–99. http://dx.doi.org/10.1093/bioinformatics/bth434.
Повний текст джерелаTownsend-Nicholson, Andrea, Nojood Altwaijry, Andrew Potterton, Inaki Morao, and Alexander Heifetz. "Computational prediction of GPCR oligomerization." Current Opinion in Structural Biology 55 (April 2019): 178–84. http://dx.doi.org/10.1016/j.sbi.2019.04.005.
Повний текст джерелаZhu, Siyu, Meixian Wu, Ziwei Huang, and Jing An. "Trends in application of advancing computational approaches in GPCR ligand discovery." Experimental Biology and Medicine 246, no. 9 (February 27, 2021): 1011–24. http://dx.doi.org/10.1177/1535370221993422.
Повний текст джерелаTheodoropoulou, Margarita C., Pantelis G. Bagos, Ioannis C. Spyropoulos, and Stavros J. Hamodrakas. "gpDB: a database of GPCRs, G-proteins, effectors and their interactions." Bioinformatics 24, no. 12 (April 25, 2008): 1471–72. http://dx.doi.org/10.1093/bioinformatics/btn206.
Повний текст джерелаLahvic, Jamie L., Michelle B. Ammerman, Pulin Li, Song Yang, Nan Chiang, Michael Chase, Olivia Weis, Yi Zhou, Charles Serhan, and Leonard I. Zon. "Eicosanoid-GPCR Signaling Enhances Hematopoiesis and Marrow Transplant." Blood 128, no. 22 (December 2, 2016): 495. http://dx.doi.org/10.1182/blood.v128.22.495.495.
Повний текст джерелаYang, Zi, and George Michailidis. "Quantifying heterogeneity of expression data based on principal components." Bioinformatics 35, no. 4 (July 28, 2018): 553–59. http://dx.doi.org/10.1093/bioinformatics/bty671.
Повний текст джерелаLazim, Raudah, Donghyuk Suh, Jai Woo Lee, Thi Ngoc Lan Vu, Sanghee Yoon, and Sun Choi. "Structural Characterization of Receptor–Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers." International Journal of Molecular Sciences 22, no. 6 (March 22, 2021): 3241. http://dx.doi.org/10.3390/ijms22063241.
Повний текст джерелаДисертації з теми "Bioinformatic, Computational Biology, GPCR"
Poudel, Sagar. "GPCR-Directed Libraries for High Throughput Screening." Thesis, University of Skövde, School of Humanities and Informatics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-29.
Повний текст джерелаGuanine nucleotide binding protein (G-protein) coupled receptors (GPCRs), the largest receptor family, is enormously important for the pharmaceutical industry as they are the target of 50-60% of all existing medicines. Discovery of many new GPCR receptors by the “human genome project”, open up new opportunities for developing novel therapeutics. High throughput screening (HTS) of chemical libraries is a well established method for finding new lead compounds in drug discovery. Despite some success this approach has suffered from the near absence of more focused and specific targeted libraries. To improve the hit rates and to maximally exploit the full potential of current corporate screening collections, in this thesis work, identification and analysis of the critical drug-binding positions within the GPCRs were done, based on their overall sequence, their transmembrane regions and their drug binding fingerprints. A proper classification based on drug binding fingerprints on the basis for a successful pharmacophore modelling and virtual screening were done, which facilities in the development of more specific and focused targeted libraries for HTS.
Bahena, Silvia. "Computational Methods for the structural and dynamical understanding of GPCR-RAMP interactions." Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-416790.
Повний текст джерелаKallberg, Yvonne. "Bioinformatic methods in protein characterization /." Stockholm, 2002. http://diss.kib.ki.se/2002/91-7349-370-8/.
Повний текст джерелаBrandström, Mikael. "Bioinformatic analysis of mutation and selection in the vertebrate non-coding genome /." Uppsala : Acta Universitatis Upsaliensis Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8240.
Повний текст джерелаLang, Tiange. "Evolution of transmembrane and gel-forming mucins studied with bioinformatic methods /." Göteborg : The Sahlgrenska Academy at Göteborg University, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, 2007. http://hdl.handle.net/2077/7502.
Повний текст джерелаPALOMBO, VALENTINO. "Genomics, Transcriptomics and Computational Biology: new insights into bovine and swine breeding and genetics." Doctoral thesis, Università degli studi del Molise, 2019. http://hdl.handle.net/11695/91489.
Повний текст джерелаEnormous progress has been made in the selection of animals for specific traits using traditional quantitative genetic approaches. Nevertheless, a considerable amount of variation in phenotypes remains unexplained therefore a better knowledge of its genetic basis represents a potential additional gain for animal production. In this regard, the recently developed high-throughput (HT) technologies based on microarray and next-generation sequencing (NGS) methods are a powerful opportunity to prise open the ‘black box’ underlying complex biological processes. These technological advancements have marked the beginning of the ‘omic era’. Broadly, ‘omic’ approaches adopt a holistic view of the molecules that make up a cell, tissue or organism. They are aimed primarily at the universal detection of genes (genomics), RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a specific biological sample. The basic aspect of these approaches is that a complex system can be understood more thoroughly if considered as a whole. At the same time, the large amount of data generated by these revolutionary approaches makes sense only if one is equipped with the necessary resources and tools to manage and explore it. For this reason, along with HT technical progresses, bioinformatics, often known as computational biology, is gaining immense importance. Animal breeding is gaining new momentum from this renewed scenario. Particularly it pushed to move away from traditional approaches toward systems approaches using integrative analysis of ‘omic’ data to better elucidate the genetic architecture controlling the traits of interest and ultimately use this knowledge for selection of candidates. The aim of this thesis is to (1) investigate the differences of genetic basis related to the milk fatty acids profiles in two Italian dairy cattle breeds and (2) delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis in swine, using the state-of-art genomic and transcriptomic analyses. For these reasons, a genome-wide association study (GWAS) on milk fatty acids of Italian Holstein and Italian Simmental cattle breads and an RNASeq study on transcriptional profiles of swine mammary gland are conducted, respectively. In addition, (3) an in-house bioinformatics tool performing an original pathway analysis is presented. The tool, entirely built in R and named PIA (Pathways Interaction Analysis), is designed for post-genomic and transcriptomic data mining.
Moss, Tiffanie. "CHARACTERIZATION OF STRUCTURAL VARIANTS AND ASSOCIATED MICRORNAS IN FLAX FIBER AND LINSEED GENOTYPES BY BIOINFORMATIC ANALYSIS AND HIGH-THROUGHPUT SEQUENCING." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333648149.
Повний текст джерелаSantaniello, F. "CHANGES OF REPLICATION TIMING INDUCED BY PML-RARA." Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/469739.
Повний текст джерелаCoppe, Alessandro. "A bioinformatic and computational approach to regulation of genome function: integrated analysis of genome organization, promoter sequences and gene expression." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3426395.
Повний текст джерелаFavara, David M. "The biology of ELTD1/ADGRL4 : a novel regulator of tumour angiogenesis." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:0d00af0a-bb43-44bc-ba0b-1f8acbe34bc5.
Повний текст джерелаКниги з теми "Bioinformatic, Computational Biology, GPCR"
1950-, Tsigelny Igor F., ed. Protein structure prediction: Bioinformatic approach. La Jolla, Calif: International University Line, 2002.
Знайти повний текст джерелаStrasser, Andrea. Modelling of GPCRs: A Practical Handbook. Dordrecht: Springer Netherlands, 2013.
Знайти повний текст джерелаRNA sequence, structure, and function: Computational and bioinformatic methods. New York: Humana Press, 2014.
Знайти повний текст джерелаStrasser, Andrea, and Hans-Joachim Wittmann. Modelling of GPCRs: A Practical Handbook. Springer, 2012.
Знайти повний текст джерелаStrasser, Andrea, and Hans-Joachim Wittmann. Modelling of GPCRs: A Practical Handbook. Springer, 2014.
Знайти повний текст джерелаGorodkin, Jan, and Walter L. Ruzzo. RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods. Humana Press, 2016.
Знайти повний текст джерелаImmunoinformatics: Bioinformatic Strategies for Better Understanding of Immune Function (Novartis Foundation Symposia). Wiley, 2003.
Знайти повний текст джерелаЧастини книг з теми "Bioinformatic, Computational Biology, GPCR"
Junqueira, Dennis Maletich, Rúbia Marília de Medeiros, Sabrina Esteves de Matos Almeida, Vanessa Rodrigues Paixão-Cortez, Paulo Michel Roehe, and Fernando Rosado Spilki. "Mapping HIV-1 Subtype C gp120Epitopes Using a Bioinformatic Approach." In Advances in Bioinformatics and Computational Biology, 156–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03223-3_16.
Повний текст джерелаSuwa, Makiko, and Yukiteru Ono. "Computational Overview of GPCR Gene Universe to Support Reverse Chemical Genomics Study." In Methods in Molecular Biology, 41–54. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-232-2_4.
Повний текст джерелаKiriakidi, Sofia, Antonios Kolocouris, George Liapakis, Saima Ikram, Serdar Durdagi, and Thomas Mavromoustakos. "Effects of Cholesterol on GPCR Function: Insights from Computational and Experimental Studies." In Advances in Experimental Medicine and Biology, 89–103. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-14265-0_5.
Повний текст джерелаSgourakis, Nikolaos G., Pantelis G. Bagos, and Stavros J. Hamodrakas. "Computational Methods for the Prediction of GPCRs Coupling Selectivity." In Handbook of Research on Systems Biology Applications in Medicine, 167–81. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-076-9.ch009.
Повний текст джерелаWang, Jinan, and Yinglong Miao. "Recent advances in computational studies of GPCR-G protein interactions." In Advances in Protein Chemistry and Structural Biology, 397–419. Elsevier, 2019. http://dx.doi.org/10.1016/bs.apcsb.2018.11.011.
Повний текст джерелаDragan, Paulina, Alessandro Atzei, Swapnil Ganesh Sanmukh, and Dorota Latek. "Computational and experimental approaches to probe GPCR activation and signaling." In Progress in Molecular Biology and Translational Science. Elsevier, 2022. http://dx.doi.org/10.1016/bs.pmbts.2022.06.001.
Повний текст джерелаSailapathi, Ananthasri, Seshan Gunalan, Kanagasabai Somarathinam, Gugan Kothandan, and Diwakar Kumar. "Importance of Homology Modeling for Predicting the Structures of GPCRs." In Homology Molecular Modeling - Perspectives and Applications [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94402.
Повний текст джерелаOylumlu, Ece, Goksu Uzel, Lubeyne Durmus, Meric Tas, Damla Gunes, and Ceren Ciraci. "Pattern Recognition Receptor-Mediated Regulatory T Cell Functions in Diseases." In Regulatory T Cells [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105693.
Повний текст джерелаТези доповідей конференцій з теми "Bioinformatic, Computational Biology, GPCR"
Chengzhang, Li, and Xu Jiucheng. "Identification of Potentially Therapeutic Target Genes in Ovarian Cancer via Bioinformatic Approach." In 2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). IEEE, 2021. http://dx.doi.org/10.1109/icbcb52223.2021.9459203.
Повний текст джерелаYang, Heng-Yi, and Tian-Ni Mao. "ITGAX: A Potential Biomarker of Acute Myeloid Leukemia (AML) through Bioinformatic Analysis." In 2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). IEEE, 2021. http://dx.doi.org/10.1109/icbcb52223.2021.9459204.
Повний текст джерелаXu, Nuo, Changjiang Zhang, Leng Leng Lim, and Aloysius Wong. "Bioinformatic Analysis of Nucleotide Cyclase Functional Centers and Development of ACPred Webserver." In BCB '18: 9th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3233547.3233549.
Повний текст джерела