Добірка наукової літератури з теми "Biogenese de membrane externe"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Biogenese de membrane externe".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Biogenese de membrane externe"
Mühleip, Alexander. "Mechanismen der Cristae-Biogenese in Humanparasiten." BIOspektrum 28, no. 6 (October 2022): 590–93. http://dx.doi.org/10.1007/s12268-022-1831-5.
Повний текст джерелаOmelchenko, N. D., I. A. Ivanova, O. V. Duvanova, E. V. Shipko, A. V. Filippenko, and A. A. Trufanova. "Features of Biogenesis of Vesicles of External Membranes of Microorganisms, theirImmunogenic, Protective and Adjuvant Ability." Epidemiology and Vaccinal Prevention 22, no. 2 (May 10, 2023): 117–23. http://dx.doi.org/10.31631/2073-3046-2023-22-2-117-123.
Повний текст джерелаZeilfelder, Saskia, and Michael Schroda. "Das ESCRT-III-Homolog VIPP1 vermittelt Thylakoid-Biogenese und -Erhaltung." BIOspektrum 30, no. 2 (March 2024): 147–49. http://dx.doi.org/10.1007/s12268-024-2143-8.
Повний текст джерелаLucken-Ardjomande, Safa, Sylvie Montessuit, and Jean-Claude Martinou. "Modifications de la membrane mitochondriale externe au cours de l'apoptose." Journal de la Société de Biologie 199, no. 3 (2005): 207–10. http://dx.doi.org/10.1051/jbio:2005021.
Повний текст джерелаJardel, Nicolas. "La prise en charge de l’atrésie anale congénitale chez le chien et le chat." Le Nouveau Praticien Vétérinaire canine & féline 15, no. 68 (2017): 45–51. http://dx.doi.org/10.1051/npvcafe/68045.
Повний текст джерелаRebière-Huët, Julie, Patrick Di Martino, Olivier Gallet, and Christian Hulen. "Interactions de protéines de membrane externe de Pseudomonas aeruginosa avec la fibronectine plasmatique. Recherche d'adhésines bactériennes." Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie 322, no. 12 (December 1999): 1071–80. http://dx.doi.org/10.1016/s0764-4469(99)00106-7.
Повний текст джерелаNiot, I., P. Clouet, P. Bouchard та J. Bezard. "Particularité du passage de l'acide α-linolénique à travers la membrane mitochondriale externe : comparaison avec les acides palmitique et oléique". Reproduction Nutrition Développement 30, № 1 (1990): 131. http://dx.doi.org/10.1051/rnd:19900127.
Повний текст джерелаMohd Jaafar, F., H. Attoui, X. W. Li, O. Alpar, and P. P. C. Mertens. "Expression des protéines VP2 et VP5 de la capside externe du virus de la fièvre catarrhale ovine." Revue d’élevage et de médecine vétérinaire des pays tropicaux 62, no. 2-4 (February 1, 2009): 173. http://dx.doi.org/10.19182/remvt.10076.
Повний текст джерелаPinon, G., R. Quentin, and G. Dubray. "Hétérogénéité des souches de haemophilusinfluenzae d'origine génitale et néonatale analyse des sérotypes capsulaires, des biotypes, des profils électrophorétiques des protéines de membrane externe et du LPS." Annales de l'Institut Pasteur / Microbiologie 137, no. 1 (July 1986): 195–205. http://dx.doi.org/10.1016/s0769-2609(86)80108-9.
Повний текст джерелаEl Jaï, S., A. H. Remmal, A. Rodolakis, A. Souriau, and A. H. El Idrissi. "Application de la réaction de polymérisation en chaîne au diagnostic direct de la chlamydiose abortive (Chlamydophila abortus et Chlamydophila pecorum) des petits ruminants au Maroc." Revue d’élevage et de médecine vétérinaire des pays tropicaux 57, no. 1-2 (January 1, 2004): 21. http://dx.doi.org/10.19182/remvt.9900.
Повний текст джерелаДисертації з теми "Biogenese de membrane externe"
Beaud, Basile. "Exploring outer membrane biogenesis in terrabacteria." Electronic Thesis or Diss., Université Paris Cité, 2024. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=6529&f=73108.
Повний текст джерелаThe bacterial envelope is essential for numerous cellular functions, including maintaining structural integrity, cell division, motility, nutrient uptake, and communication. It also plays a key role in bacterial pathogenicity, making its assembly and maintenance a critical area of research for new antimicrobial development. Bacterial envelopes exhibit a significant dichotomy, unique to the bacterial domain, between monoderm (single membrane) and diderm (double membrane) structures. Traditionally, this divide has been classified as 'Gram-positive' (monoderm) and 'Gram-negative' (diderm). Historically, it was thought that diderm bacteria evolved from monoderms through a gradual increase in complexity. However, recent phylogenomic studies challenge this view, suggesting that the last bacterial common ancestor (LBCA) was already a diderm, and that the shift to a monoderm architecture occurred through multiple independent losses of the outer membrane (OM). Interestingly, all these diderm-to-monoderm transitions are confined to the Terrabacteria subdomain, which includes phyla such as Cyanobacteria, Firmicutes, and Actinobacteria. The reasons for these OM losses specifically in Terrabacteria remain unknown but may be linked to unknown mechanisms unique to the OM biogenesis in this group. In my thesis, I studied the outer membrane biogenesis of two Terrabacteria model. The first model is Veillonella parvula, a diderm from the human microbiome that belongs to the Firmicutes which are better known for their monoderm models (Bacillus, Staphylococcus). I characterized two genes of unknown function (lap1 and lap2) which were previously associated to diderms in a bioinformatical analyses and found that they were involved in OM biogenesis and localized at the cytoplasmic membrane and OM respectively. Surprisingly, the deletions mutant of Lap1-2 was suppressed by lipid biosynthesis genes including a recently identified ether-lipid synthesis enzyme PlsA. While I could not associate the function of plsA in OM biogenesis, I could demonstrate its function in oxidative stress resistance for the first time in Bacteria. I also used a differential colorimetric assay between the WT and plsA deletion mutants to develop CRISPR/Cas9 using plsA as a target. I also identified a putative a new type of glycerophospholipid transporter and obtained preliminary data suggesting it becomes essential in a genomic background devoid of all copies of the recently discovered glycerophospholipid transporter family AsmA-like supporting its putative role. I also showed that AsmA-like proteins have higher copy numbers in Gracilicutes while Terrabacteria often have a single copy or none suggesting the existence of more glycerophospholipid transporters than previously known. Interestingly the newly identified putative transporter was more abundant in Terrabacteria. The second model I studied is Deinococcus radiodurans, a bacterium belonging to the phylum Deinococcota and whose envelope differs significantly from classical diderm models. I was able to retrace the evolutionary history of the lipopolysaccharide transporter Lpt in Deinococcota as I showed that it duplicated in this phylum with one complex predicted to be involved in LPS transport while the other was predicted to possess an unknown substrate. I showed that Deinococcota have lost LPS three times independently and studied the function of both Lpt transporters in D. radiodurans which has lost LPS. I found that the complex which used to be involved in LPS transport was not crucial to the physiology of D. radiodurans while the other complex led to grave defects in the bacterium when deleted. I suggested that this second complex is involved in lipoprotein export to the surface based on suppressor assays, cryo-EM and mass spectrometry
Yang, Yiying. "Mécanismes de biogenèse et de maintien de la membrane externe des bactéries à Gram négatif." Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30279.
Повний текст джерелаGram-negative bacteria include a number of dreadful animal pathogens that are particularly resistant to antibiotic therapies thanks to the sheltering function of their bacterial envelope. The envelope is composed of an inner and an outer membrane (IM and OM), and the separating periplasm containing the peptidoglycan (PG). The outer leaflet of the OM bilayer largely consists of lipopolysaccharide (LPS) that forms a permeability barrier against toxic molecules, including detergents and small hydrophobic molecules. Nutrients are transported via OM-spanning proteins (OMPs). Other OMPs perform envelope biogenesis functions, including the assembly of OMPs and LPS. OMPs are assembled into the OM by the beta-barrel assembly machinery (BAM), a heteropentamer containing the essential OMP BamA and four lipoproteins BamBCDE. The assembly of LPS requires another essential OMP, LptD, which stably associates with the lipoprotein LptE. Defective assembly of OMPs causes envelope stress and renders Gram-negative bacteria sensitive to antibiotics and detergents. Hence, the BAM complex represents a promising target for the development of new therapies. The mechanistic details of how the BAM complex functions ensuring efficient OM biogenesis are only marginally understood. By using a quantitative mass-spectrometry strategy the hosting lab has recently identified two novel putative interactors of the BAM complex of Escherichia coli, the lipoproteins DolP (formerly YraP) and YifL, both of unknown functions. The aim of this PhD thesis work was to characterize the roles of DolP and YifL at the BAM complex. DolP is a ~20 kDa OM lipoprotein that localizes in the periphery of E. coli cells and accumulates at the mid-cell specifically during a late step of cell division. DolP is upregulated during envelope stress caused by the accumulation of unfolded OMPs in the periplasm. Whether DolP plays any role in OMP biogenesis, however, was unknown. In this study, by using a genetic screen, we have shown that DolP is critical for the fitness of cells that undergo envelope stress. We have demonstrated that an increment of BamA in the OM, which is also upregulated during envelope stress, is potentially toxic for the cells. We provide evidence that DolP promotes proper folding and function of BamA thereby counteracting its toxicity. The mid-cell recruitment of DolP had been linked to regulation of septal peptidoglycan hydrolysis by an unknown mechanism. Our study reveals that during envelope stress DolP loses its association with the mid-cell, thus revealing a mechanistic link between impaired OMP biogenesis and a late step of cell division (Ranavaco-first; Yangco-first; Orenday-Tapiaco-first, et al., 2021). Next the BAM-YifL interaction was characterized. We showed that the ~7 kDa YifL interacts with BamA and BamD. Interestingly, we have found that YifL also interacts with the LPS secretory machinery LptDE, which is assembled by the BAM complex into the OM
Namdari, Fatémeh. "Caractérisation fonctionnelle de BamB, protéine impliquée dans la biogénèse de la membrane externe et la virulence de Salmonella." Thesis, Tours, 2013. http://www.theses.fr/2013TOUR4005/document.
Повний текст джерелаBamB is an outer-membrane lipoprotein belonging to the BAM complex (β-Barrel Assembly Machinery). In Salmonella, it is involved in the assembly of outer membrane proteins (OMP), in antibiotic susceptibility, in the transcriptional control of the three Type-Three-Secretion-Systems (T3SS) related genes and also in virulence. In E. coli, BamB interacts directly with the BamA protein. Moreover, BamB has been shown to have a serine-threonin kinase activity in this bacterium. In order to better characterize the roles of the BamB protein, our purposes were to study (1) the impact of the alteration of the interaction of BamB with the BAM complex or of its cytoplasmic sequestration and (2) its putative kinase activity in Salmonella. Our results show that some of the BamB roles are dissociable and that the BamA/BamB interaction is not required for T3SS expression, Salmonella virulence or OMP assembly in the outer membrane. Currently, neither a kinase activity nor a cytoplasmic activity has been clearly demonstrated for this protein
Fardini, Yann. "Étude du contrôle de l’expression des systèmes de sécrétion de type III, généré par l’inactivation du gène yfgL codant une lipoprotéine de la membrane externe, chez Salmonella Enteritidis." Thesis, Tours, 2008. http://www.theses.fr/2008TOUR3301/document.
Повний текст джерелаSalmonella, responsible for typhoid fever and gastroenteritis, is a worldwide health problem. Type three secretion system (TTSS) are crucial virulence factors in Salmonella. Our work showed that deletion of the open reading frame yfgL led to a transcriptional down-regulation of the genes encoding the proteins involved in the biosynthesis of the 3 TTSS in Salmonella Enteritidis. It was shown that inactivation of yfgL whose encoded protein is in complex with YaeT, YfiO, NlpB and SmpA in E. coli, causes an outer membrane alteration. In S. Enteritidis, we observed that the role of the “YaeT” complex in outer membrane protein assembly is conserved in S. Enteritidis. In addition, only yfiO inactivation resulted in a down-expression of the TTSS. However, we presented elements suggesting that the outer membrane protein targeting defect was not responsible for the TTSS down-expression observed in the yfgL and yfiO mutants
Mayerhofer, Peter Uli. "Functional characterization of the human peroxins PEX3 and PEX19, proteins essential for early peroxisomal membrane biogenesis." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969361378.
Повний текст джерелаSpagnolo, Jennifer. "Le Pilus Conjugatif de Pseudomonas aeruginosa : Caractérisation des éléments de membrane externe." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4010.
Повний текст джерелаThe P. aeruginosa PA14 strain is a highly virulent human isolate. PA14 possesses two pathogenicity islands. The 108-kb pathogenicity island PAPI-1 is an integrative and conjugative element (ICE), capable of self-transferring to any recipient Pseudomonas strain, by a conjugative mechanism. The transfer mechanism is mediated by a Type IVb pilus, encoded within the PAPI-1 Island. My PhD work aimed to characterize this Type IVb pilus (Pil-PAPI-1) at a molecular level. The pil2 locus is poorly expressed under laboratory condition. I, first, introduced a constitutive promoter to turn on expression of the pil2 locus. I demonstrated that 9 of the 10 genes are required for DNA transfer. Then, I initiated the characterization of components forming the conjugation machinery. I characterized the products of pilL2 and pilN2 genes. I demonstrated that PilL2 is an OM protein and protruding in the periplasm. This protein is essential for the functionality (DNA transfer) of the conjugative TFPb machinery. Despite its predicted lipoprotein-hallmarks, none of the mutations engineered were able to abrogate the OM-localization of PilL2. We also demonstrated that PilL2 forms an OM sub-complex with PilN2, the secretin of the system. We provide evidence that PilN2 forms stable multimers, which presents the features of a liposecretin, capable of self-insertion and self-multimerization in the OM. We demonstrated that while the N-terminus of the mature PilN2 is required for the formation of a functional pore, it is not involved in interaction with PilL2. These results suggest that PilL2 and PilN2 could form new type of OM sub-complex in the TFPb family
Tremblay, Mireille. "Identification et caractérisation antigénique des protéines de la membrane externe de l'Haemophilus influenzae." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0016/MQ55884.pdf.
Повний текст джерелаBoissinot, Maurice. "Analyse antigénique de la membrane externe de Legionella pneumophila serogroupes 1 à 8." Master's thesis, Université Laval, 1985. http://hdl.handle.net/20.500.11794/33498.
Повний текст джерелаMontréal Trigonix inc. 2018
PERNOT, LUCILE. "Etude structurale d'une proteine de la membrane externe de la bacterie neisseria meningitidis." Paris 11, 1999. http://www.theses.fr/1999PA112216.
Повний текст джерелаJUIN, PHILIPPE. "Implication du canal cationique de la membrane externe dans la translocation des proteines mitochondriales." Paris 6, 1995. http://www.theses.fr/1995PA066630.
Повний текст джерелаКниги з теми "Biogenese de membrane externe"
VII, Université de Paris, ed. Comparaison des systèmes maltose chez les enterobactéries: Exploitation des différences pour étudier la structure de LamB, proteine de la membrane externe, et des promoteurs de la région malA. Grenoble: A.N.R.T, Université Pierre Mendes France (Grenoble II), 1986.
Знайти повний текст джерелаЧастини книг з теми "Biogenese de membrane externe"
A. Alli, Abdel. "Mechanisms of Extracellular Vesicle Biogenesis, Cargo Loading, and Release." In Physiology. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100458.
Повний текст джерелаBakar, Elvan, Zeynep Erim, and Nebiye Pelin Türker. "Biotechnological Importance of Exosomes." In Recent Progress in Pharmaceutical Nanobiotechnology: A Medical Perspective, 117–65. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815179422123080008.
Повний текст джерелаMoser, Hugo, and Nga Hong Brereton. "Adrenoleukodystrophy And Other Peroxisomal Disorders." In Pediatric Nutrition In Chronic Diseases And Developmental Disorders, 312–17. Oxford University PressNew York, NY, 2005. http://dx.doi.org/10.1093/oso/9780195165647.003.0045.
Повний текст джерелаЗвіти організацій з теми "Biogenese de membrane externe"
Nelson, Nathan, and Randy Schekman. Functional Biogenesis of V-ATPase in the Vacuolar System of Plants and Fungi. United States Department of Agriculture, September 1996. http://dx.doi.org/10.32747/1996.7574342.bard.
Повний текст джерела