Добірка наукової літератури з теми "Bioemulsifier"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bioemulsifier".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Bioemulsifier"
Ilori, Matthew O., and Dan-Israel Amund. "Production of a Peptidoglycolipid Bioemulsifier by Pseudomonas aeruginosa Grown on Hydrocarbon." Zeitschrift für Naturforschung C 56, no. 7-8 (August 1, 2001): 547–52. http://dx.doi.org/10.1515/znc-2001-7-812.
Повний текст джерелаMaia, Patrícia, Vanessa Santos, Adriana Ferreira, Marcos Luna, Thayse Silva, Rosileide Andrade, and Galba Campos-Takaki. "An Efficient Bioemulsifier-Producing Bacillus subtilis UCP 0146 Isolated from Mangrove Sediments." Colloids and Interfaces 2, no. 4 (November 13, 2018): 58. http://dx.doi.org/10.3390/colloids2040058.
Повний текст джерелаMarques, Nathália S. A. A., Israel G. Sales da Silva, Davi L. Cavalcanti, Patrícia C. S. V. Maia, Vanessa P. Santos, Rosileide F. S. Andrade, and Galba M. Campos-Takaki. "Eco-Friendly Bioemulsifier Production by Mucor circinelloides UCP0001 Isolated from Mangrove Sediments Using Renewable Substrates for Environmental Applications." Biomolecules 10, no. 3 (February 27, 2020): 365. http://dx.doi.org/10.3390/biom10030365.
Повний текст джерелаShilpa, Mujumdar. "Use of Natural Wastes for Biosurfactant (BS) and Bioemulsifier (BE) Production and their Applications – A Review." Open Access Journal of Microbiology & Biotechnology 6, no. 3 (2021): 1–17. http://dx.doi.org/10.23880/oajmb-16000203.
Повний текст джерелаSilva, Joselma Ferreira da, Lucas Albuquerque Rosendo da Silva, Marta Ribeiro Barbosa, Laureen Michelle Houllou, and Carolina Barbosa Malafaia. "Bioemulsifier produced by Yarrowia lipolytica using residual glycerol as a carbon source." Journal of Environmental Analysis and Progress 5, no. 1 (January 3, 2020): 031–37. http://dx.doi.org/10.24221/jeap.5.1.2020.2700.031-037.
Повний текст джерелаBarbosa, Fernanda Gonçalves, Paulo Ricardo Franco Marcelino, Talita Martins Lacerda, Rafael Rodrigues Philippini, Emma Teresa Giancaterino, Marcos Campos Mancebo, Júlio Cesar dos Santos, and Silvio Silvério Da Silva. "Production, Physicochemical and Structural Characterization of a Bioemulsifier Produced in a Culture Medium Composed of Sugarcane Bagasse Hemicellulosic Hydrolysate and Soybean Oil in the Context of Biorefineries." Fermentation 8, no. 11 (November 9, 2022): 618. http://dx.doi.org/10.3390/fermentation8110618.
Повний текст джерелаDharmadevi, Devaraj, Punamalai Ganes, and Kandasamy Sivasubramani. "Delving of a Promising Bioemulsifier Producing Bacterium from an Oil Contaminated Coastal Site and its Enhanced Production." Biosciences Biotechnology Research Asia 19, no. 3 (September 29, 2022): 727–35. http://dx.doi.org/10.13005/bbra/3024.
Повний текст джерелаLeahy, Joseph G., Zafar M. Khalid, Ernesto J. Quintero, Joanne M. Jones-Meehan, John F. Heidelberg, Patricia J. Batchelor, and Rita R. Colwell. "The concentrations of hexadecane and inorganic nutrients modulate the production of extracellular membrane-bound vesicles, soluble protein, and bioemulsifier by Acinetobacter venetianus RAG-1 and Acinetobacter sp. strain HO1-N." Canadian Journal of Microbiology 49, no. 9 (September 1, 2003): 569–75. http://dx.doi.org/10.1139/w03-071.
Повний текст джерелаŽėkaitė, G., V. Jaška, K. Poška, M. Andrulytė, and S. Grigiškis. "Microorganisms Producing Biosurfactant Selection and Characterization of New Discovered Bioemulsifier that will be Used to Create Ecological Heating Production Technology." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (August 6, 2015): 222. http://dx.doi.org/10.17770/etr2013vol1.840.
Повний текст джерелаTabassum Khan, Nida. "Bioemulsifiers." Biotechnology and Bioprocessing 2, no. 10 (November 25, 2021): 01–02. http://dx.doi.org/10.31579/2766-2314/058.
Повний текст джерелаДисертації з теми "Bioemulsifier"
Meneghine, Aylan Kener [UNESP]. "Análise metagenômica e potencial biotecnológico de microrganismos de solo e água de uma área agrícola com adubação orgânica." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/147993.
Повний текст джерелаApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-01-12T19:08:55Z (GMT) No. of bitstreams: 1 meneghine_ak_dr_jabo.pdf: 2274173 bytes, checksum: 058fc5159e6fa34a7c970ce061ce70c5 (MD5)
Made available in DSpace on 2017-01-12T19:08:55Z (GMT). No. of bitstreams: 1 meneghine_ak_dr_jabo.pdf: 2274173 bytes, checksum: 058fc5159e6fa34a7c970ce061ce70c5 (MD5) Previous issue date: 2016-12-16
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O composto orgânico produzido a partir de carcaças, resíduos animais e vegetais é uma alternativa viável para a substituição total ou parcial dos fertilizantes minerais utilizados na atualidade. No processo de compostagem participam diferentes populações microbianas, e com isso o composto torna-se um sistema rico para utilização como fertilizante no solo, complementando assim as necessidades nutricionais e microbianas do meio ambiente. Entretanto, há poucos trabalhos envolvendo análise da diversidade bacteriana em solos sob uso de composto orgânico feito a partir de carcaças, e também pouco se conhece sobre o impacto ambiental do uso agrícola de composto orgânico na qualidade da água. Existe também a questão se há influência da água utilizada para irrigação na qualidade do solo. O objetivo central desse trabalho foi analisar a diversidade bacteriana e perfil funcional de um solo de horta e da água de um córrego utilizada para irrigação. E como objetivo secundário, através do isolamento de bactérias da água verificar o potencial biotecnológico de produção e uso de exopolissacarídeo como bioemulsificante de óleo e hidrocarbonetos. As amostras de solo e água utilizadas nesse trabalho foram coletadas na área do departamento rural da Fundação Parque Zoológico de São Paulo, em setembro de 2014. Todo material coletado foi transportado até o Laboratório de Bioquímica de Micro-organismos e de Plantas, onde realizou-se a extração de DNA total e sequenciamento através de tecnologia Ion Proton (Life Technologies), isolamento bacteriano, produção e aplicação de exopolissacarídeo como bioemulsificante. Ao analisar o DNA metagenômico observou-se que tanto na água quanto no solo há uma abundância de bactérias encontradas normalmente em áreas agrícolas sob influência de composto orgânico feito a partir de outras fontes. Verificou-se também, através da análise dos genes relacionados com os ciclos biogeoquímicos, abundância de genes do processo de desnitrificação na amostra de solo. Além de se observar que na análise da estrutura taxonômica dos ciclos biogeoquímicos, não há bactérias em comum entre as amostras de solo e água com do composto orgânico. Porém ao avaliar o perfil funcional total da água, solo e outros dez metagenomas, através de uma análise de agrupamento hierárquico, notou-se que a água causa maior influência no solo do que o próprio composto orgânico. Com relação ao isolamento bacteriano, foi possível isolar a bactéria Sphingomonas sp., sendo que o isolado identificado demonstrou produzir grande quantidade de exopolissacarídeo (EPS). O EPS formou emulsões estáveis após 24 horas e 168 horas. Além disso o EPS foi um melhor agente emulsificante para hexano e querosene dentre todos os óleos analisados. Os resultados mostraram contribuição significativa com relação ao potencial do EPS como agente bioemulsificante que aumentaria a degradação de hidrocarbonetos e efeitos de emulsificação em biotecnologia ambiental.
The organic compost produced from carcasses, animal and vegetable waste is a viable alternative to full or partial replacement of mineral fertilizers used nowadays. In the composting process there are involved different microbial populations, and the compost becomes a rich system for use as a fertilizer in the soil, thereby supplementing the nutritional and microbial requirements of the medium. However, there are few studies involving the analysis of bacterial diversity in soil under use of organic compost made from carcasses, and also little is known about the environmental impact of agricultural use of organic compost in water quality. Furthermore, there is also the question of whether there is influence of the water used for irrigation on soil quality. Because of these questions, the central objective of this study was to analyze the bacterial diversity and functional profile of a soil from vegetable garden and freshwater used for irrigation from a local stream. As a secondary objective, we aimed to verify the production and biotechnology potential of a bacterial exopolysaccharide as oil and hydrocarbons bioemulsifier. Soil and freshwater samples used in this study were collected at rural department of the Zoo Foundation Park of São Paulo, in September 2014. All material collected was transported to the Laboratório de Bioquímica de Micro-organismos e de Plantas where we proceeded with the total DNA extraction experiments, sequencing through Ion Proton technology (Life Technologies), bacterial isolation, production and application of exopolysaccharide as bioemulsifier. By analyzing the metagenomic DNA it was observed that both freshwater and soil were plenty of bacterial communities normally found in agricultural areas under influence of organic amendments. Through the analysis of genes related to biogeochemical cycles, it was found abundance of genes about denitrification process in the soil sample. Also it can be noted by the analysis of the taxonomic structure of biogeochemical cycles, there was no bacteria shared between soil and freshwater samples with the organic compost. But when evaluating the functional profile of freshwater, soil and other ten metagenomes, we observed that freshwater causes greater influence on the soil than the organic compost. Regarding the bacterial isolation, it was possible to identify the bacteria Sphingomonas sp., and it has been shown to produce large amount of exopolysaccharide (EPS). The EPS has shown stability in its emulsions after 24 hours and 168 hours. Additionally, it’s a better emulsifying agent for hexane and kerosene among other oils analysed. Furthermore, our findings promoted significant contribution by showing EPS potential as a bioemulsifier agent that would enhance hydrocarbon degradation and emulsification effects in environmental biotechnology.
Lima, João Marcelo Silva. "Avaliação do potencial de produção de biossurfactantes por micro-organismos endofíticos e epifíticos de macrófitas aquáticas coletadas em afluentes do Rio Negro contaminados por petróleo." Universidade Federal do Amazonas, 2016. http://tede.ufam.edu.br/handle/tede/5326.
Повний текст джерелаApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-05T15:46:11Z (GMT) No. of bitstreams: 1 Tese - João M. S. Lima.pdf: 3551790 bytes, checksum: 602e786b4a54ff5164341a8a64252e5b (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-12-05T15:46:42Z (GMT) No. of bitstreams: 1 Tese - João M. S. Lima.pdf: 3551790 bytes, checksum: 602e786b4a54ff5164341a8a64252e5b (MD5)
Made available in DSpace on 2016-12-05T15:46:42Z (GMT). No. of bitstreams: 1 Tese - João M. S. Lima.pdf: 3551790 bytes, checksum: 602e786b4a54ff5164341a8a64252e5b (MD5) Previous issue date: 2016-06-30
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Biosurfactants are compounds produced by fungi and bacteriain different behavioral and environmental conditions, and can be used as an option for the bioremediation of environments contaminated by oil and its derivatives. The selection of fungi, endophytic and epiphytic bacteria, with potential biosurfactant activity, was evaluated through the following tests: Biodegradability using discoloration of 2,6 Dichloro Phenol Indophenol (DCPIP); oil drop-collapse; and emulsification, through surface tension evaluation with Du Nouy ring and the resulting production curve of the most promising microorganisms. Eight fungal samples were effective in the biodegradability test, since they promoted discoloration of indophenol in 24 and 48 hours: S31 Phoma sp, S36 Phoma sp, S24 Rhizopus oryzae, S46 Fusarium sp., S42 Fusarium sp., S32 Fusarium sp, S33 Fusarium sp. and S51 Fusarium sp. All of these fungal isolates produced laccase, pectinase, amylase and lipase. Of these, the S31 Phoma sp. isolate presented a diesel emulsion of 1.5 cm, or 52%, to reduce water surface tension from 72.43 mN/m to 51.03 mN/m. Among the bacteria selected, the M87 Microbacterium sp. isolate presented the best correlation between the tests. This isolate produced 3.0 g/L of biosurfactants, and the fractions promoted reduction of water surface tension below 40 mN/m. The best fraction (F1) was analyzed through FT-IR infrared UFLC-MS and 1H NMR which demonstrated the presence of compounds probably related to fatty acids, a type of non-ionic biosurfactant, that could be used in the cosmetic industry or as an emulsifier in bioremediation processes. No toxic activity was detected either in the bacterial lyophilized aqueous extract or the fungal aqueous extract. Further studies are required in order to: Promote the growth of these, pure or consortium, cultures; identify the best carbon source for the production of biosurfactants; and perform a more thorough chemical characterization of the different biosurfactants and bioemulsifiers from the fungi and bacteria selected.
Os biossurfactantes são compostos produzidos por fungos e bactérias em diferentes condições ambientais e comportamentais e podem ser usados como alternativa para a biorremediação de ambientes contaminados por petróleo e seus derivados. A seleção de fungos e bactérias endofíticas e epifíticas, com provável atividade biossurfactante, foi realizada por meio dos seguintes testes: biodegradabilidade, utilizando descoloração do 2,6 Dicloro Fenol Indofenol (DCPIP); colapso da gota de petróleo; emulsificação, avaliação da tensão superficial pelo método do anel de Du Noüy, e curva de produção dos micro-organismos mais promissores. Amostras fúngicas em um total de oito mostraram-se eficientes no teste de biodegradabilidade, pois promoveram a descoloração do indofenol em 24 e 48h, estas foram identificadas como: S31 Phoma sp., S36 Phoma sp., S24 Rhizopus oryzae, S46 Fusarium sp., S42 Fusarium sp., S32 Fusarium sp., S33 Fusarium sp. e S51 Fusarium sp. Destes, o isolado S31 Phoma sp. apresentou emulsão do diesel de 1,5 cm ou 52% com redução da tensão superficial da água de 72,43 mN/m para 51,03 mN/m, além disso, os oito fungos selecionados apresentaram atividade na produção de enzimas: lacase, pectinase, amilase e lipase. Dentre as bactérias, o isolado M87 Microbacterium sp., mostrou melhor correlação entre os testes realizados. Esse isolado produziu 3,0 g/L de biossurfactantes e suas frações promoveram a redução da tensão superficial da água abaixo de 40 mN/m. A melhor fração (F1) foi analisada por FT-IR infravermelho, UFLC-MS e RMN 1H. As diferentes técnicas mostraram a presença de compostos provavelmente relacionados a ácidos graxos, um tipo de biossurfactante não iônico que pode ser explorado futuramente na indústria de cosméticos ou como emulsificante em processos de biorremediação. O teste para avaliar a citotoxicidade do extrato liofilizado e aquoso da bactéria, e o de toxicidade do extrato aquoso do fungo, não mostraram atividade tóxica. Novos estudos fazem-se necessários no sentido de promover o crescimento dessas culturas, puras ou em consórcio; utilizando diferentes fontes de carbono com o intuito de identificar a melhor fonte para a produção de biossurfactantes, assim como aprofundar os estudos de caracterização química dos diferentes biossurfactantes e bioemulsificantes produzidos, tanto pelo fungo como pela bactéria selecionada.
Argentin, Marcela Nunes. "Produção de biossurfactante por uma linhagem termofílica de Bacillus isolada de amostra rochosa de reservatório de petróleo." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-08052017-154809/.
Повний текст джерелаBiosurfactants (BS) are compounds of low molecular weight produced by a wide variety of microorganisms. Their amphipathic nature makes these compounds capable of reducing the surface tension of liquids and form stable emulsions, characteristics that make them highly applicable in the oil industry. The extreme conditions of temperature and salinity in oil reservoirs require research on the production of biosurfactants by indigenous bacteria, as well as its stability in these conditions. In this context, this work aimed the selection of biosurfactant-producing bacteria from rock samples of oil reservoir for potential use in microbial enhancement oil recovery (MEOR) processes. Cultures inoculated with rock samples were used for the isolation of bacterial strains. The positive isolates for biosurfactant production (measured by emulsification index - E24) were identified by 16S rRNA gene sequencing. Ten of the obtained isolates showed 99% similarity to Bacillus alveayuensis, being chosen one - Ar70C7-2 - for essays evaluating factors such as agitation, salinity, carbon sources (C) and nitrogen (N) and C/N ratio on growth and BS production. The mineral medium (MM) with glycerine and NH4Cl, at a C/N ratio equal to 2, temperature of 55°C and 70 g/L NaCl, provided the best results for the E24 index (69.1%). The BS produced by strain Ar70C7-2 was partially purified by acid precipitation, yielding on average 0.17g of crude extract (semi-purified, SP) per liter of culture in MM, and 0.24 g in LB medium. The BS-SP produced both from LB (BS-SP-LB) and Mineral Medium cultures (BS-SP-MM) had its surface-active action evaluated in relation to changes in pH, temperature and salinity. Both BS-SP presented thermal stability in the range -18 to 121°C, with E24 mean values of 65.4(±2.5)% and 63.7(±0.6)% (BS-SP-BL and BS-SP-MM, respectively) and minimal surface tension of 43.3 mN/m (BS-SP-BL) and 42.1 mN/m (BS-SP-MM). BS-SP samples were adjusted to pH values between 2 and 12, showing E24 mean values of 66.4(±3.4)% e 60.1(±3.2)% (BS-SP-BL and BS-SP-MM, respectively) and minimum surface tension of 44.3 mN/m (BS-SP-LB) and 42.1 mN/m (BS-SP-MM). Regarding salinity, samples were adjusted to concentrations in the range 0 to 21% NaCl, showing E24 mean values 65.4(±3.4)% e 64.4(±1.7)% (BS-SP-BL and BS-SP-MM, respectively) and surface tension minimum of 42.2 mN/m (BS-SP-LB) and 42.9 mN/m (BS-SP-MM). As for antimicrobial action, the BS-SP showed no bactericidal or bacteriostatic activity on the strains E. coli, B. subtilis, P. fluorescens and S. epidermidis. The BS produced by Ar70C7-2 in thermophilic and halophilic conditions showed a high rate of emulsification and stability. These features, coupled with good emulsifying capacity on various organic substrates, particularly petroleum products, suggest a potential application in MEOR processes.
Maia, Patricia Cristina de Veras Souza. "Produção e aplicação de bioemulsificante isolado de Bacillus subtilis UCP 0146 por fermentação submersa em manipueira." Universidade Católica de Pernambuco, 2017. http://tede2.unicap.br:8080/handle/tede/940.
Повний текст джерелаMade available in DSpace on 2018-01-02T17:51:42Z (GMT). No. of bitstreams: 1 Patricia_Cristina_Veras_Souza.pdf: 1439810 bytes, checksum: 62ce5cd40fbe6621e14fe59ade993436 (MD5) Previous issue date: 2017-06-29
Biosurfactants are tensioactive compounds produced by bacteria, yeasts and filamentous fungi, which have come in the molecule a hydrophobic and other hydrophilic portion, with potential to reduce water surface tension and liquid emulsion with two phases, called Bioemulsifiers. The bioemulsifiers presented potential of application in several industrial areas such as: food, agricultural, pharmaceutical and petrochemical, their characteristics of biodegradability, non-toxic and possibility of production from renewable substrates. In this sense, studies carried out with Bacillus subtilis UCP 0146, investigating a bioemulsifier production, using as substrate the agroindustrial effluent (manipueira). Cultivation was carried out in Erlenmeyer flasks containing 75 mL (100%) of the production medium (manimetry) according to the 23 factorial scale, with 5% inoculum at a concentration of 108 cells / mL, incubated at 30ºC under agitation of 150 rpm for 72h, being evaluated the bioemulsifier produced in the cell free metabolic liquid, the emulsification inde (IE24). As the good, the size of the emulsion droplets, stability to pH, NaCl and temperature. The results showed that the emulsifier had a 95.2% emulsification index with the engine burned oil in the best planning condition, showing a stable emulsion formation at all temperatures and a better response at the temperature of 70ºC (96.0%). Regarding pH was observed in assay 2, an (IE24) of 91.6% relative to salinity or assay 4 represented 92.0%. In addition, no dispersion test showed displacement of 85.3 cm of the oil and the discoloration of methylene blue in aqueous solution, obtained the result of 62.2% removal. The Bacillus subtilis demonstrated the ability to produce bioemulsifiers using a metabolic conversion of the agroindustrial residue, making the bioprocessing economical and great potential in the biotechnological application.
Os Biossurfactantes são compostos tensoativos produzidos por bactérias, leveduras e fungos filamentosos, que apresentam na molécula uma porção hidrofóbica e outra hidrofílica, com potencial de redução da tensão superficial da água e ou de emulsificar líquidos com duas fases, os que apresentam essa última característica são denominados de bioemulsificantes. Apresentam potenciais de aplicação em varias áreas industriais como: alimentícia, agrícola, farmacêutica e petroquímica, devido a suas características de biodegradábilidade, não toxicidade e possibilidade de produção a partir de substratos renováveis. Neste trabalho, estudos foram realizados com Bacillus subtilis UCP 0146, investigando a produção de bioemulsificante, empregando como substrato o efluente agroindustrial (manipueira). O cultivo foi realizado em frascos de Erlenmeyers de 250 ml contendo 75 mL (100%) do meio de produção (manipueira) de acordo com planejamento fatorial completo 23, teve como variável independente o volume do inóculo, temperatura e agitação e como variável resposta o índice de emulsificação (IE24), com 5% de inóculo com concentração de 108 cel /mL, incubado a 30ºC, sob agitação de 150 rpm por 72h. Foi avaliado o bioemulsificante produzido no líquido metabólico livre de células, a fins da dosagem índice de emulsificação (IE24). As características do bioemulsificante avaliadas foram tamanho das gotas de emulsão, estabilidade frente a variações de pH, concentração de NaCl e temperatura. Os resultados mostraram que o bioemulsificante apresentou índice de emulsificação de 95,2% para óleo queimado de motor na melhor condição do planejamento (inóculo 9% (v/v), 25°C e 100rpm), apresentando formação de emulsão estável em relação ao IE24 em todas as temperaturas testadas, mas a melhor resposta foi com a temperatura de 70ºC (96.0%). Em relação ao pH, foi observado um IE24h de 91,6% e em relação a salinidade apresentou 92.0%. No teste de dispersão do deslocamento obteve o valor de 85,38 cm². Quanto ao potencial de adsorção do corante catiônico azul de metileno removeu 62,2% após 12h, como também a remoção de 94,4% do óleo queimado de motor impregnado em solo arenoso. O Bacillus subtilis apresentou habilidade de produzir bioemulsificante utilizando a conversão metabólica do resíduo agroindustrial, tornando o bioprocesso econômico e com grande potencial na aplicação biotecnológica.
Vilela, Willian Fernando Domingues. "Seleção, caracterização e aplicação de novos biossurfatantes produzidos por bactérias marinhas a partir de substratos de baixo custo." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/75/75133/tde-21112014-160048/.
Повний текст джерелаThe surfactants, amphipathic molecules containing both polar and nonpolar portions, are a heterogeneous group of surface-active compounds. Its polar portion may be composed by peptides, anions or cations, mono, di, or polysaccharides, while its polar portion may contain saturated, unsaturated or hydroxylated fatty acids or hydrophobic peptides. These molecules may be synthetic, derived from chemical synthesis, or produced by microorganisms, mainly bacteria and yeast, and also known as biosurfactants (BS). The BS represent an alternative to synthetic surfactants used in various segments of industry due to their low toxicity and high biodegradability. The major classes of BS include glycolipids, lipopeptides, lipoproteins, phospholipids, fatty acids and polymeric surfactants. Bacteria isolated from different biomes have been heavily exploited for BS production, while marine ecosystems are still poorly explored, despite its great potential. The marine microorganisms when exposed to extremes of pressure, temperature and salinity, produce stable compounds and, therefore, useful in industrial applications. The aim of this study was to investigate new BS produced by marine bacteria capable of producing such molecules growing in low-cost carbon sources (mineral oil, sucrose, soybean oil and glycerol). The selected bacterial isolates were identified and the biosurfactant production was studied in laboratory scale. After extraction of BS their physicochemical properties as surface tension (ST), interfacial tension (IT) and critical micelle concentration (CMC) were determined; preliminary structural characterization evaluated by FTIR and TLC and their potential application in bioremediation of crude oil and as emulsifier was also investigated. The results identified the BS production by three marine bacteria Arthrobacter defluvii, Brevibacterium luteolum and Gordonia sp. Based on the chemical analysis it was possible to identify two lipopeptides BS (A. defluvii and B. luteolum) and a BS with glycosides groups (Gordonia sp.). The BS produced by A. defluvii growing in soybean oil showed ST = 34,5 mNm-1; IT = 15 mNm-1 and CMC = 129 mgL-1; B. luteolum growing in mineral oil showed a ST = 27 mNm-1, IT = 0,84 mNm-1 and CMC = 40 mgL-1 and Gordonia sp. growing in soybean oil showed ST = 33 mNm-1, IT = 1,4 mNm-1 and CMC = 85 mgL-1. The BS obtained exhibited capacity to remove crude oil from contaminated sand as well as emulsifying activity against different hydrophobic substances (soybean oil, mineral oil, decane, kerosene, animal fat and hexadecane). Stability tests carried out to BS produced by B. luteolum indicated that: the BS is stable when submitted to temperatures down to 60° C for 24 h to 121° C for 20 min; the higher activity to the BS is found in solution with pH between 6 and 8; and the ionic strength does not affect the surfactant activity until salt concentrations under 16%. Therefore, the three selected marine micro-organisms were able to produce compounds with significant surfactant activity using low cost substrates.
PINTUS, MANUELA. "Gordonia sp. BS29 as a producer of bioemulsifiers: physiological and molecular characterization". Doctoral thesis, 2009. http://hdl.handle.net/2158/546266.
Повний текст джерелаChiou, Bau-Sheng, and 邱保盛. "Bioemulsifier Production by Acinetobacter calcoaceticus RAG-1 and Investigation the Properties of This Bioemulsifier." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/wt689v.
Повний текст джерела國立臺北科技大學
化學工程所
94
Bioemulsans are amphipathic proteins complexes polysaccharides that stabilize oil-in-water emulsions and have applications in industrial areas of pollution control, bioremediation, agriculture, detergent, and cosmetics. The Acinetobacter calcoaceticus RAG-1 grew on ethanol medium as carbon source to secrete the bioemulsifier in batch cultivations. The cell-free culture broths were obtained by using centrifugation and membrane filtration, and then mixed with four volumes of chilled ethanol to precipitate polysaccharides, and then dialyzed, and oven dried. When cultivated in 3-liter bioreactor with agitation speed 160rpm for 35 hours, using the medium of 16g/l ethanol, 12.1g/l of phosphate, the exopolysaccharide 47% and emulsan 1.1g/l were obtained. Emulsan were gradually released into the medium with cells growth, and a large number released into the medium when the cells approach the stationary phase. After the formation of oil-in-water emulsions by tumbling in a rolling mill, changing the concentration of emulsan、mineral oil volume and pH, the emulsion’s droplet diameter、zeta potential and turbidity were measured. When the concentration of emulsan exceeded the critical micelle concentration (CMC) the turbidity of emulsions will increase obviously. The sizes of oil droplets distribute over 500nm、800nm、1.1μm. At pH 2.25, the MSD and effective diameter are the same of about 30nm. At pH 3~3.5, the emulsan will precipitate because the pKa of polysaccharide is pH 3.05. At pH 9.6, the emulsion turbidity is lower and not stable due to the hydrolysis of polysaccharides. Zeta potentials were reduced with the decreasing of pH when below pH 4. Zeta potentials were around -35~ -43mv when pH above 4.
林明義. "Study on the production of bioemulsifier by yeast." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/35112174189657888227.
Повний текст джерелаЧастини книг з теми "Bioemulsifier"
Wang, Manman, Xingbiao Wang, Chenggang Zheng, Yunkang Chang, Yongli Wang, and Zhiyong Huang. "Study on Process Optimization for Bioemulsifier Production." In Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012), 367–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37916-1_38.
Повний текст джерелаRen, Hejun, Yan Wan, and Yongsheng Zhao. "Phytoremediation of Polychlorinated Biphenyl-Contaminated Soil by Transgenic Alfalfa Associated Bioemulsifier AlnA." In Twenty Years of Research and Development on Soil Pollution and Remediation in China, 645–53. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6029-8_39.
Повний текст джерелаDong, Dayuan, Xingbiao Wang, Mingyu Cai, Jingjing Wang, Yifan Han, Xiaoxia Zhang, and Zhiyong Huang. "Partial Purification and Chemical Characterization of a Bioemulsifier and Its Application in MEOR." In Lecture Notes in Electrical Engineering, 587–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46318-5_61.
Повний текст джерела"Biosurfactants and Bioemulsiers from Marine Sources." In Biosurfactants, 141–62. CRC Press, 2014. http://dx.doi.org/10.1201/b16383-10.
Повний текст джерелаТези доповідей конференцій з теми "Bioemulsifier"
Luna, J. Moura, R. Diniz Rufino, C. B. Barbosa Farias, C. A. Buarque Gusmão, L. Asfora Sarubbo, and G. M. Campos-Takaki. "Production of a bioemulsifier by Candida glabrata isolated from mangrove." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0143.
Повний текст джерелаVance-Harrop, Mabel H., B. Barros Neto, N. B. Gusmão, M. C. Ferreira, and G. M. Campos-Takaki. "Strategies of Optimization of Bioemulsifier Production by Candida lipolytica Using Semidefined Medium." In Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2007). WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837554_0144.
Повний текст джерелаЗвіти організацій з теми "Bioemulsifier"
Skubal, K. L., and R. G. Luthy. Effect of the bioemulsifier emulsan on naphthalene mineralization from coal tar in aqueous systems. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10178231.
Повний текст джерела