Добірка наукової літератури з теми "BIODIESEL-DIESEL BLEND"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "BIODIESEL-DIESEL BLEND".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "BIODIESEL-DIESEL BLEND"
Jagtap, Sharad P., Anand N. Pawar, and Subhash Lahane. "Effect of Ethanol-Biodiesel-Diesel Blend on Performance and Emission Characteristics of a DI Diesel Engine." International Journal of Heat and Technology 39, no. 1 (February 28, 2021): 179–84. http://dx.doi.org/10.18280/ijht.390119.
Повний текст джерелаAlgayyim, Sattar Jabbar Murad, and Andrew P. Wandel. "Comparative Assessment of Spray Behavior, Combustion and Engine Performance of ABE-Biodiesel/Diesel as Fuel in DI Diesel Engine." Energies 13, no. 24 (December 10, 2020): 6521. http://dx.doi.org/10.3390/en13246521.
Повний текст джерелаNita, Irina, Sibel Geacai, Anisoara Neagu, and Elis Geacai. "Estimation of the refractive index of diesel fuel+biodiesel blends." Analele Universitatii "Ovidius" Constanta - Seria Chimie 24, no. 1 (June 1, 2013): 24–26. http://dx.doi.org/10.2478/auoc-2013-0005.
Повний текст джерелаV, Asha, and Sudalaiyandi K. "Physical Characteristics of Ternary Blends of Biodiesel." Journal of Manufacturing Engineering 17, no. 2 (June 1, 2022): 068–72. http://dx.doi.org/10.37255/jme.v17i2pp068-072.
Повний текст джерелаDuvuna, G. A., and A. A. Wara. "Determination of Operational Parameters of a Single Cylinder Two Stroke Engine Run on Jatropha Biodiesel." Advanced Materials Research 367 (October 2011): 525–36. http://dx.doi.org/10.4028/www.scientific.net/amr.367.525.
Повний текст джерелаTeoh, Y. H., K. H. Yu, H. G. How, and H. T. Nguyen. "Experimental Investigation of Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled with Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends." Energies 12, no. 10 (May 22, 2019): 1954. http://dx.doi.org/10.3390/en12101954.
Повний текст джерелаMusa, Nicholas A., Georgina M. Teran, and Saraki A. Yaman. "Emission characterization of diesel engine run on coconut oil biodiesel its blends and diesel." Journal of Applied Sciences and Environmental Management 20, no. 2 (July 25, 2016): 303–6. http://dx.doi.org/10.4314/jasem.v20i2.10.
Повний текст джерелаIslam, Md Saiful, Abu Saleh Ahmed, Aminul Islam, Sidek Abdul Aziz, Low Chyi Xian, and Moniruzzaman Mridha. "Study on Emission and Performance of Diesel Engine Using Castor Biodiesel." Journal of Chemistry 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/451526.
Повний текст джерелаLiu, Yu, Jun Li, Ying Gao, and Xin Mei Yuan. "Laser Diagnostic Investigation on the Spray and Combustion with Butanol-Biodiesel-Diesel Fuel Blends." Advanced Materials Research 443-444 (January 2012): 986–95. http://dx.doi.org/10.4028/www.scientific.net/amr.443-444.986.
Повний текст джерелаRamalingam, Senthil, Silambarasan Rajendran, and Pranesh Ganesan. "A Comparative Assessment of Operating Characteristics of a Diesel Engine Using 20% Proportion of Different Biodiesel Diesel Blend." Journal of KONES 26, no. 1 (March 1, 2019): 127–40. http://dx.doi.org/10.2478/kones-2019-0016.
Повний текст джерелаДисертації з теми "BIODIESEL-DIESEL BLEND"
Klajn, Felipe Fernandes. "Avaliação Comparativa de Diferentes Proporções das Misturas Diesel-Biodiesel-Etanol e Diesel-Biodiesel frente ao Diesel Tipo A :Análises Físico-Químicas e de Desempenho de um Conjunto Motor-Gerador." Universidade Estadual do Oeste do Parana, 2016. http://tede.unioeste.br:8080/tede/handle/tede/807.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The search for alternatives to reduce diesel within the national energy matrix, particularly within the transport sector, has been studied and carried out in a gradual manner with partial insertions of biodiesel to diesel. This binary mixture, however, can be improved by the addition of ethyl alcohol (ethanol), which contain oxygen atoms in its structure and may be able to promote more efficient burning and to reduce exhaust emissions, both sulfur and non-sulfur. This work aimed to evaluate the energy performance of an engine-generator set working with diesel-biodiesel blends and diesel-biodiesel-ethanol, compared with the diesel type "A", i.e, diesel without the addition of biodiesel, as well as physicochemical characteristics of each treatment. The diesel-biodiesel mixtures were based on the currently marketed formulation (B7) and projections provided by the Senate Bill 613/2015 and Resolution No. 3/2015 CNPE for captive consumers or road fleets, ie, B10, B15 and B20. Each binary mixture this has undergone additions of anhydrous ethanol (99.6% p / p) to 1%, 5%, 10% and 15%. The treatments were subjected to 5 resistive loads of 1, 2, 3, 4 and 5 kW in triplicate. The set of data collected, analyzed the density, viscosity, calorific value, specific consumption (CE), energy efficiency (EE) and SO2 emissions. The density and viscosity of the mixtures were close to the diesel and within the specifications of the National Agency of Petroleum, Natural Gas and Biofuels (ANP). The calorific value decreased as the biofuel incorporated into the diesel grew. The best specific fuel consumption was observed in absolute terms at a load of 5 kW for B15E1 with 327.1 g kW-1 h-1followed by B10E1 (330.1 g kW-1 h-1) and diesel (g kW-1 h-1). The ternary mixture composed by adding 1% ethanol did not differ statistically from diesel-biodiesel blends for all applied loads. The greatest EE of 27.15% was observed at the load of 4 kW, to B10E15 mixture. The B15E1 mixtures, B20E1 and B20E0 were more efficient than diesel for all applied loads. The lowest emission of SO2 was 5 kW for the load B10E0 with 397.66 ppm, while the highest was in load of 1 kW for B15E15 with 3391.67 ppm.
A busca de alternativas para a diminuição do uso de diesel dentro da matriz energética nacional, principalmente dentro do setor de transportes, tem sido estudada e realizada de modo gradativo com inserções parciais de biodiesel ao diesel. Esta mistura binária, entretanto, pode ser melhorada com a adição de álcool etílico (etanol), que por conter átomos de oxigênio em sua estrutura pode ser capaz de promover uma queima mais eficiente e reduzir as emissões gasosas, tanto sulfuradas quanto não sulfuradas. Assim, este trabalho buscou avaliar o desempenho energético de um conjunto motor-gerador trabalhando com misturas diesel-biodiesel e diesel-biodiesel-etanol, comparando com o diesel tipo A , isto é, diesel sem a adição de biodiesel, bem como características físico-químicas de cada tratamento. As misturas diesel-biodiesel tiveram como base a formulação atualmente comercializada (B7) e projeções previstas pelo Projeto de Lei do Senado 613/2015 e Resolução CNPE nº 3/2015 para frotas cativas ou consumidores rodoviários, isto é, B10, B15 e B20. Cada mistura binária desta sofreu adições de etanol anidro (99,6% p/p) a 1%, 5%, 10% e 15%. Os tratamentos foram submetidos a 5 cargas resistivas de 1, 2, 3, 4 e 5 kW, em triplicata. Do conjunto de dados colhidos, foram analisados a densidade, viscosidade, poder calorífico superior e inferior, consumo específico (CE), eficiência energética (EE) e as emissões de SO2. A densidade e viscosidade das misturas ficaram próximas ao diesel e dentro das especificações da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). O poder calorífico inferior diminuiu a medida que o teor de biocombustíveis incorporados ao diesel cresceu. O melhor consumo específico em termos absolutos foi verificado na carga de 5 kW, para B15E1, com 327,1 g kW-1 h-1 seguido de B10E1 (330,1 g kW-1 h-1) e do diesel (334,7 g kW-1 h-1). As misturas ternárias compostas pela adição de 1% de etanol não diferiram estatisticamente das misturas diesel-biodiesel para todas as cargas aplicadas. A maior EE verificada foi de 27,15%, na carga de 4 kW, para a mistura B10E15. As misturas B15E1, B20E1 e B20E0 foram mais eficientes que o diesel para todas as cargas aplicadas. A menor emissão de SO2 foi verificada na carga de 5 kW para a mistura B10E0, com 397,66 ppm, enquanto a maior foi na carga de 1 kW, para B15E15, com 3391,67 ppm.
Ibrahim, Umar. "Characterization of Biodiesel Blends Effects on Aftertreatment Systems and Aftertreatment-based Blend Level Estimation." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1451906418.
Повний текст джерелаPatel, Kruti. "Fuel parameter testing, quality assessment and engine emissions evaluation of biodiesel (B100), diesel (D100) and its 20% blend (B20) under long term storage conditions." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31997.
Повний текст джерелаApplied Science, Faculty of
Chemical and Biological Engineering, Department of
Graduate
Topa, Ece Hatice. "Thermal Characterization And Kinetics Of Diesel, Methanol Route Biodiesel, Canola Oil And Diesel-biodiesel Blends At Different Blending Rates By Tga And Dsc." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612460/index.pdf.
Повний текст джерелаDifferential Scanning Calorimetry (DSC) and Thermogravimetry (TGA/DTG). The main aim of the study is to observe the combustion and pyrolysis behaviour of methanol route biodiesel and diesel blends at different blending rates. Additionally, combustion and pyrolysis behaviour of canola oil, the origin of biodiesel have been analysed to observe the transesterification reaction effect on biodiesel. Therefore, biodiesel, diesel, canola oil and blends of diesel and biodiesel at different percentages are exposed to isothermal heating under nitrogen and air atmosphere with a constant heating rate of 5, 10 and 15
Albertus, Randal Marius Colin. "Ecotoxicity and environmental fate of diesel and diesel blends produced by Sasol’s Fischer-Tropsch processes using natural gas and coal as feedstock as well as biodiesel and biodiesel blends." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71807.
Повний текст джерелаENGLISH ABSTRACT: World crude oil demand and production is set to increase in the long term and is projected to increase from 82 barrels per day in 2007 to an estimated 104 million barrels per day in 2030 according to the International Energy Agency. The environmental challenges posed by the current and projected increased future fuel use, with specific reference to air, aquatic and terrestrial impact, are driving producers and legislators to change fuel specifications and consequently fuel properties to be less harmful to the environment. Traditionally transportation fuels are produced through crude oil refining but in South Africa more than one third of the liquid fuels are produced synthetically through catalytic conversion of gassified coal via the Fischer-Tropsch process by Sasol. Diesel from syncrude is referred to as synthetic diesel and the refiner must blend various hydrocarbon streams, effectively tailoring the diesel to its final composition. Biodiesel from renewable sources like vegetable oils is considered environmentally more acceptable than petrodiesel because of its high biodegradability in the environment, lower sulphur and aromatic hydrocarbon content as well as lowered particulate content in the exhaust emissions. The present research was aimed at evaluating whether the composition of diesels derived from different feed stocks, that included coal, natural gas, crude oil and soybean oil, would influence its biodegradability and ecotoxicity. Acute aquatic tests that included freshwater fish, crustaceans, algae and marine bacteria were used to determine the acute toxicity of diesels. In addition, quantitative structure activity relationship models were used to estimate the biodegradation and ecotoxicity properties of the diesels in an attempt to develop a cost effective tool to determine those properties. The results indicated that the 2-D GC technique quantitatively and qualitatively identified the hydrocarbon constituents in the diesels. The relevance of using the 2-D GC technique was in identifying and quantifying the hydrocarbon breakdown products and being used in a mass balance to confirm the potential biological breakdown processes of the materials used in the present study. The differences in theoretical oxygen demand (ThOD) of the different experimental diesel blends using various blending materials and biodiesel, emphasised and confirmed the importance of calculating the ThOD for the respective blending materials when measuring the biodegradation rates. Furthermore, the biodegradation hierarchy of Pitter and Chudoba (1990) in order of decreasing biodegradability: alkanes > branched alkanes > cyclo-alkanes > aromatic hydrocarbons, could be expanded to include FAME: FAME > alkanes > branched alkanes > cyclo-alkanes > aromatic hydrocarbons. The biochemical pathways identified for the biodegradation of all the diesels was enzyme-enhanced β-oxidation. The present research also indicated that biodiesel addition to crude-derived diesels to increase the density to within the current required specifications for diesels cannot be a reality in SA because of the underdeveloped biodiesel industry. To increase the density by using biodiesel to within the specification for GTL diesel, more than 27% biodiesel would be required, which is currently is not achievable from an economic perspective as well as governmental national strategy perspective. The addition of biodiesel as lubricity enhancer seems more plausible, because less than 5% would be required for petrodiesels. The results on the ecotoxicity of the diesels and diesel blends demonstrated a general lack of acute toxic effect, especially for the fish and crustaceans used during the present study. Although algal and bacterial tests showed an effect at most of the WAF loading rates, none were high enough to enable the calculation of a median effect loading rate (EL50). QSAR‟s, like EPI Suite, together with prediction models, like the Fisk Ecotoxicity Estimation Model, can be used to screen for ecotoxicity and biodegradability of hydrocarbons found in Petrodiesels. It was less applicable for the prediction of biodiesel constituents. The use of different cut-off values for the constituents of biodiesel could be developed in future research. The use of this combination enabled the present research into the potential toxicity of hydrocarbon mixtures to be conducted, especially since tests on individual constituents are impractical. QSAR‟s may provide a relatively cost-effective way to screen for potential environmental acceptability of such mixtures. The contributors to the toxicity of mixtures of hydrocarbons found in diesels were evaluated and it appears that paraffins contribute more to the overall toxicity than previously thought and aromatics less. By putting well-defined policies and incentives in place, a robust biodiesel industry could be created that will enable SA to contribute to the mitigation of the threat of climate change, to become less dependent on foreign oil and to develop rural agriculture. The key to energy security is not one solution to South Africa‟s energy needs, but a multifaceted approach to the complex subject of sustainable energy security. The end of the hydrocarbon era of energy is not in sight, at least for the near future, but soon even hydrocarbon energy in the form of coal and crude oil will have to be re-evaluated as SA‟s major energy resource for economic and energy security. In SA the potential of developing natural gas resources through fracking, nuclear, solar, wind, biological and even wastes to energy processes as well as better energy efficiency, in a balanced and diverse energy portfolio, could pave the way toward energy security in the long run.
AFRIKAANSE OPSOMMING: Ru-olie aanvraag en produksie wêreldwyd is besig om toe te neem en die Internasionale Energie Agentskap projekteer dat wêreld ru-olie verbruik sal toeneem van 82 vate per dag in 2007 tot „n beraamde 104 vate per dag in 2030. Die omgewings uitdagings wat huidige en toekomstige toename in brandstof verbruik, spesifiek die impak op lug gehalte, water- en grond, mag hê, is dryfvere vir produseerders en reguleerders om brandstof spesifikasies te verander om minder omgewings impak te veroorsaak. Brandstof vir vervoer doeleindes word oor die algemeen van ru-olie gemaak, maar in Suid Afrika word ongeveer „n derde van die vloeibare brandtof gemaak deur middel van gekatiliseerde omskakeling van vergasde steenkool via die Fischer-Tropsch proses by Sasol. Diesel wat uit sintetiese ru-olie gemaak is, is sinteties en die raffineerder moet verskillende koolwaterstof strome meng om „n finale produk te lewer. Biodiesel wat uit hernubare hulpbronne soos plant-olies en diervet gemaak word, kan oorweeg word vir die vervaardiging van meer omgewings aanvaarbare brandstof met laer swael en aromatiese koolwaterstof inhoud en ook minder partikel inhoud in die uitlaatgas. Die huidige navorsing het beoog om te evalueer of die samestelling van diesels wat vervaardig is uit verskillende hulpbronne, wat steenkool, aardgas, ru-olie en sojaboon olie ingesluit het, die biodegradeerbaarheid en ekotoksisiteit kan beïnvloed. Akute akwatiese toetse wat varswater vis, krustaseë, alge en marine bakterieë ingesluit het, was aangewend om die akute toksisiteit van die diesels te bepaal. Kwantitatiewe struktuur aktiwiteit verwantskaps modelle is ook gebruik om die biodegradeerbaarheid en ekotoksisiteits eienskappe van die diesels te beraam om vas te stel of 'n bekostigbare alternatief beskikbaar is om daardie eienskappe te bepaal. Die resultate het aangedui dat die 2D GC tegniek kwantitatief en kwalitatief gebruik kan word om die koolwaterstowwe in die diesels te identifiseer. Die benutting van die 2D GC tegnieke is egter om die koolwaterstof afbraak produkte te identifiseer en ook om die massa balans gedurende die biodegradering te bevestig. Die verskil in teoretiese suurstof aanvraag van die verskillende diesels het die belangrikheid daarvan blemtoon en bevestig om die teoretiese suurstof aanvraag korrek te bereken en sodoende die biodegradasie korrek te bepaal. Verder kan die biodegradasie hierargie van Pitter en Chudoba (1990) volgens afnemende biodegradasie: alkane > vertakte alkane > siklo-alkane > aromatiese koolwaterstowwe, uitgebrei word om vetsuur-metielesters in te sluit: vetsuur-metielesters > alkane > vertakte alkane > siklo-alkane > aromatiese koolwaterstowwe. Die biochemiese roetes wat geïdentifiseer is vir die biodegradasie van die diesels, was ensiem-verbeterde β-oksidasie. Die huidige navorsing het ook aangedui dat biodiesel toevoeging tot ru-olie vervaardigde diesel om die digtheid te verhoog to binne huidige spesifikasies is nog nie lewensvatbaar in Suid Afrika nie as gevolg van die onderontwikkelde biodiesel industrie. Om die digtheid te verhoog met biodiesel tot binne spesifikasie verg meer as 27% biodiesel en is huidiglik nie haalbaar vanuit 'n ekonomiese persketief en ook nie vanuit 'n regerings nasionale strategie perspektief nie. Die toevoeging van biodiesel as lubrisiteits vervetering blyk meer van toepassing te wees aangesien minder as 5% biodiesel toevoeging benodig sou wees. Die resultate van die ekotoksisiteits toetse het 'n algemene gebrek aan akute toksisiteits effek aangedui, veral vir vis en skaaldiere wat in die huidige studie gebruik is. Howel alge en bakteriële toetse daarop gedui het dat 'n toksiese effek wel aanwesig was, was dit gering en kon die median effektiewe ladings koers (EL50) nie bepaal word nie. QSARs, soos Epi Suite, tesame met voospellings modelle, soos die Fisk Ecotoxicity Estimation Model, kan gebruik word om ekotoksisiteit en biodegradeerbaarheid van koolwaterstowwe in petrodiesels te beraam, alhoewel dit minder van toepassing was op biodiesel. Die gebruik van ander afsny waardes spesifiek vir biodiesel kan oorweeg word in toekomstige navorsing. Die molecules wat bygedra het tot die toksisiteit van die koolwaterstof mengsels was geëvalueeren daar is gevind dat die paraffiniese molekules meer begedra het tot die totale toksisiteit en die aromate minder. Deur goed gedefinieerde beleid en aansporings meganismes inplek te sit, kan 'n biodiesel industrie in SA geskep word wat SA sal help om by te dra tot die bekamping van klimaats vendering en sodoende minder afhanklik te wees van buitelandse olie en ook landbou in SA te bevorder. Die sluetel tot energie sekuriteit is nie een oplossing vir SA se energie aanvraag nie, maar eerder 'n veelsydige benadering tot die komplekse onderwerp van volhoubare energie sekuriteit. Die einde van koolwaterstof energie is nog nie in sig nie, ten miste nie in die nabye toekoms nie, maar binnekort sal selfs koolwaterstof energie in die vorm van steenkool en ru-olie heroorweeg moet word as SA se hoof energie hulpbronne vir ekonomiese en energie sekuriteit. In SA moet die potensiaal van natuurlike gas ontginning deur middel van hidrauliese breking, kernkrag, wind energie, biologiese energie en selfs afval tot energie prosesse bestudeer word, so-ook beter energie doeltreffendheid om sodoende 'n gebalansweerde energie portefuelje te skep wat die weg sal baan na energie sekuriteit op die lang termyn.
PRADELLE, FLORIAN ALAIN YANNICK. "USE OF BIOFUELS IN COMPRESSION IGNITION ENGINES: POTENTIAL OF DIESEL-BIODIESEL-ETHANOL BLENDS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29914@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE EXCELENCIA ACADEMICA
BOLSA NOTA 10
Para substituir parcialmente a demanda em óleo diesel de origem fóssil, reduzir os elevados custos de importação e respeitar as normas ambientais, políticas sustentáveis já levaram a substituir parcialmente óleo diesel por biodiesel. Entretanto, outras tecnologias, como as misturas diesel-biodiesel-etanol, estão sendo investigadas. O principal desafio dessas misturas consiste em melhorar a miscibilidade e a estabilidade do álcool no óleo diesel. No presente trabalho, formulou-se um aditivo original, a partir de compostos renováveis, que permitiu melhorar a faixa de concentração de etanol anidro dentro de óleo diesel com 15 por cento em volume de biodiesel e de temperatura onde observa-se misturas estáveis. Diversas propriedades físico-químicas das misturas aditivadas foram medidas em uma larga faixa de concentração de etanol para avaliar os aspetos de consumo, qualidade da combustão, comportamento a baixa temperatura, interação entre fluido e superfície, e segurança. Os resultados obtidos mostraram que misturas com, pelo menos, 1,0 por cento em volume de aditivo e até 20 por cento em volume de etanol anidro são estáveis para temperaturas superiores a 10 graus Celsius e respeitam a maioria das especificações brasileiras atuais para óleo diesel. Ensaios experimentais em um motor de ignição por compressão MWM 4.10 TCA (Euro III) foram realizados com estas misturas. Os resultados obtidos mostraram que a substituição do óleo diesel altera as características da combustão: o crescente teor de etanol leva ao aumento do atraso de ignição, à liberação de calor mais rápida e à diminuição da pressão máxima. Mesmo nessas condições não otimizadas de injeção e de combustão, os resultados mostraram uma melhor conversão da energia química no etanol para produzir potência efetiva, comparado com os valores encontrados nos motores flex fuel de ciclo Otto, além de um pequeno aumento no rendimento térmico do motor.
In order to partially replace the demand of fossil diesel fuels, to reduce high import costs and to comply with environmental standards, sustainable policies have led to partially replace diesel fuel by biodiesel. However, other technologies, such as diesel-biodiesel-ethanol mixtures, are being investigated. The major challenge of these mixtures is to improve the miscibility and the stability of alcohol in diesel fuel. In this study, an original additive, from renewable compounds, improved the miscibility of anhydrous ethanol in diesel fuel with 15 per cent by volume of biodiesel and temperature in which stable mixtures were observed. Several physicochemical properties of the additivated mixtures were measured in a large range of ethanol concentration to evaluate aspects of consumption, combustion quality, behavior at low temperature, interaction between the fluid and the surface, and safety. The results showed that blends with, at least 1.0 per cent, by volume of additive and 20 per cent by volume of anhydrous ethanol are stable at temperatures above 10 degrees Celsius and respected most of the current Brazilian specifications for diesel fuel. Experimental tests on a compression ignition engine MWM 4.10 TCA (Euro III) were performed with these mixtures. The results showed that the diesel fuel substitution alters the characteristics of combustion: the increased ethanol content implied an increase of the ignition delay, a faster heat release and a decrease of maximum pressure. Despite these non-optimized conditions for injection and combustion, results showed a better conversion of ethanol chemical energy into brake power, in comparison to the values found in flex fuel spark ignition engine, in addition to a small increase in the indicated efficiency of the engine.
GUEDES, ANDREW DAVID MENDES. "EXPERIMENTAL STUDY ABOUT ETHANOL IMPACT IN DIESEL-BIODIESEL-ETHANOL BLENDS IN COMPRESSION IGNITION ENGINES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30923@1.
Повний текст джерелаAGÊNCIA NACIONAL DE PETRÓLEO
Há algum tempo biocombustíveis renováveis são potenciais soluções sugeridas às questões de emissão de poluentes e dependência da sociedade aos derivados fósseis. Biodiesel e etanol são combustíveis comerciais renováveis candidatos à substituição das fontes fósseis, especialmente, em motores de ignição por compressão, os quais são tipicamente mais eficientes do que aqueles de ignição por centelha. Misturas ternárias de diesel, biodiesel e etanol formam estratégias de substituição parcial do diesel aplicáveis em motores de ignição por compressão sem a necessidade de grandes adaptações. Nesta dissertação realizaram-se avaliações experimentais em um motor multi-cilíndrico de ignição por compressão (MWM 4.10 TCA), abastecido com misturas de diesel, biodiesel (até 15 por cento em teor volumétrico) e etanol anidro (até 20 por cento em teor volumétrico). Cada mistura ternária é composta por diferentes proporções do álcool e sempre com a concentração volumétrica de 1 por cento de um aditivo estabilizador da mistura. Portanto, os testes associam substituições parciais do diesel por biocombustíveis a avaliações de desempenho do motor e da combustão das misturas, sob algumas condições de carga, regimes de rotação e instantes de injeção de combustível. Os testes realizados indicam que misturas com 20 por cento em volume de concentração de etanol experimentam inícios de combustão até 4,7 graus CA mais atrasados. Porém, a busca de instantes otimizados na injeção de combustível trouxe melhorias ao desempenho do motor, permitiu conversões energéticas mais vantajosas do etanol na ignição por compressão frente à ignição por centelha, além de minimizar efeitos do etanol em retardar o início da combustão.
Renewable biofuels have been proposed for a long time as an alternative to the issues concerned to pollutants emission and also society s liability to fossil fuels. Biodiesel and ethanol are renewable commercial fuel candidates for fossil fuels substitution, especially, in compression ignition engines, which are typically more efficient than the spark ignition ones. Diesel s partial replacement, such as the substitution by ternary blends formed by diesel, biodiesel and ethanol, is a strategy applicable to compression ignition engines without the need of further modifications. In this dissertation tests were run in a multi-cylinder compression ignition engine (MWM 4.10 TCA), fueled with diesel, biodiesel (up to 15 percent in volumetric content) and anhydrous ethanol (up to 20 percent in volumetric content) blends. Each mixture should be composed by different alcohol s proportions and always containing a 1 percent volumetric concentration of additive in order to ensure ternary s blend stability. Therefore, tests try to ally diesel s partial replacement by biofuels with engine performance and blends combustion assessment, under some combinations of load, engine speed and injection timing conditions. The tests performed indicate that the start of the combustion experienced up to 4.7 degrees CA postponements, when fueled with a 20 percent ethanol volumetric concentration blend. Still, optimized injection timing investigation brought improvements to engine performance, allowed better ethanol energetic conversions through compression ignition when compared to spark ignition and could also minimize delays caused by ethanol s presence in the beginning of the combustion.
Feralio, Tyler Samuel. "The Effect Of Biodiesel Blends On Particle Number Emissions From A Light Duty Diesel Engine." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/400.
Повний текст джерелаVasconcelos, Fernanda Vera Cruz de. "Uso da região espectral de sobretons para determinação do teor de biodiesel e classificação de misturas diesel/biodiesel adulteradas com óleo vegetal." Universidade Federal da Paraíba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/7033.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work evaluates the use of overtone regions (NIR) for the classification and determination of biodiesel content in diesel/biodiesel blends adulterated with vegetable oil. For this purpose, NIR spectra were obtained using three different optical paths: 1.0 mm (9000-4000 cm-1); 10 mm (9000-6300 cm-1) e 50 mm (7500-6300 cm-1). Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) with the Successive Projections Algorithm (SPA) were employed to build screening models to identify adulteration of diesel/biodiesel blends with vegetable oils. The multivariate calibration models (Partial Least Square - PLS, Partial Least Square with significant regression coefficients selected by Jack-Knife algorithm - PLS/JK and Multiple Regression Linear with variable selection by Successive Projections Algorithm - MLR/SPA) were developed to determine the biodiesel content. The results showed that the overtone regions with the classification strategy LDA/SPA can be used in preliminary studies to detect adulteration of diesel/biodiesel blends with vegetable oil. This strategy showed positive results for classifying, with a correct classification rate of 86% for the optical paths of 10 mm and 50 mm. In addition, the work demonstrated the potential of overtone regions with MLR/SPA regression strategy to determine biodiesel content in diesel/biodiesel blends, in the range from 0.0% to 10.0%v/v, considering the possible presence of raw oil as a contaminant. This strategy is simple, fast and uses a fewer number of spectral variables. Considering this, the overtone regions can be usefull to develop low cost instruments for the quality control of diesel/biodiesel blends, considering the lower cost of optical components for this spectral region.
Neste trabalho foi avaliado o uso da região espectral de sobretons (NIR) para classificação e determinação do teor de biodiesel em misturas diesel/biodiesel adulteradas com óleo vegetal (in natura). Para tanto, foram utilizados espectros NIR registrados em diferentes caminhos ópticos: 1,0 (9000-4000 cm-1), 10 (9000-6300 cm-1) e 50 mm (7500-6300 cm-1). A Análise de Componentes Principais (PCA) e a Análise Discriminante Linear com seleção de variáveis pelo Algoritmo das Projeções Sucessivas (LDA/SPA) foram utilizadas na identificação de adulteração de misturas diesel/biodiesel com óleo vegetal. Os modelos de calibração multivariada (Regressão por Mínimos Quadrados Parciais - PLS, Regressão por Mínimos Quadrados Parciais com coeficientes de regressão selecionados pelo algoritmo Jack-Knife - PLS/JK e Regressão Linear Múltipla com seleção de variáveis pelo Algoritmo das Projeções Sucessivas - MLR/SPA) foram desenvolvidos para determinação do teor de biodiesel. Os resultados obtidos demonstraram que a região espectral de sobretons aliada à estratégia de classificação LDA/SPA pode ser utilizada em estudos preliminares para detecção de adulteração de misturas diesel/biodiesel por óleos vegetais in natura, visto que apresentou bons resultados de classificação, com índice de acerto de 86% para os caminhos ópticos de 10 mm e 50 mm. Além disso, foi demonstrada a aplicabilidade da região de sobretons associada à estratégia de regressão MLR/SPA para determinação do teor de biodiesel em misturas diesel/biodiesel na presença de óleos vegetais in natura, na faixa de 0,0 a 10,0% v/v. Tal estratégia é simples, rápida e utiliza poucas variáveis espectrais. Neste contexto, a região espectral de sobretons pode ser útil na construção de instrumentos de baixo custo para controle de qualidade de misturas diesel/biodiesel, considerando-se o menor custo dos componentes ópticos para essa região espectral.
Garimella, Venkata Naga Ravikanth. "Exhaust Emissions Analysis for Ultra Low Sulfur Diesel and Biodiesel Garbage Trucks." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1290203383.
Повний текст джерелаКниги з теми "BIODIESEL-DIESEL BLEND"
Biodiesel: Blends, properties, and applications. Hauppauge, N.Y: Nova Science Publishers, 2011.
Знайти повний текст джерелаDriss, Zied, Mariem Lajnef, Mohamed Chtourou, Dorra Driss, and Hedi Kchaou. Design and Realization of a Generator Test Bench Working with a Diesel and Biodiesel Blend. Nova Science Publishers, Incorporated, 2017.
Знайти повний текст джерелаMarchetti, Jorge Mario. Biodiesel: Blends, Properties and Applications. Nova Science Publishers, Inc., 2014.
Знайти повний текст джерелаBasava, Venkata Appa Rao. Biodiesel and Additive Blends As Alternate Fuel in a Di- Diesel Engine. AV Akademikerverlag GmbH & Co. KG, 2017.
Знайти повний текст джерелаЧастини книг з теми "BIODIESEL-DIESEL BLEND"
Chourasia, Sajan K., Absar M. Lakdawala, and Rajesh N. Patel. "The Corrosion Analysis of Diesel Engine Parts on Application of Dual Biodiesel Blend." In Green Energy and Technology, 81–94. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_8.
Повний текст джерелаHussain, Mohd Hamid, and C. H. Biradar. "Experimental Investigation of Performance and Combustion Characteristics of a Diesel Engine Fueled with Eruca sativa (Taramira) Biodiesel–Diesel Blend." In Lecture Notes in Mechanical Engineering, 879–93. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4739-3_77.
Повний текст джерелаGurusamy, A., A. A. Muhammad Irfan, E. R. Sivakumar, and P. Purushothaman. "Evaluation of Performance and Emission Characteristics on Diesel Engine Fueled by Diesel–Algae Biodiesel Blend with Ignition Enhancing Additives." In Lecture Notes in Mechanical Engineering, 421–31. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5996-9_33.
Повний текст джерелаParida, Manoj Kumar, Mamuni Arya, and Akshya Kumar Rout. "Experimental Analysis on Combustion Characteristics of a DICI Engine Utilizing Argemone Biodiesel with Diesel Blend." In Recent Advances in Thermofluids and Manufacturing Engineering, 303–12. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4388-1_27.
Повний текст джерелаMohd Noor, C. W., Rizalman Mamat, Mohd Fairusham Ghazali, S. M. Rosdi, Husni Husin, and Bukhari Manshoor. "Performance Optimization of Low Proportion Biodiesel Blend on Marine Diesel Engine Using Response Surface Method." In Proceedings of the 2nd Energy Security and Chemical Engineering Congress, 243–57. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4425-3_22.
Повний текст джерелаGaikwad, Pradeep Uttam, G. Senthilkumar, and Supriya Bobade. "Experimental Investigation and Performance Parameter Analysis of Biodiesel Blend- Methyl Ester on Single Cylinder Diesel Engine." In Techno-Societal 2018, 315–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16848-3_30.
Повний текст джерелаGurusamy, A., V. Gnanamoorthi, P. Purushothaman, P. Mebin Samuel, and A. A. Muhammad Irfan. "Evaluation of Microalgae Biodiesel Blend Along with DTBP as an Ignition Enhancer on Diesel Engine Attributes." In Lecture Notes in Mechanical Engineering, 71–82. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3631-1_8.
Повний текст джерелаSakthivel, R., T. Mohanraj, P. Ganesh Kumar, and V. Sukhapradha. "Prediction and Optimization of CI Engine Performance Fueled with Biodiesel–Diesel Blend Using Response Surface Methodology." In Green Energy and Technology, 175–89. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8278-0_12.
Повний текст джерелаGanesan, S., J. Hemanandh, Sundarasetty Venkatesh, and Phani Kumar. "Combustion, Performance and Emission Analysis of VCR Diesel Engine Using Water Emulsion in Flaxseed-Based Biodiesel Blend." In Energy and Exergy for Sustainable and Clean Environment, Volume 2, 107–21. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8274-2_8.
Повний текст джерелаBhan, Suraj, Raghvendra Gautam, Pusphendra Singh, and Abhishek Sharma. "A Comprehensive Review of Performance, Combustion, and Emission Characteristics of Biodiesel Blend with Nanoparticles in Diesel Engines." In Lecture Notes in Mechanical Engineering, 73–88. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3428-4_7.
Повний текст джерелаТези доповідей конференцій з теми "BIODIESEL-DIESEL BLEND"
Hassan, Md Mahmudul, Ftwi Yohaness Hagos, and Rizalman Mamat. "Comparative Analysis of Diesel, Diesel-Palm Biodiesel and Diesel-Biodiesel-Butanol Blends in Diesel Engine." In ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/es2018-7571.
Повний текст джерелаCheng, Xiaobei, Liang Chen, Fangqin Yan, and Guohua Chen. "Study of Particle Size Distribution Emitted From a Diesel Engine by Diesel and Biodiesel-Diesel Blends Fuels." In ASME 2013 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icef2013-19222.
Повний текст джерелаHan, X., and S. K. Aggarwal. "A Numerical Investigation on Counterflow Flames of Biodiesel/Diesel Surrogate Blends." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95718.
Повний текст джерелаMcKenna, David, Krishan Bhatia, Robert Hesketh, Christopher Rowen, Timothy Vaughn, Anthony J. Marchese, George Chipko, and Serpil Guran. "Evaluation of Emissions and Performance of Diesel Locomotives With B20 Biodiesel Blends: Static Test Results." In ASME 2008 Rail Transportation Division Fall Technical Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/rtdf2008-74030.
Повний текст джерелаIranmanesh, Masoud, J. P. Subrahmanyam, and M. K. G. Babu. "Application of Diethyl Ether to Reduce Smoke and NOx Emissions Simultaneously With Diesel and Biodiesel Fueled Engines." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-69255.
Повний текст джерелаMercado, Jose Gabriel E., and Edwin N. Quiros. "Emission and Performance Analysis of a Light Duty Common Rail Direct Inject Engine Fuelled by CME-Diesel Blends." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3496.
Повний текст джерелаSnyder, David B., Gayatri H. Adi, Carrie M. Hall, Michael P. Bunce, and Gregory M. Shaver. "Closed-Loop Control Framework for Fuel-Flexible Combustion of Biodiesel Blends." In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35129.
Повний текст джерелаBawane, Rahul Krishnaji, Nilima Gadge, Gajanan N. Shelke, and Dinesh Bawane. "Injector Deposition and Behavior Change of Diesel Engine Fueled with Calophyllum Oil Biodiesel Blend under 150 Hrs Endurance Test." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0947.
Повний текст джерелаSappok, Alexander, Paul Ragaller, Leslie Bromberg, Vitaly Prikhodko, John Storey, and James Parks. "Diesel Particulate Filter-Related Fuel Efficiency Improvements Using Biodiesel Blends in Conjunction With Advanced Aftertreatment Sensing and Controls." In ASME 2015 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icef2015-1146.
Повний текст джерелаKastengren, A. L., C. F. Powell, K. S. Im, Y. J. Wang, and J. Wang. "Measurement of Biodiesel Blend and Conventional Diesel Spray Structure Using X-Ray Radiography." In ASME 2008 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ices2008-1646.
Повний текст джерелаЗвіти організацій з теми "BIODIESEL-DIESEL BLEND"
Kinast, J. A. Production of Biodiesels from Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends: Final Report; Report 1 in a Series of 6. Office of Scientific and Technical Information (OSTI), March 2003. http://dx.doi.org/10.2172/15003582.
Повний текст джерела