Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Bio-based systems.

Книги з теми "Bio-based systems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-17 книг для дослідження на тему "Bio-based systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bizzarri, Mariano. Approaching Complex Diseases: Network-Based Pharmacology and Systems Approach in Bio-Medicine. Springer, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bizzarri, Mariano. Approaching Complex Diseases: Network-Based Pharmacology and Systems Approach in Bio-Medicine. Springer International Publishing AG, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kim, Seungil, ed. Toward Sustainability through Bio-Based Materials at the Interfaces with Living Systems. MDPI, 2023. http://dx.doi.org/10.3390/books978-3-0365-9339-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jadrnicek, Shawn. Bio-Integrated Farm: A Revolutionary Permaculture-Based System Using Greenhouses, Ponds, Compost Piles, Aquaponics, Chickens, and More. Chelsea Green Publishing, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

The bio-integrated farm: A revolutionary permaculture-based system using greenhouses, ponds, compost piles, aquaponics, chickens, and more. White River Junction, Vermont: Chelsea Green Publishing, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rundo, Francesco, Giuseppe Luigi Banna, Concetto Spampinato, and Sabrina Conoci, eds. Bio-inspired Physiological Signal(s) and Medical Image(s) Neural Processing Systems Based on Deep Learning and Mathematical Modeling for Implementing Bio-Engineering Applications in Medical and Industrial Fields. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-916-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Parab, Sameer. Sequential flow based bio-analytical system. 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rai, Dibya Prakash, ed. Advanced Materials and Nano Systems: Theory and Experiment - Part 2. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150499611220201.

Повний текст джерела
Анотація:
The discovery of new materials and the manipulation of their exotic properties for device fabrication is crucial for advancing technology. Nanoscience, and the creation of nanomaterials have taken materials science and electronics to new heights for the benefit of mankind. Advanced Materials and Nanosystems: Theory and Experiment covers several topics of nanoscience research. The compiled chapters aim to update students, teachers, and scientists by highlighting modern developments in materials science theory and experiments. The significant role of new materials in future technology is also demonstrated. The book serves as a reference for curriculum development in technical institutions and research programs in the field of physics, chemistry and applied areas of science like materials science, chemical engineering and electronics. This part covers 12 topics in these areas: 1. Recent advancements in nanotechnology: a human health Perspective 2. An exploratory study on characteristics of SWIRL of AlGaAs/GaAs in advanced bio based nanotechnological systems 3. Electronic structure of the half-Heusler ScAuSn, LuAuSn and their superlattice 4. Recent trends in nanosystems 5. Improvement of performance of single and multicrystalline silicon solar cell using low-temperature surface passivation layer and antireflection coating 6. Advanced materials and nanosystems 7. Effect of nanostructure-materials on optical properties of some rare earth ions doped in silica matrix 8. Nd2Fe14B and SmCO5: a permanent magnet for magnetic data storage and data transfer technology 9. Visible light induced photocatalytic activity of MWCNTS decorated sulfide based nano photocatalysts 10. Organic solar cells 11. Neodymium doped lithium borosilicate glasses 12. Comprehensive quantum mechanical study of structural features, reactivity, molecular properties and wave function-based characteristics of capmatinib
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bio-Imaging: Principles and Techniques. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jayas, Digvir S., and Rajagopal Vadivambal. Bio-Imaging: Principles, Techniques, and Applications. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Jayas, Digvir S., and Rajagopal Vadivambal. Bio-Imaging: Principles, Techniques, and Applications. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Jayas, Digvir S., and Rajagopal Vadivambal. Bio-Imaging: Principles, Techniques, and Applications. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Jalan, Rajiv, and Banwari Agarwal. Extracorporeal liver support devices in the ICU. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0198.

Повний текст джерела
Анотація:
Liver failure is common and carries high morbidity and mortality. Liver transplantation (LT) is the only definitive treatment available performed as an emergency in acute liver failure and electively for chronic liver disease. In the last 50 years, a number of extracorporeal liver support devices and modifications have emerged , some of them purely mechanical in nature aimed at detoxification, while others are cell based systems possessing bio-transformational capability. Mechanical devices are mainly based on albumin dialysis, albumin being a key transporter protein that is severely deficient and irreversibly destroyed in liver diseases. Despite a sound scientific rationale and good safety profile, none of the currently available devices have shown enough promise to be incorporated in routine clinical practice, their use being limited to specific clinical situations. This chapter describes currently available devices, their operational characteristics, current evidence of their utility and limitation, and the future developments in the field of extracorporeal liver support.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Musa, Sarhan M. Computational Optical Biomedical Spectroscopy and Imaging. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Musa, Sarhan M. Computational Optical Biomedical Spectroscopy and Imaging. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Computational Optical Biomedical Spectroscopy and Imaging. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Salinas-Rodríguez, Sergio G., Juan Arévalo, Juan Manuel Ortiz, Eduard Borràs-Camps, Victor Monsalvo-Garcia, Maria D. Kennedy, and Abraham Esteve-Núñez, eds. Microbial Desalination Cells for Low Energy Drinking Water. IWA Publishing, 2021. http://dx.doi.org/10.2166/9781789062120.

Повний текст джерела
Анотація:
The world's largest demonstrator of a revolutionary energy system in desalination for drinking water production is in operation. MIDES uses Microbial Desalination Cells (MDC) in a pre-treatment step for reverse osmosis (RO), for simultaneous saline stream desalination and wastewater treatment. MDCs are based on bio-electro-chemical technology, in which biological wastewater treatment can be coupled to the desalination of a saline stream using ion exchange membranes without external energy input. MDCs simultaneously treat wastewater and perform desalination using the energy contained in the wastewater. In fact, an MDC can produce around 1.8 kWh of bioelectricity from the energy contained in 1 m3 of wastewater. Compared to traditional RO, more than 3 kWh/m3 of electrical energy is saved. With this novel technology, two low-quality water streams (saline stream, wastewater) are transformed into two high-quality streams (desalinated water, treated wastewater) suitable for further uses. An exhaustive scaling-up process was carried out in which all MIDES partners worked together on nanostructured electrodes, antifouling membranes, electrochemical reactor design and optimization, life cycle assessment, microbial electrochemistry and physiology expertise, and process engineering and control. The roadmap of the lab-MDC upscaling goes through the assembly of a pre-pilot MDC, towards the development of the demonstrator of the MDC technology (patented). Nominal desalination rate between 4-11 Lm-2h-1 is reached with a current efficiency of 40 %. After the scalability success, two MDC pilot plants were designed and constructed consisting of one stack of 15 MDC pilot units with a 0.4 m2 electrode area per unit. This book presents the information generated throughout the EU funded MIDES project and includes the latest developments related to desalination of sea water and brackish water by applying microbial desalination cells. ISBN: 9781789062113 (Paperback) ISBN: 9781789062120 (eBook)
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії