Добірка наукової літератури з теми "Binary input"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Binary input".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Binary input"
HOLDERBAUM, William. "Control of Binary Input Systems." IOSR Journal of Engineering 02, no. 12 (December 2012): 01–15. http://dx.doi.org/10.9790/3021-021210115.
Повний текст джерелаVieira, M. A., M. Vieira, V. Silva, P. Louro, and M. Barata. "Optoelectronic logic functions using optical bias controlled SiC multilayer devices." MRS Proceedings 1536 (2013): 91–96. http://dx.doi.org/10.1557/opl.2013.703.
Повний текст джерелаAnashin, Vladimir. "Discreteness causes waves." Facta universitatis - series: Physics, Chemistry and Technology 14, no. 3 (2016): 143–96. http://dx.doi.org/10.2298/fupct1603143a.
Повний текст джерелаRakitin, Vladimir, Sergey Rusakov, and Sergey Ulyanov. "The Coupled Reactance-Less Memristor Based Relaxation Oscillators for Binary Oscillator Networks." Micromachines 14, no. 2 (January 31, 2023): 365. http://dx.doi.org/10.3390/mi14020365.
Повний текст джерелаXu, Luhang, Liangze Yin, Wei Dong, Weixi Jia, and Yongjun Li. "Expediting Binary Fuzzing with Symbolic Analysis." International Journal of Software Engineering and Knowledge Engineering 28, no. 11n12 (November 2018): 1701–18. http://dx.doi.org/10.1142/s0218194018400247.
Повний текст джерелаYum, Bong-Jin, and Seong-Jun Kim. "On parameter design of binary-input-and-binary-output dynamic systems." Quality and Reliability Engineering International 9, no. 6 (November 1993): 471–76. http://dx.doi.org/10.1002/qre.4680090603.
Повний текст джерелаGurevich, Yuri, and Saharon Shelah. "Time polynomial in input or output." Journal of Symbolic Logic 54, no. 3 (September 1989): 1083–88. http://dx.doi.org/10.2307/2274767.
Повний текст джерелаLEPORATI, ALBERTO, CLAUDIO ZANDRON, and MIGUEL A. GUTIÉRREZ-NARANJO. "P SYSTEMS WITH INPUT IN BINARY FORM." International Journal of Foundations of Computer Science 17, no. 01 (February 2006): 127–46. http://dx.doi.org/10.1142/s0129054106003735.
Повний текст джерелаKurkoski, Brian M., and Hideki Yagi. "Quantization of Binary-Input Discrete Memoryless Channels." IEEE Transactions on Information Theory 60, no. 8 (August 2014): 4544–52. http://dx.doi.org/10.1109/tit.2014.2327016.
Повний текст джерелаHorn, D. "Frustrated spin Hamiltonians with binary input vectors." Physical Review A 33, no. 4 (April 1, 1986): 2595–601. http://dx.doi.org/10.1103/physreva.33.2595.
Повний текст джерелаДисертації з теми "Binary input"
Ozkan, Ugur. "Application of the constrained implicants set concept to the minimization of binary functions." Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA239470.
Повний текст джерелаThesis Advisor(s): Yang, Chyan ; Butler, Jon T. "September 1990." Description based on title screen as viewed on March 22, 2010. Author(s) subject terms: Constrained Implicants Set Concept, Binary Minimization. Includes bibliographical references (p. 75-76). Also available in print.
Oualla, Hicham. "Contributions à l'identification en boucle ouverte/fermée des systèmes à base de données binaires." Electronic Thesis or Diss., Normandie, 2022. http://www.theses.fr/2022NORMC229.
Повний текст джерелаThis thesis is devoted to the identification of systems based on binary data. First, a brief presentation of all the methods of identification of systems based on the use of binary data existing in the literature is given. In the following, we are interested in the problem of open loop identification of systems with binary output and input. We propose methods for the identification of FIR systems and more complex IIR systems with binary input and output. These methods are analyzed and tested by numerical examples. In the rest of this work, we propose first solutions to the problems of closed-loop identification of systems based on binary data. The first solutions are dedicated to binary output systems, the closed loop excitation is assumed to be high resolution. Finally, two methods are proposed for closed loop systems with binary output and input. These solutions are tested on numerical examples to quantify their performances
Montagner, Igor dos Santos. "W-operator learning using linear models for both gray-level and binary inputs." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-21082017-111455/.
Повний текст джерелаProcessamento de imagens pode ser usado para resolver problemas em diversas áreas, como imagens médicas, processamento de documentos e segmentação de objetos. Operadores de imagens normalmente são construídos combinando diversos operadores elementares e ajustando seus parâmetros. Uma abordagem alternativa é a estimação de operadores de imagens a partir de pares de exemplos contendo uma imagem de entrada e o resultado esperado. Restringindo os operadores considerados para o que são invariantes à translação e localmente definidos ($W$-operadores), podemos aplicar técnicas de Aprendizagem de Máquina para estimá-los. O formato que define quais vizinhos são usadas é chamado de janela. $W$-operadores treinados com janelas grandes frequentemente tem problemas de generalização, pois necessitam de grandes conjuntos de treinamento. Este problema é ainda mais grave ao treinar operadores em níveis de cinza. Apesar de técnicas como o projeto dois níveis, que combina a saída de diversos operadores treinados com janelas menores, mitigar em parte estes problemas, uma determinação de parâmetros complexa é necessária. Neste trabalho apresentamos duas técnicas que permitem o treinamento de operadores usando janelas grandes. A primeira, KA, é baseada em Máquinas de Suporte Vetorial (SVM) e utiliza técnicas de aproximação de kernels para realizar o treinamento de $W$-operadores. Uma escolha adequada de kernels permite o treinamento de operadores níveis de cinza e binários. A segunda técnica, NILC, permite a criação automática de combinações de operadores de imagens. Este método utiliza uma técnica de otimização específica para casos em que o número de características é muito grande. Ambos métodos obtiveram resultados competitivos com algoritmos da literatura em dois domínio de aplicação diferentes. O primeiro, Staff Removal, é um processamento de documentos binários frequente em sistemas de reconhecimento ótico de partituras. O segundo é um problema de segmentação de vasos sanguíneos em imagens em níveis de cinza.
Medvedieva, S. O., I. V. Bogach, V. A. Kovenko, С. О. Медведєва, І. В. Богач, and В. А. Ковенко. "Neural networks in Machine learning." Thesis, ВНТУ, 2019. http://ir.lib.vntu.edu.ua//handle/123456789/24788.
Повний текст джерелаThe paper covers the basic principles of Neural Networks’ work. Special attention is paid to Frank Rosenblatt’s model of the network called “perceptron”. In addition, the article touches upon the main programming languages used to write software for Neural Networks.
Binti, Zainul Abidin Fatin Nurzahirah. "Flexible model-based joint probabilistic clustering of binary and continuous inputs and its application to genetic regulation and cancer." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18883/.
Повний текст джерелаLin, Hsuan-Yin, and 林玄寅. "Optimal Ultra-Small Block-Codes for Binary Input Discrete Memoryless Channels." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/20041495285802019942.
Повний текст джерела國立交通大學
電信工程研究所
101
Optimal block-codes with a very small number of codewords are investigated for the binary input discrete memoryless channels. Those channels are the binary asymmetric channel (BAC), including the two special cases of the binary symmetric channel (BSC) and the Z-channel (ZC). The binary erasure channel (BEC) is a common used channel with ternary output. For the asymmetric channels, a general BAC, it is shown that so-called flip codes are optimal codes with two codewords. The optimal (in the sense of minimum average error probability, using maximum likelihood decoding) code structure is derived for the ZC in the cases of two, three, and four codewords and an arbitrary finite blocklength. For the symmetric channels, the BSC and the BEC, the optimal code structure is derived with at most three codewords and an arbitrary finite blocklength, a statement for linear optimal codes with four codes is also given. The derivation of these optimal codes relies heavily on a new approach of constructing and analyzing the codebook matrix not row-wise (codewords), but column-wise. This new tool allows an elegant definition of interesting code families that is recursive in the blocklength n and admits their exact analysis of error performance that is not based on the union bound or other approximations.
"On the evaluation of Marton's inner bound for binary input broadcast channels." 2012. http://library.cuhk.edu.hk/record=b5549570.
Повний текст джерела在論文的第一部份,我們介紹了一個由Jog 和Nair 獲得的基於二值輸入斜對稱廣播信道的不等式,該不等式被用於首次證明Marton 內界嚴格包含在UV 外界里。我們將該不等式推廣到任意二值輸入廣播信道。在證明中,我們採用擾動分析的方法,幫助刻劃了不等式在非平凡情況下的性質。
在第二部份,我們專注于研究輸出對稱的二值輸入廣播信道。我們證明了Marton 內界是否嚴格包含于UV 外界里是與特定偏序密切相關的,同時找到了另一個嚴格包含的例子。
對於評估內界而不僅僅是其中的總傳輸率,我們考慮邊界的支撐超平面,然後提出一個猜想,利用凸包的概念推廣了之前提及的不等式。對於大部份情況,我們證明了該猜想。
本論文的主要貢獻在於,我們拓展了評估特定可達傳輸率的新工具和方法,同時證明了某些非基於凸性質的不等式。
This thesis concerns the evaluation of Marton's inner bound for binary input broadcast channel without common message.This inner bound is the best one for two-receiver broadcast channel, while the best outer bound is UV outer bound. Recently we have shown that UV outer bound is not optimal, however the optimality of Marton's inner bound is still unknown.
In the first part, we introduce a binary inequality obtained by Jog and Nair for binary-skew symmetric broadcast channel, which helps to show for the first time that Marton's inner bound is strictly included in UV outer bound. We generalize this inequality to be true for arbitrary binary input broadcast channel. The method applied here is perturbation analysis, which helps to characterize the properties of non-trivial cases in the proof.
In the second part, we study a class of broadcast channel consisting of binary input symmetric-output channels. We show that whether Marton's inner bound is strictly included in UV outer bound is closely related to the more capable partial order, and we find a second example that demonstrates the strict inclusion.
To evaluate the inner bound beyond the sum-rate, we consider the supporting hyperplanes of the boundary points and conjecture the binary inequality to a stronger one, where we utilize the notion of concave envelope. We prove the extended inequality for certain cases.
The main contribution of the thesis is in the development of new tools and techniques for evaluating certain achievable regions as well as for proving certain information inequalities that are not based on convexity.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Geng, Yanlin.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 64-66).
Abstract also in Chinese.
Abstract --- p.i
Acknowledgement --- p.iv
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Broadcast channel and capacity region --- p.2
Chapter 1.2 --- Inner bounds to capacity region --- p.3
Chapter 1.3 --- Outer bounds to capacity region --- p.6
Chapter 1.4 --- Partial orders --- p.7
Chapter 1.5 --- Examples where inner and outer bounds differ --- p.11
Chapter 2 --- A binary inequality --- p.14
Chapter 2.1 --- Proof of special settings --- p.20
Chapter 2.2 --- Two nontrivial cases --- p.20
Chapter 2.3 --- Proof of XOR case --- p.22
Chapter 2.4 --- Proof of AND case --- p.26
Chapter 3 --- BISO broadcast channel --- p.30
Chapter 3.1 --- BISO channel --- p.32
Chapter 3.2 --- Partial orders on BISO broadcast channel --- p.34
Chapter 3.2.1 --- More capable comparability --- p.34
Chapter 3.2.2 --- More capable and essentially less noisy --- p.39
Chapter 3.3 --- Comparison of bounds for BISO broadcast channel --- p.42
Chapter 3.4 --- A new partial order --- p.46
Chapter 4 --- Extended binary inequality --- p.56
Chapter 4.1 --- Proof of XOR case --- p.57
Chapter 4.2 --- A conjecture on extending the inequality --- p.61
Chapter 5 --- Conclusion --- p.62
Bibliography --- p.64
Lin, Sin-Fu, and 林信甫. "Applying Intel SGX for Multi-Input Functional Encryption on Binary Classification of Machine Learning." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/48ts98.
Повний текст джерела國立政治大學
資訊科學系
107
Due to the fact that mobile devices and the usage of the internet have become integral parts of our lives, various kinds of private data have been collected and uploaded to the cloud for analysis. Followed by, hackers attack cloud OS, VMM(Virtual Machine Monitor); cloud administrators take on unauthorized action, all leave privacy data at risk. This research aims to resolve the issue by conducting SGX (Software Guard Extensions), Intel’s software and hardware trusted execution environment solution, to propose a software architecture. The designed architecture contains four characters, Users, Cloud Service Provider, Security as a Service and Machine Learning as a Service, which then designed data flow, encryption/decryption flow as well as computation flow between the characters. To explain how the architecture meets the privacy protection demands of data at all time (at-rest, in-transit, and in-use), the research takes Multi-Input Functional Encryption on binary classification of Machine Learning as examples.
Tsai, Yu-Han, and 蔡羽涵. "The Cramming, Softening and Integrating Learning Algorithm with ReLU activation function for Binary Input/Output Problems." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/ymzgt7.
Повний текст джерела國立政治大學
資訊管理學系
107
Rare Artificial Neural Networks studies address simultaneously the challenges of (1) systematically adjusting the amount of used hidden layer nodes within the learning process, (2) adopting ReLU activation function instead of tanh function for fast learning, and (3) guaranteeing learning all training data. This study will address these challenges through deriving the CSI (Cramming, Softening and Integrating) learning algorithm for the single-hidden layer feed-forward neural networks with ReLU activation function and the binary input/output, and further making the technical justification. For the purpose of verifying the proposed learning algorithm, this study conducts an empirical experiment using SPECT heart diagnosis data set from UCI Machine Learning repository. The learning algorithm is implemented via the advanced TensorFlow and GPU.
Syu, Ming-Sheng, and 許名勝. "The Design and Analysis of Turbo Codes Based on Nonbinary Time-Varying Accumulate Codes under Binary-Input AWGN Channels." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/12145438376510645480.
Повний текст джерела國立中正大學
通訊工程研究所
101
According to the results of other research, random-coset low-density parity-check (LDPC) codes and irregular repeat-accumulate (IRA) codes with q-ary nonuniform signal constellations, under belief-propagation (BP) decoding, will approach the unrestricted Shannon limit. It has been shown that, random-coset LDPC codes has much higher encoding complexity than the IRA code, because IRA code can be encoded using the concept of time-varying accumulate code as proposed in [19]. And the simulation results show that, the best SNR thresholds of random-coset LDPC or IRA codes are obtained when the average variable node degree as close as possible to 2. This also means that we can get good performance, as long as repeat the information twice, which implies the turbo codes with two branches encoded by two independent time-varying accumulate (RA) codes may have good potential to construct good codes. In addition, compared with conventional repeat accumulate codes with input and output from the entire Galois field , we also proposed a time-varying accumulate codes with input and output restricted to a small-sized alphabet (smaller than ).This construction allows better flexibility of modulation and coding scheme (MCS) for rate matching in modern communication systems.
Книги з теми "Binary input"
Tennant, Neil. Transmission of Truthmakers. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198777892.003.0009.
Повний текст джерелаЧастини книг з теми "Binary input"
Babu, Hafiz Md Hasan. "Multiple-Valued Input Binary-Valued Output Functions." In VLSI Circuits and Embedded Systems, 107–20. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003269182-11.
Повний текст джерелаSkubacz, Michał, and Jaakko Hollmén. "Quantization of Continuous Input Variables for Binary Classification." In Intelligent Data Engineering and Automated Learning — IDEAL 2000. Data Mining, Financial Engineering, and Intelligent Agents, 42–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44491-2_7.
Повний текст джерелаGalán, Gerhard, and Juris Muñoz. "A new input-output function for binary hopfield neural networks." In Lecture Notes in Computer Science, 311–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0098187.
Повний текст джерелаNuida, Koji. "Efficient Card-Based Millionaires’ Protocols via Non-binary Input Encoding." In Advances in Information and Computer Security, 237–54. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-41326-1_13.
Повний текст джерелаWickramasuriya, Dilranjan S., and Rose T. Faghih. "State-Space Model with One Binary and Two Continuous Observations." In Bayesian Filter Design for Computational Medicine, 53–66. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-47104-9_5.
Повний текст джерелаRüping, S., U. Rückert, and K. Goser. "Hardware design for self organizing feature maps with binary input vectors." In New Trends in Neural Computation, 488–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56798-4_193.
Повний текст джерелаAdde, Patrick, Ramesh Pyndiah, and Sylvie Kerouedan. "Block Turbo Code with Binary Input for Improving Quality of Service." In Multiaccess, Mobility and Teletraffic for Wireless Communications, volume 6, 195–204. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-5918-1_14.
Повний текст джерелаTempel, Sören, Vladimir Herdt, and Rolf Drechsler. "SISL: Concolic Testing of Structured Binary Input Formats via Partial Specification." In Automated Technology for Verification and Analysis, 77–82. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19992-9_5.
Повний текст джерелаBryant, Randal E., Armin Biere, and Marijn J. H. Heule. "Clausal Proofs for Pseudo-Boolean Reasoning." In Tools and Algorithms for the Construction and Analysis of Systems, 443–61. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99524-9_25.
Повний текст джерелаDu, Huaiyu, and Rafał Jóźwiak. "Representation of Observations in Reinforcement Learning for Playing Arcade Fighting Game." In Digital Interaction and Machine Intelligence, 45–55. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-37649-8_5.
Повний текст джерелаТези доповідей конференцій з теми "Binary input"
Wong, Wai Kin, Huaijin Wang, Zongjie Li, and Shuai Wang. "BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing." In ICSE '24: 46th IEEE/ACM International Conference on Software Engineering. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3597503.3623328.
Повний текст джерелаMoskowitz, Ira S., Paul Cotae, Pedro N. Safier, and Daniel L. Kang. "Capacity bounds and stochastic resonance for binary input binary output channels." In 2012 Computing, Communications and Applications Conference (ComComAp). IEEE, 2012. http://dx.doi.org/10.1109/comcomap.2012.6154003.
Повний текст джерелаShari, Shahrouz, A. Korhan Tanc, and Tolga M. Duman. "LDPC code design for binary-input binary-output Z interference channels." In 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282622.
Повний текст джерелаAmonchanchaigul, Thavit, and Worapoj Kreesuradej. "Input Selection Using Binary Particle Swarm Optimization." In 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA'06). IEEE, 2006. http://dx.doi.org/10.1109/cimca.2006.127.
Повний текст джерелаQian, Jing, Feifei Gao, Shi Jin, Ling Xing, and Junhui Zhao. "Capacity of Ambient Backscatter Communications with Binary Input and Binary Output Channel." In GLOBECOM 2018 - 2018 IEEE Global Communications Conference. IEEE, 2018. http://dx.doi.org/10.1109/glocom.2018.8647136.
Повний текст джерелаMoskowitz, Ira S., Paul Cotae, and Pedro N. Safier. "Algebraic information theory and stochastic resonance for binary-input binary-output channels." In 2012 46th Annual Conference on Information Sciences and Systems (CISS). IEEE, 2012. http://dx.doi.org/10.1109/ciss.2012.6310786.
Повний текст джерелаUeng, Yeong-Luh, Chung-Jay Yang, Shu-Wei Chen, and Wei-Xuan Wu. "A selective-input non-binary LDPC decoder architecture." In 2011 International SoC Design Conference (ISOCC 2011). IEEE, 2011. http://dx.doi.org/10.1109/isocc.2011.6138641.
Повний текст джерелаLi, Zhe, Peisong Wang, Hanqing Lu, and Jian Cheng. "Reading selectively via Binary Input Gated Recurrent Unit." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/705.
Повний текст джерелаGuoping Wang. "Implementation of a redundant binary input acceptable multiplier." In 2007 IEEE International Conference on Electro/Information Technology. IEEE, 2007. http://dx.doi.org/10.1109/eit.2007.4374437.
Повний текст джерелаLi, Longchuan, Shugen Ma, Isao Tokuda, Yang Tian, Yiming Cao, Makoto Nokata, and Zhiqing Li. "Embodying Rather Than Encoding: Undulation with Binary Input." In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2022. http://dx.doi.org/10.1109/iros47612.2022.9982001.
Повний текст джерелаЗвіти організацій з теми "Binary input"
Hoch, Brendon, and Samantha Cook. A 10-Year monthly climatology of wind direction : case-study assessment. Engineer Research and Development Center (U.S.), April 2023. http://dx.doi.org/10.21079/11681/46912.
Повний текст джерелаFarhi, Edward, and Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, December 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Повний текст джерелаMorales Sarriera, Javier, Tomás Serebrisky, Gonzalo Araya, Cecilia Briceño-Garmendia, and Jordan Schwartz. Benchmarking Container Port Technical Efficiency in Latin America and the Caribbean. Inter-American Development Bank, December 2013. http://dx.doi.org/10.18235/0011526.
Повний текст джерелаSinclair, Samantha, and Sally Shoop. Automated detection of austere entry landing zones : a “GRAIL Tools” validation assessment. Engineer Research and Development Center (U.S.), August 2022. http://dx.doi.org/10.21079/11681/45265.
Повний текст джерелаGibbs, Holly, Sahoko Yui, and Richard Plevin. New Estimates of Soil and Biomass Carbon Stocks for Global Economic Models. GTAP Technical Paper, March 2014. http://dx.doi.org/10.21642/gtap.tp33.
Повний текст джерелаPatel, Reena. Complex network analysis for early detection of failure mechanisms in resilient bio-structures. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41042.
Повний текст джерела