Добірка наукової літератури з теми "Bidirectional LSTM (BiLSTM)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Bidirectional LSTM (BiLSTM)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Bidirectional LSTM (BiLSTM)"
Kiperwasser, Eliyahu, and Yoav Goldberg. "Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations." Transactions of the Association for Computational Linguistics 4 (December 2016): 313–27. http://dx.doi.org/10.1162/tacl_a_00101.
Повний текст джерелаZhai, Yujia, Yan Wan, and Xiaoxiao Wang. "Optimization of Traffic Congestion Management in Smart Cities under Bidirectional Long and Short-Term Memory Model." Journal of Advanced Transportation 2022 (April 1, 2022): 1–8. http://dx.doi.org/10.1155/2022/3305400.
Повний текст джерелаAbduljabbar, Rusul L., Hussein Dia, and Pei-Wei Tsai. "Unidirectional and Bidirectional LSTM Models for Short-Term Traffic Prediction." Journal of Advanced Transportation 2021 (March 26, 2021): 1–16. http://dx.doi.org/10.1155/2021/5589075.
Повний текст джерелаCasabianca, Pietro, Yu Zhang, Miguel Martínez-García, and Jiafu Wan. "Vehicle Destination Prediction Using Bidirectional LSTM with Attention Mechanism." Sensors 21, no. 24 (December 17, 2021): 8443. http://dx.doi.org/10.3390/s21248443.
Повний текст джерелаLiu, Lingfeng, Baodan Bai, Xinrong Chen, and Qin Xia. "Semantic Segmentation of QRS Complex in Single Channel ECG with Bidirectional LSTM Networks." Journal of Medical Imaging and Health Informatics 10, no. 3 (March 1, 2020): 758–62. http://dx.doi.org/10.1166/jmihi.2020.2929.
Повний текст джерелаGao, Yunqing, Juping Zhu, and Hongbo Gao. "The surrounding vehicles behavior prediction for intelligent vehicle based on Attention-BiLSTM." JUSTC 52 (2022): 1. http://dx.doi.org/10.52396/justc-2021-0115.
Повний текст джерелаRahman, Md Mostafizer, Yutaka Watanobe, and Keita Nakamura. "A Bidirectional LSTM Language Model for Code Evaluation and Repair." Symmetry 13, no. 2 (February 1, 2021): 247. http://dx.doi.org/10.3390/sym13020247.
Повний текст джерелаXu, Chuanjie, Feng Yuan, and Shouqiang Chen. "BJBN: BERT-JOIN-BiLSTM Networks for Medical Auxiliary Diagnostic." Journal of Healthcare Engineering 2022 (January 11, 2022): 1–7. http://dx.doi.org/10.1155/2022/3496810.
Повний текст джерелаZhen, Hao, Dongxiao Niu, Min Yu, Keke Wang, Yi Liang, and Xiaomin Xu. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction." Sustainability 12, no. 22 (November 15, 2020): 9490. http://dx.doi.org/10.3390/su12229490.
Повний текст джерелаNamgung, Juhong, Siwoon Son, and Yang-Sae Moon. "Efficient Deep Learning Models for DGA Domain Detection." Security and Communication Networks 2021 (January 18, 2021): 1–15. http://dx.doi.org/10.1155/2021/8887881.
Повний текст джерелаДисертації з теми "Bidirectional LSTM (BiLSTM)"
Javid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Повний текст джерелаThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Частини книг з теми "Bidirectional LSTM (BiLSTM)"
Kapočiūtė-Dzikienė, Jurgita. "Intent Detection-Based Lithuanian Chatbot Created via Automatic DNN Hyper-Parameter Optimization." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2020. http://dx.doi.org/10.3233/faia200608.
Повний текст джерелаТези доповідей конференцій з теми "Bidirectional LSTM (BiLSTM)"
Ghaeini, Reza, Sadid A. Hasan, Vivek Datla, Joey Liu, Kathy Lee, Ashequl Qadir, Yuan Ling, Aaditya Prakash, Xiaoli Fern, and Oladimeji Farri. "DR-BiLSTM: Dependent Reading Bidirectional LSTM for Natural Language Inference." In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/n18-1132.
Повний текст джерелаDai, Guoxian, Jin Xie, and Yi Fang. "Siamese CNN-BiLSTM Architecture for 3D Shape Representation Learning." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/93.
Повний текст джерелаMohapatra, Nilamadhaba, Namrata Sarraf, and Swapna sarit Sahu. "Ensemble Model for Chunking." In 2nd International Conference on Blockchain and Internet of Things (BIoT 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110811.
Повний текст джерела