Добірка наукової літератури з теми "BIDIRECTIONAL INTERLEAVED CONVERTER"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "BIDIRECTIONAL INTERLEAVED CONVERTER".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "BIDIRECTIONAL INTERLEAVED CONVERTER"

1

Shyu, Kuo-Kai, Yi-Chang Yu, Xin-Lan Lin, Lung-Hao Lee, and Po-Lei Lee. "A Novel Bidirectional-Switched-Capacitor-Based Interlaced DC-DC Converter." Electronics 12, no. 4 (February 5, 2023): 792. http://dx.doi.org/10.3390/electronics12040792.

Повний текст джерела
Анотація:
This study proposes a novel bidirectional-switched-capacitor-based interleaved converter. In view of the shortcomings of the two well-known unidirectional-switched-capacitor-based interleaved converters, this study improves such converters through combining the novel structure of a switched capacitor circuit. The first effort was to overcome the drawback of the Cockcroft–Walton-based interleaved converter, whose circuit impedance and ripple cause a serious output voltage drop. The second was to solve the Dickson-based interleaved converter with its capacitors subjected to high-voltage stress. The third was to relax the unidirectional boost function of the Cockcroft–Walton- or Dickson-based interleaved converter. This study avoided not only high-circuit impedance and ripple, as in the case of the Cockcroft–Walton converter, but also it had lower component stress than the Dickson converter. In addition, this study redesigned the unidirectional boost function of the Cockcroft–Walton- or Dickson-based interleaved converter, such that the switch-capacitor-based interleaved converters became bidirectional DC-DC converters. Finally, the experimental results are provided to verify the feasibility of the proposed method.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Babaei, Ebrahim, Zahra Saadatizadeh, and Behnam Mohammadi Ivatloo. "A New Interleaved Bidirectional Zero Voltage Switching DC/DC Converter with High Conversion Ratio." Journal of Circuits, Systems and Computers 26, no. 06 (March 5, 2017): 1750105. http://dx.doi.org/10.1142/s0218126617501055.

Повний текст джерела
Анотація:
In this paper, a new interleaved nonisolated bidirectional zero voltage switching (ZVS) dc–dc converter by using one three-windings coupled inductor is proposed. The proposed topology can provide high step-up and high step-down conversion ratios for boost and buck operations, respectively. Moreover, because of interleaving, the proposed converter has low input current ripple at low voltage side in both buck and boost operations. The proposed converter uses lower number of switches to have bidirectional power flow in comparison with other interleaved bidirectional converters. All used switches in the proposed converter are turned on under ZVS. The advantages of the proposed converter in comparison with the conventional interleaved converters are included in the capability of bidirectional power flow, ZVS operation for all switches and high step-up and high step-down voltage gain for boost and buck operations. In this paper, the proposed converter is analyzed completely and all equations of components are extracted as well as the ZVS conditions of all switches. Moreover, a comprehensive comparison between the proposed converter and conventional topologies is presented. To verify the accuracy performance of the proposed converter, the experimental results are given.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Pengcheng, Chunjiang Zhang, Sanjeevikumar Padmanaban, and Leonowicz Zbigniew. "Multiple Modulation Strategy of Flying Capacitor DC/DC Converter." Electronics 8, no. 7 (July 11, 2019): 774. http://dx.doi.org/10.3390/electronics8070774.

Повний текст джерела
Анотація:
Flying-capacitor multiplexed modulation technology is suitable for bipolar DC microgrids with higher voltage levels and higher current levels. The module combination and corresponding modulation method can be flexibly selected according to the voltage level and capacity level. This paper proposes a bipolar bidirectional DC/DC converter and its interleaved-complementary modulation strategy that is suitable for bipolar DC microgrids. The converter consists of two flying-capacitor three-level bidirectional DC/DC converters that are interleaved in parallel 90°, and then cascaded with another module to form a symmetrical structure of the upper and lower arms; the complementary modulation of the upper and lower half bridges constitutes an interleaved complementary multilevel bidirectional DC/DC converter. If the bidirectional converter needs to provide a stronger overcurrent capability, more bridge arms can be interleaved in parallel. Once n bridge arms are connected in parallel, the bridge arms should be interleaved 180°/n in parallel. In bipolar DC microgrids, the upper and lower arms should be complementarily modulated, and the input and output are isolated by the inductance. To solve the current difference, caused by the inconsistent parasitic, the voltage-current double closed-loop-control is used, and the dynamic response is faster during bidirectional operation. This paper proposes theoretical analysis and experiments that verify bipolar bidirectional DC/DC converter for high-power energy storage.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Babazadeh, Yaser, Mehran Sabahi, Ebrahim Babaei, and Sun Kai. "A New Continuous Input Current Nonisolated Bidirectional Interleaved Buck-Boost DC-DC Converter." International Transactions on Electrical Energy Systems 2022 (June 1, 2022): 1–19. http://dx.doi.org/10.1155/2022/9453913.

Повний текст джерела
Анотація:
In this paper, a new interleaved bidirectional buck-boost DC-DC converter is proposed. The input current of this converter is continuous and has a low ripple, that cause reduction in the size of the input filter of the converter. Because of these features, this converter is appropriate for renewable applications such as fuel cells and photovoltaic (PV) panels for obtaining maximum power in which the continuity of the input current is essential. The operation principle of this converter is detailed, and its power losses calculation shows the positive effects of the low input current ripple on its efficiency. The input current ripple of the proposed converter and conventional interleaved buck-boost converter has been calculated in detail. In addition, the comparison results of this converter with conventional interleaved buck-boost converters and other similar structures confirm that the proposed converter without utilizing extra components achieves continuous input current with low ripple. Compared with other buck-boost structures, the low input current ripple in the presented converter causes an improvement in its efficiency. An experimental prototype is implemented in the laboratory to confirm the correctness of theoretical analyses.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kroics, K., U. Sirmelis, and L. Grigans. "Digitally Controlled 4-Phase Bi-Directional Interleaved Dc-Dc Converter with Coupled Inductors / Digitāli Vadāms 4 Fāžu Divvirziena Līdzstrāvas Pārveidotājs Ar Saistītajām Droselēm." Latvian Journal of Physics and Technical Sciences 52, no. 4 (August 1, 2015): 18–31. http://dx.doi.org/10.1515/lpts-2015-0020.

Повний текст джерела
Анотація:
Abstract The main advantages of multiphase interleaved DC-DC converters over single-phase converters are reduced current stress and reduced output current ripple. Nevertheless, inductor current ripple cannot be reduced only by an interleaving method. The integrated magnetic structure can be used to solve this problem. In this paper, the application of 2-phase coupled inductor designed in a convenient way by using commercially manufactured coil formers and ferrite cores is analysed to develop a 4-phase interleaved DC-DC converter. The steady state phase and output current ripple in a boost mode of the interleaved bidirectional DC-DC converter with integrated magnetics are analysed. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Uno, Masatoshi, Masahiko Inoue, Yusuke Sato, and Hikaru Nagata. "Bidirectional Interleaved PWM Converter with High Voltage-Conversion Ratio and Automatic Current Balancing Capability for Single-Cell Battery Power System in Small Scientific Satellites." Energies 11, no. 10 (October 11, 2018): 2702. http://dx.doi.org/10.3390/en11102702.

Повний текст джерела
Анотація:
Single-cell battery power systems are a promising bus architecture for small scientific satellites. However, to bridge the huge voltage gap between a single-cell battery and power bus, bidirectional converters with a high voltage conversion ratio and a large current capability for the low-voltage side are necessary. This article proposes a bidirectional interleaved pulse width modulation (PWM) converter with a high voltage conversion ratio and an automatic current balancing capability. By adding capacitors to conventional interleaved PWM converters, not only are inductor currents automatically balanced without feedback control or current sensors, but also voltage conversion ratios at a given duty cycle can be enhanced. Furthermore, the added capacitors can reduce voltage stresses of switches and charged-discharged energies of inductors, realizing more efficient power conversion and reduced circuit volume in comparison with conventional converters. A 100-W prototype was built for experimental verification, and results demonstrated the fundamental characteristics and efficacy of the proposed converter.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Duan, Jiandong, Shuai Wang, Yiming Xu, Shaogui Fan, Ke Zhao, and Li Sun. "Variable Multiple Interleaved Bi-Directional DC/DC Converter with Current Ripple Optimization." Applied Sciences 13, no. 3 (January 29, 2023): 1744. http://dx.doi.org/10.3390/app13031744.

Повний текст джерела
Анотація:
In order to reduce the current ripple and improve the power density of the system, the multiple structure design is generally adopted by the traditional bidirectional DC/DC converter. However, the fixed multiplicity design can’t make the DC/DC power converter always output the smallest current ripple under different duty ratios. Through this research, it is found that the current ripple is related to duty cycle and parallel multiplicity, and then a variable multiplicity bidirectional DC/DC power converter is proposed. Firstly, the relationship between the current ripple and parallel multiplicity and duty cycle is deduced, and the basic topology of variable multiplicity bidirectional DC/DC power converter is determined; Secondly, the average value model and AC small signal model of the system are established based on the topological structure, and then the state equation is obtained. Thirdly, the current compensation control method is designed based on the state equation. Finally, the experimental platform of variable multiplicity bidirectional DC/DC power converter is built.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kroičs, Kaspars, and Ģirts Staņa. "Bidirectional Interleaved DC–DC Converter for Supercapacitor Energy Storage Integration with Reduced Capacitance." Electronics 12, no. 1 (December 28, 2022): 126. http://dx.doi.org/10.3390/electronics12010126.

Повний текст джерела
Анотація:
This paper analyzes the control method of a multiphase interleaved DC–DC converter for supercapacitor energy storage system integration in a DC bus with reduced input and output filter size. A reduction in filter size is achieved by operating only in modes with duty cycles that correspond to smaller output current ripples. This leads to limited control of the charging and discharging process of the supercapacitor energy storage system. Therefore, a detailed analysis of the optimal charging strategy is provided in this paper for interleaved converters with different numbers of phases. The results show that such control can be used, albeit with some percentage loss in efficiency. Experimental results are presented in this paper to verify the theoretical results.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tseng, Kuo-Ching, Shih-Yi Chang, and Chun-An Cheng. "Novel Isolated Bidirectional Interleaved Converter for Renewable Energy Applications." IEEE Transactions on Industrial Electronics 66, no. 12 (December 2019): 9278–87. http://dx.doi.org/10.1109/tie.2019.2892673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kroics, Kaspars. "Simulation Based Analysis of Digitally Controlled 4-phase DC-DC Converter with Coupled Inductors." Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (June 16, 2015): 89. http://dx.doi.org/10.17770/etr2015vol1.215.

Повний текст джерела
Анотація:
<p class="R-AbstractKeywords"><span lang="EN-US">Interleaved converters are used in many different conversion systems involving various topologies and are related to different fields of application due its advantages over single-phase converters. Such advantages include reduced current in switching devices and passive elements, reduced output current ripple, and so on. Reductions in size and costs of magnetic components and inductors current ripple can be achieved by an integration of magnetics. In this paper application of 2-phase coupled inductor designed in convenient way by using commercially manufactured coil formers and ferrite cores is analyzed to developed 4-phase interleaved DC-DC converter. Different structures of the coupled inductor for 4 phases is studied. The steady state phase and output current ripple in buck mode of the interleaving magnetic integrated bidirectional DC-DC converter is simulated. The necessary count of inductors for selected topology are manufactured and placed on the PCB board.</span></p>
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "BIDIRECTIONAL INTERLEAVED CONVERTER"

1

Melo, Rodnei Regis de. "Bidirectional interleaved dc-dc converter applied to supercapacitors for electric vehicles." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12327.

Повний текст джерела
Анотація:
nÃo hÃ
The electric vehicle is increasingly present in our cities every day, and in the technological context it has shown great progress. Two essential elements to the success of these vehicles are the electric energy storage devices and electronic converters for processing and management of this energy. In this context, this dissertation presents a study on the current situation of the electric vehicle on the world scenario and its embedded technologies. Another object of research are supercapacitors for application in electric vehicles as an energy storage source and fast energy transfer. Thus, these studies provide the basis for achieving the main objective of this work: developing a bidirectional dc-dc converter for managing the energy flow provided by a supercapacitor module applied in an electric vehicle. A 2 kW laboratory a prototype with two phase interleaved dc-dc bidirectional topology has been implemented. Also, all used methodology is exposed, such as qualitative analysis, dimensioning of components, modeling and design of PI type controllers for the proposed converter. The digital implementation of the control circuit was designed using the dsPIC30f4011 by Microchip. Through simulation and experimental tests, it was evaluated the behavior of the converter and a performance comparison was held, with the converter showing efficiency above 90%. Thus, through theoretical and practical results it was possible to evaluate the performance of the converter and future studies involving the complete structure of a model of a small electric vehicle.
O veÃculo elÃtrico està cada vez mais presente em nossas cidades, e no Ãmbito tecnolÃgico ele vem apresentando grandes avanÃos. Dois elementos essenciais para o sucesso desses veÃculos sÃo os dispositivos de armazenamento de energia elÃtrica e os conversores eletrÃnicos para processamento e gerenciamento dessa energia. Nesse contexto, esta dissertaÃÃo apresenta um estudo sobre a atual situaÃÃo do veÃculo elÃtrico no cenÃrio mundial e suas tecnologias embarcadas. Outro objeto de pesquisa sÃo os supercapacitores para aplicaÃÃo em veÃculos elÃtricos como fonte de armazenamento e transferÃncia rÃpida de energia. Neste contexto o presente trabalho aborda o desenvolvimento de um conversor cc-cc bidirecional para gerenciamento do fluxo de energia em um mÃdulo de supercapacitores para utilizaÃÃo em um veÃculo elÃtrico. à projetado e desenvolvido em laboratÃrio um protÃtipo com potÃncia de 2 kW, cuja topologia adotada à um conversor cc-cc bidirecional intercalado de duas fases. Deste modo, à exposta toda metodologia empregada onde à abordada a anÃlise qualitativa, o dimensionamento dos componentes, a modelagem e o projeto dos controladores tipo PI para o conversor proposto. Para a implementaÃÃo digital do circuito de controle foi utilizado o dsPIC30f4011 da Microchip. Por meio de simulaÃÃo e dos ensaios experimentais avaliou-se o comportamento do conversor e realizou-se uma comparaÃÃo de desempenho, tendo o conversor apresentado rendimento acima de 90%. Assim, pelos resultados teÃricos e prÃticos foi possÃvel avaliar o desempenho do conversor e creditar a continuidade de sua aplicaÃÃo a trabalhos futuros envolvendo a estruturaÃÃo completa de um modelo de veÃculo elÃtrico de pequeno porte.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chang, Wen-Chi, and 張文祈. "Interleaved Bidirectional Soft-Switching Converter." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/62279908451745557403.

Повний текст джерела
Анотація:
碩士
國立中正大學
電機工程研究所
101
This thesis presents design and implementation of an interleaved bidirectional dc/dc converter for dc distribution system. A four-phase interleaved bidirectional dc-dc converter is adopted, which uses switching frequency modulation method for reducing circulating loss. This circuit is operated in SCM to reduce inductor volume and increase power density. Moreover, the circuit allows synchronous mode operation to achieve zero-voltage switching. A Reneses RX62T microprocessor realizes almost all of the functions, such as circuit protection, generation of PWM signals and A/D conversion, etc. If the load voltage drops below the nominal value, the converter operates in buck mode to regulate the load voltage. On the other hand, if the load power is higher than the desired value and the voltage at the battery side is low, the converter operates in boost mode. Finally, an interleaved bidirectional DC/DC converter is implemented to verify the feasibility and characteristic of the circuit.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gong, Hong-Ze, and 龔宏澤. "An Isolated Bidirectional Interleaved Converter with leakage Energy Recycling." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/69574790135494159505.

Повний текст джерела
Анотація:
碩士
國立高雄第一科技大學
電子工程研究所
103
This thesis presents an isolated bidirectional interleaved dc-dc converter for battery-based distributed generation system. The voltage level of battery is boosted for standard DC-bus voltage by coupled inductor techniques and half-bridge voltage-multiplier, and vice versa. Furthermore, the energy stored in leakage inductance is inherently eliminated without any snubber or clamped circuits. In the thesis, several traditional bidirectional converters are briefly reviewed in advance, and then the operational principle and steady-state analysis of proposed converter is discussed in following chapters. A 400-W prototype with 48 V–400 V is built and tested to verify the feasibility of the proposed converter. Finally, the measurement results in buck and boost modes indicate that the peak efficiencies are up to 95.43% and 95.61%, separately.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

YOU, JIN-WEN, and 游進文. "A Soft-Switching Interleaved Isolated Bidirectional Converter with Energy Recycling." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/gqb8qz.

Повний текст джерела
Анотація:
碩士
國立高雄第一科技大學
電子工程系碩士班
106
Development of a soft-switch interleaved isolated bidirectional converter is proposed in the thesis. The proposed topology is derived from traditional SEPIC converter. By integrating with high frequency transformer and switched capacitor into power stage, the proposed converter can achieve the merits of isolation, bidirectional transmission and interleaved control. In addition, the proposed converter processes the advantages of symmetric interleaved architecture and small input ripple. By recycling the energy in the inductors, the active switches can be switched under soft-switching transition. The interleaved characteristic declines the average current and ensures the control of transformer can be operated in quadrant I and quadrant III. It is significant to largely improve the conversion efficiency and appear the flexibility of this converter to apply on renewable energy systems. Theoretical analysis, formula derivation, operation principle and non-ideal analysis of the proposed converter is described in the thesis. Moreover, experiment result and software simulation collectively validate the correctness and feasibility of the proposed converter.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

CHAWLA, ABHISHEK. "DESIGN AND CONTROL OF FAULT TOLERANT BIDIRECTIONAL INTERLEAVED CONVERTER FOR BATTERY CHARGING APPLICATIONS." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20125.

Повний текст джерела
Анотація:
Most industrialized countries are aiming towards cleaner modes of transportation, and Electric Vehicles (EVs) are top contenders for the same. EVs are largely seen as the future of the transportations business. Although the topic is a great deal of research, this research focuses on improving the reliability of the system by making it fault tolerant. DC-DC converters are one of the most important and challenging subsystems in charging systems. The reliability of the system has always been an issue because of the failures of the semiconductor switches. The study presents the design and control of a 1kW fault-tolerant bidirectional interleaved converter for battery charging applications. It also proposes an algorithm for detection of fault in any of the switches and uses a 3- phase bidirectional interleaved non- isolated converter. The converter’s working is simulated based on two configurations that conducts using all legs at once and redundant leg-based topology so that the converter functions like the prior fault condition. The algorithm makes use of the digitally implemented circuit and hence does-not affect the cost of the system much. A modified PI control integrated with fault detection control scheme is implemented to charge the battery in constant current mode and ensure minimum ripples in output voltage and current. While discharging, voltage mode control is implemented using the PI control. The fault-tolerant capability ensures the continuous operation of the converter even after a fault and made it suitable for EVs battery charging applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Bo-Wei, and 黃博偉. "Study and Implementation of a 650-W Interleaved Bidirectional DC/DC Converter Module." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/4zb53j.

Повний текст джерела
Анотація:
碩士
國立臺灣科技大學
電子工程系
102
This thesis aims to study and develop a bidirectional DC/DC charger/discharger converter module for low-voltage and high-current applications. The converter module adopts interleaved buck converter (for charger)/boost converter (for discharger) topologies with synchronous rectifiers to reduce the input/output current ripples and the component stresses. For the compensator design, the small-signal model is first established by the state-space averaging approach, and then the transfer functions are derived. The Bode plots are constructed for solving the required compensator parameters. A Type-III compensator is finally designed to satisfy the dynamic and stability specifications. Design procedures and simulation results are discussed in this thesis. A 650-W bidirectional DC/DC converter is implemented with a bus voltage of 12 V. The battery-side voltage range is from 1.5 V to 6.5 V. The experimental results are verified with the simulations to demonstrate the feasibility of the circuit topology and the control method.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

WANG, HSIANG-LIN, and 王相霖. "Implementation of Interleaved Bidirectional Half-Bridge CLLC Resonant DC-DC Converter for Energy Storage Systems of Electric Vehicles." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6xcpeh.

Повний текст джерела
Анотація:
碩士
國立虎尾科技大學
電機工程系碩士班
107
In recent years, electric vehicles have been viewed as distributed power sources for storing electricity and sending it back to the grid, but electric vehicle energy storage systems need to be capable of operating in bidirectional power transmission. The purpose of this thesis is to develop an interleaved bidirectional CLLC resonant converter for electric vehicle energy storage systems. This topology is connected in parallel by two sets of converters with phase-shifted switch by 90°. The converter output DC voltage can be voltage-regulated by frequency modulation control. The converter also has the following features: (1) Symmetrical architecture with bidirectional power transfer characteristics, and soft switching of power switches during bidirectional power transfer; (2) Use of interleaved technology to reduce output current ripple and increase Power and stability; (3) The asymmetric pulse modulation method is used to limit the input power to solve the problem of load sharing due to the difference of the resonant tanks in parallel. This paper completes a DC-DC converter for electric vehicle energy storage system, which features bidirectional power transmission, low output current ripple and load balancing. Finally, a DC-DC converter with an input DC voltage of 350V and an output voltage of 280V~400V and a maximum power of 1000W is developed. The experimental results show that the maximum efficiency of the charging mode can reach 92.4%, and the maximum efficiency of the discharge mode is also 92.3%.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shen, Jheng-Syun, and 沈政勛. "Study and Implementation of a 6 kW Digitally-Controlled Interleaved Bidirectional DC/DC Converter for Micro-grid System Applications." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/92918674285109462125.

Повний текст джерела
Анотація:
碩士
國立臺灣科技大學
電子工程系
101
This thesis presents a parallel interleaved non-isolated bidirectional dual half-bridge (DHB) DC/DC converter. Compared with the conventional hard switching control, a novel zero-voltage-switching (ZVS) control method is studied to improve the conversion efficiency. The interleaved control operation reduces the current ripple and improve the power density. To satisfy the demands for fast charging and long lifetime of LiFePO4 batteries, a three-stage charging scheme is adopted. Finally, a digital signal processor (DSP) is used to implement a 6-kW prototype converter with E-CAN communication function for micro-grid system applications. The experimental results show that the rated-load efficiency is over 97%.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lu, Chi-Hsiu, and 呂奇修. "Decoupled Master-Slave Current-Sharing Current Control For Three-Phase Bidirectional Interleaved DC-DC Converter With Single Current Sensor." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/xc2467.

Повний текст джерела
Анотація:
碩士
國立交通大學
電控工程研究所
106
The decoupled master-slave current-sharing control for three-phase bidirectional interleaved DC-DC converter with single current sensor is presented in this thesis. Single-sensor sampling strategy is proposed to obtain all of average inductor currents. In addition, the small-signal transfer functions between three control signals, output voltage and current imbalances are derived by using state-space average method. Based on the theoretical analysis, the voltage regulation loop and both current balancing loops are decoupled. Eventually, all the algorithms are implemented in a Field Programmable Gate Array (FPGA) chip. The simulation and experimental results are provided to validate the proposed single-sensor sampling strategy and current sharing control method.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chuang, Chen-Feng, and 莊岑豐. "A Novel Interleaved High Conversion Ratio Bidirectional DC Converter with Low Switch Voltage Stress and Automatic Uniform Current Sharing Characteristics." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/93022381047915369931.

Повний текст джерела
Анотація:
博士
國立清華大學
電機工程學系
102
With global energy shortage and strong environment movements, many countries are encouraging and promoting the development of distributed alternative energy and renewable energy sources. It is well-known that bidirectional dc-dc converters (BDC) play an important role in the renewable energy generation systems. BDC has bidirectional power flow capability with flexible control between the source and load sides that can provide the backup power when the main source is not available or has failed. For this reason, the main objective of this dissertation is therefore to develop a high efficiency high conversion ratio BDC as an interface for DC-based nanogrid applications. In this dissertation, a novel interleaved high conversion ratio BDC with low switch voltage stress and uniform current sharing characteristics is proposed. As an illustration, a two phase interleaved NBDC with a new voltage quadrupler circuit configuration is first given for demonstration. Furthermore, topological extensions which include a four-phase interleaved NBDC, the extended six-phase NBDC, another two-phase interleaved IBDC and generalized configuration using the new voltage quadrupler module for higher bidirectional conversion applications. In these proposed converter topologies, based on the concepts of the voltage division of the capacitor voltage, the energy can be stored in the blocking capacitor set of the BDC converter for increasing the voltage conversion ratio and for reducing the voltage stresses of the switches. As a result, the proposed converter topology possesses the low switch voltage stress characteristic. This will allow one to choose lower voltage rating MOSFETs to reduce both switching and conduction losses, and the overall efficiency is consequently improved. In addition, due to the charge balance of the blocking capacitor, the converter features automatic uniform current sharing characteristic of the interleaved phases without adding extra circuitry or complex control methods. Finally, a 24V low voltage side, 400V high voltage side, and 500W output power prototype circuit is implemented in the laboratory to verify the performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "BIDIRECTIONAL INTERLEAVED CONVERTER"

1

Li, Yimin, and Lijun Diao. "Research on Interleaved Bidirectional DC/DC Converter." In Proceedings of the 2015 International Conference on Electrical and Information Technologies for Rail Transportation, 409–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49367-0_42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nalina, B. S., V. Kamaraj, M. Chilambarasan, and M. Ramesh Babu. "Bidirectional Interleaved Switched Capacitor DC–DC Converter for Renewable Energy Applications." In Energy Systems in Electrical Engineering, 109–35. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4388-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lijin, K. L., S. Sheik Mohammed, and P. P. Muhammed Shanir. "A Non-isolated Two-Phase Interleaved Bidirectional Buck-Boost Converter (2ph-IBDB2C) for Battery Storage Applications." In Lecture Notes in Electrical Engineering, 456–68. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1677-9_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "BIDIRECTIONAL INTERLEAVED CONVERTER"

1

Wu, Bin, Smedley Keyue, and Singer Sigmond. "A new 3X interleaved bidirectional switched capacitor converter." In 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014. IEEE, 2014. http://dx.doi.org/10.1109/apec.2014.6803495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ha, Dong-Hyun, Nam-Ju Park, Kui-Jun Lee, Dong-Gyu Lee, and Dong-Seok Hyun. "Interleaved Bidirectional DC-DC Converter for Automotive Electric Systems." In 2008 IEEE Industry Applications Society Annual Meeting (IAS). IEEE, 2008. http://dx.doi.org/10.1109/08ias.2008.291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Omara, Ahmed M., and M. Sleptsov. "Bidirectional interleaved DC/DC converter for electric vehicle application." In 2016 11th International Forum on Strategic Technology (IFOST). IEEE, 2016. http://dx.doi.org/10.1109/ifost.2016.7884201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Carpita, M., M. De Vivo, and S. Gavin. "A Bidirectional DC/DC interleaved converter for supercapacitor applications." In 2012 5th European DSP Education and Research Conference (EDERC). IEEE, 2012. http://dx.doi.org/10.1109/ederc.2012.6532244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ouyang, Ziwei, Ole C. Thomsen, Michael A. E. Andersen, Ole Poulsen, and Thomas Bjorklund. "New geometry integrated inductors in two-channel interleaved bidirectional converter." In IECON 2010 - 36th Annual Conference of IEEE Industrial Electronics. IEEE, 2010. http://dx.doi.org/10.1109/iecon.2010.5675219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nandankar, Praful, and M. V. Aware. "High efficiency discontinuous mode interleaved multiphase bidirectional dc-dc converter." In 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, 2012. http://dx.doi.org/10.1109/pedes.2012.6484357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yao-Ching Hsieh, Kun-Ying Lee, and Kuo-Fu Liao. "An interleaved bidirectional DC-DC converter with zero-voltage-switching." In 2013 IEEE 10th International Conference on Power Electronics and Drive Systems (PEDS 2013). IEEE, 2013. http://dx.doi.org/10.1109/peds.2013.6527057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Volpato, Anderson S., Matheus A. de Souza, Edson A. Batista, Fernanda M. Balta, Ruben B. Godoy, and Moacyr A. G. de Brito. "Interleaved Bidirectional DC-AC Converter for Electric Vehicle Charging Station." In 2021 14th IEEE International Conference on Industry Applications (INDUSCON). IEEE, 2021. http://dx.doi.org/10.1109/induscon51756.2021.9529856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Henn, G. A. L., L. H. S. C. Barreto, D. S. Oliveira, and E. A. S. da Silva. "A novel bidirectional interleaved boost converter with high voltage gain." In 2008 IEEE Applied Power Electronics Conference and Exposition - APEC 2008. IEEE, 2008. http://dx.doi.org/10.1109/apec.2008.4522937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yamamoto, Yuji, Taro Takiguchi, Takaharu Sato, and Hirotaka Koizumi. "Two-phase interleaved bidirectional converter input-parallel output-series connection." In 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE 2015-ECCE Asia). IEEE, 2015. http://dx.doi.org/10.1109/icpe.2015.7167801.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії