Статті в журналах з теми "Bi-functional Electrocatalyst"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Bi-functional Electrocatalyst.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Bi-functional Electrocatalyst".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ekspong, Joakim, and Thomas Wågberg. "Stainless Steel as A Bi-Functional Electrocatalyst—A Top-Down Approach." Materials 12, no. 13 (July 2, 2019): 2128. http://dx.doi.org/10.3390/ma12132128.

Повний текст джерела
Анотація:
For a hydrogen economy to be viable, clean and economical hydrogen production methods are vital. Electrolysis of water is a promising hydrogen production technique with zero emissions, but suffer from relatively high production costs. In order to make electrolysis of water sustainable, abundant, and efficient materials has to replace expensive and scarce noble metals as electrocatalysts in the reaction cells. Herein, we study activated stainless steel as a bi-functional electrocatalyst for the full water splitting reaction by taking advantage of nickel and iron suppressed within the bulk. The final electrocatalyst consists of a stainless steel mesh with a modified surface of layered NiFe nanosheets. By using a top down approach, the nanosheets stay well anchored to the surface and maintain an excellent electrical connection to the bulk structure. At ambient temperature, the activated stainless steel electrodes produce 10 mA/cm2 at a cell voltage of 1.78 V and display an onset for water splitting at 1.68 V in 1M KOH, which is close to benchmarking nanosized catalysts. Furthermore, we use a scalable activation method using no externally added electrocatalyst, which could be a practical and cheap alternative to traditionally catalyst-coated electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sunarso, Jaka, Alexey M. Glushenkov, Angel A. J. Torriero, Patrick C. Howlett, Ying Chen, Douglas R. MacFarlane, and Maria Forsyth. "Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO2Composites." Journal of The Electrochemical Society 160, no. 1 (November 21, 2012): H74—H79. http://dx.doi.org/10.1149/2.019302jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tang, Shaobin, Xunhui Zhou, Tianyong Liu, Shiyong Zhang, Tongtong Yang, Yi Luo, Edward Sharman, and Jun Jiang. "Single nickel atom supported on hybridized graphene–boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions." Journal of Materials Chemistry A 7, no. 46 (2019): 26261–65. http://dx.doi.org/10.1039/c9ta10500j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Hao-Fan, Cheng Tang, Xiaolin Zhu, and Qiang Zhang. "A ‘point–line–point’ hybrid electrocatalyst for bi-functional catalysis of oxygen evolution and reduction reactions." Journal of Materials Chemistry A 4, no. 9 (2016): 3379–85. http://dx.doi.org/10.1039/c5ta09327a.

Повний текст джерела
Анотація:
A hybrid electrocatalyst with ‘active point–conductive line–active point’ connections was proposed and exhibited superb bi-functional reactivity for both oxygen reduction and oxygen evolution reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Meng, Lu, Ling Zhan, Hongliang Jiang, Yihua Zhu, and Chunzhong Li. "Confined Co9S8 into a defective carbon matrix as a bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries." Catalysis Science & Technology 9, no. 20 (2019): 5757–62. http://dx.doi.org/10.1039/c9cy01717h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jin, Liujun, Hui Xu, Cheng Wang, Yong Wang, Hongyuan Shang, and Yukou Du. "Multi-dimensional collaboration promotes the catalytic performance of 1D MoO3 nanorods decorated with 2D NiS nanosheets for efficient water splitting." Nanoscale 12, no. 42 (2020): 21850–56. http://dx.doi.org/10.1039/d0nr05250g.

Повний текст джерела
Анотація:
Novel NiS/MoO3/NF heterostructured nanorods/nanosheets were rationally constructed via a hydrothermal method followed by an efficient sulfidation treatment to serve as a bi-functional electrocatalyst for overall water splitting.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wang, Yaqin, Xinxin Xu, Luyao Liu, Jin Chen, and Guimei Shi. "A coordination polymer-derived Co3O4/Co–N@NMC composite material as a Zn–air battery cathode electrocatalyst and microwave absorber." Dalton Transactions 48, no. 21 (2019): 7150–57. http://dx.doi.org/10.1039/c8dt03792b.

Повний текст джерела
Анотація:
With a one-dimensional coordination polymer as a precursor, a Co–N active center-rich Co3O4-based bi-functional electrocatalyst was synthesized as a cathode for Zn–air batteries.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yuan, Shi-Jie, and Xiao-Hu Dai. "An efficient sewage sludge-derived bi-functional electrocatalyst for oxygen reduction and evolution reaction." Green Chemistry 18, no. 14 (2016): 4004–11. http://dx.doi.org/10.1039/c5gc02729b.

Повний текст джерела
Анотація:
An efficient, low cost, and stable bi-functional electrocatalyst for ORR and OER consisting of N, Fe, and S multi-doped nanoporous carbon was produced by a facile one-step pyrolysis of sewage sludge under NH3 conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Maitra, S., R. Mitra, and T. K. Nath. "Aqueous Mg-Ion Supercapacitor and Bi-Functional Electrocatalyst Based on MgTiO3 Nanoparticles." Journal of Nanoscience and Nanotechnology 21, no. 12 (December 1, 2021): 6217–26. http://dx.doi.org/10.1166/jnn.2021.19321.

Повний текст джерела
Анотація:
Supercapacitor and hydrogen-based fuel cells are cheap and environmental-friendly next-generation energy storage devices that are intended to replace Lithium-ion batteries. Metal oxide nanostructures having perovskite crystal structure have been found to exhibit unique electrochemical properties owing to its unique electronic band structure and multiple redox-active ions. Herein, MgTiO3 nanoparticles (MTO-1) were synthesized by wet-chemical sol–gel technique with an average particle size of 50–55 nm, which exhibited superior supercapacitor performance of capacitance (C) = 25 F/g (at 0.25 A/g), energy density (ED) = 17 Wh/kg, power density (PD) = 275 W/kg and 82.41% capacitance retention (after 1000 cycles). Aqueous 1 M Mg(ClO4)2 solution was used as the electrolyte. MTO-1 revealed an overpotential (η) = 1.329 V and Tafel slope (b) = 374 mV/dec towards Oxygen Evolution Reaction (OER) electrocatalyst and exhibited η = 0.914 V and b = 301.4 mV/dec towards Hydrogen Evolution Reaction (HER) electrocatalyst, both in presence of alkaline 1 M KOH solution, making these MgTiO3 nanoparticles very promising for potential use in various technologically important electrochemical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Xiaojuan, Yan Meng, Taotao Gao, Jinmei Zhang, Xiaoqin Li, Hongyan Yuan, and Dan Xiao. "An iron foam acts as a substrate and iron source for the in situ construction of a robust transition metal phytate electrocatalyst for overall water splitting." Sustainable Energy & Fuels 4, no. 1 (2020): 331–36. http://dx.doi.org/10.1039/c9se00348g.

Повний текст джерела
Анотація:
The cheap iron foam as a 3D substrate for in situ electrochemical preparing bi-functional electrocatalyst. The introduction of phytates facilitates the construction of 3D networks and the join of Co and Fe further creates more catalytic active sites.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Burse, Shalmali, Rakesh Kulkarni, Rutuja Mandavkar, Md Ahasan Habib, Shusen Lin, Young-Uk Chung, Jae-Hun Jeong, and Jihoon Lee. "Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst." Nanomaterials 12, no. 19 (September 21, 2022): 3283. http://dx.doi.org/10.3390/nano12193283.

Повний текст джерела
Анотація:
Ultra-fine hydrogen produced by electrochemical water splitting without carbon emission is a high-density energy carrier, which could gradually substitute the usage of traditional fossil fuels. The development of high-performance electrocatalysts at affordable costs is one of the major research priorities in order to achieve the large-scale implementation of a green hydrogen supply chain. In this work, the development of a vanadium-doped FeBP (V-FeBP) microsphere croissant (MSC) electrocatalyst is demonstrated to exhibit efficient bi-functional water splitting for the first time. The FeBP MSC electrode is synthesized by a hydrothermal approach along with the systematic control of growth parameters such as precursor concentration, reaction duration, reaction temperature and post-annealing, etc. Then, the heteroatom doping of vanadium is performed on the best FeBP MSC by a simple soaking approach. The best optimized V-FeBP MSC demonstrates the low HER and OER overpotentials of 52 and 180 mV at 50 mA/cm2 in 1 M KOH in a three-electrode system. In addition, the two-electrode system, i.e., V-FeBP || V-FeBP, demonstrates a comparable water-splitting performance to the benchmark electrodes of Pt/C || RuO2 in 1 M KOH. Similarly, exceptional performance is also observed in natural sea water. The 3D MSC flower-like structure provides a very high surface area that favors rapid mass/electron-transport pathways, which improves the electrocatalytic activity. Further, the V-FeBP electrode is examined in different pH solutions and in terms of its stability under industrial operational conditions at 60 °C in 6 M KOH, and it shows excellent stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Amanullah, Sk, and Abhishek Dey. "A bi-functional cobalt-porphyrinoid electrocatalyst: balance between overpotential and selectivity." JBIC Journal of Biological Inorganic Chemistry 24, no. 4 (May 30, 2019): 437–42. http://dx.doi.org/10.1007/s00775-019-01670-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Wu, Caiyun, Yunmei Du, Yunlei Fu, Di Feng, Hui Li, Zhenyu Xiao, Yanru Liu, Yu Yang, and Lei Wang. "Mo, Co co-doped NiS bulks supported on Ni foam as an efficient electrocatalyst for overall water splitting in alkaline media." Sustainable Energy & Fuels 4, no. 4 (2020): 1654–64. http://dx.doi.org/10.1039/c9se00822e.

Повний текст джерела
Анотація:
In this study, a composite of Mo, Co co-doped NiS bulks grown on an Ni foam (Mo,Co-NiS/NF) was synthesized as a bi-functional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using a simple method.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Luo, Xinlei, Ziheng Zheng, Bingxue Hou, Xianpan Xie, and Cheng Cheng Wang. "Facile synthesis of a MOF-derived Co–N–C nanostructure as a bi-functional oxygen electrocatalyst for rechargeable Zn–air batteries." RSC Advances 13, no. 27 (2023): 18888–97. http://dx.doi.org/10.1039/d3ra02191b.

Повний текст джерела
Анотація:
A catalyst obtained from the pyrolysis of a Co/Fe/Zn zeolitic imidazolite framework was prepared as ORR and OER electrocatalyst. A rechargeable Zn–air battery equipped with a Co–N–C-900 electrocatalyst shows power density of 275 mW cm−2 and good cycling stability for 180 h.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kumaravel, Sangeetha, Kannimuthu Karthick, Selvasundarasekar Sam Sankar, Arun Karmakar, Ragunath Madhu, Krishnendu Bera, and Subrata Kundu. "Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting." Sustainable Energy & Fuels 5, no. 24 (2021): 6215–68. http://dx.doi.org/10.1039/d1se01193f.

Повний текст джерела
Анотація:
This review highlights the advantages of transition metal based hydroxides (TMOHs) as a better and cheaper alternative electrocatalyst materials in the total water splitting (TWS) application in terms of their activity, durability and stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Nguyen, Thi Xuyen, Nai-Hsin Ting, and Jyh-Ming Ting. "Multi-metal phosphide as bi-functional electrocatalyst for enhanced water splitting performance." Journal of Power Sources 552 (December 2022): 232249. http://dx.doi.org/10.1016/j.jpowsour.2022.232249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Duan, Yaxin, Haitao Liu, Huabing Zhang, Shaojie Ke, Shuaize Wang, Meiling Dou, and Feng Wang. "Conductive bimetal organic framework nanorods decorated with highly dispersed Co3O4 nanoparticles as bi-functional electrocatalyst." Nanotechnology 33, no. 14 (January 12, 2022): 145601. http://dx.doi.org/10.1088/1361-6528/ac3d66.

Повний текст джерела
Анотація:
Abstract The poor electronic conductivity and low intrinsic electrocatalytic activity of metal organic frameworks (MOFs) greatly limit their direct application in electrocatalytic reactions. Herein, we report a conductive two-dimensional π–d conjugated Ni and Co bimetal organic framework (MOF)—NiCo-(2,3,6,7,10,11-hexaiminotriphenylene) (NiCo-HITP) nanorods decorated with highly dispersed Co3O4 nanoparticles (NPs) as a promising bi-functional electrocatalyst towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through an effective and facile strategy by modifying the rod-shaped -Ni3HITP2 crystals using cobalt ions. The triggered electrocatalytic activity of the resulting MOF-based materials was achieved by increasing the electrical conductivity (7.23 S cm−1) originated from Ni3HITP2 substrate and also by creating the cooperative catalysis sites of Co–N x and Co3O4 NPs. Optimized syntheses show a promising ORR activity with a high half-wave potential (0.77 V) and also a significantly improved OER activity compared with pure Ni3HITP2 in alkaline electrolyte. Furthermore, a rechargeable Zn–air battery using the as-prepared material as air-cathode also shows a high power density (143.1 mW cm−2)—even comparable to a commercial Pt/C-RuO2-based battery. This methodology offers a new prospect in the design and synthesis of non-carbonized MOF bi-functional electrocatalysts for efficient catalysis towards ORR and OER.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hu, Enlai, Jiqiang Ning, Bin He, Zhipeng Li, Changcheng Zheng, Yijun Zhong, Ziyang Zhang, and Yong Hu. "Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst." Journal of Materials Chemistry A 5, no. 5 (2017): 2271–79. http://dx.doi.org/10.1039/c6ta09943b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Nandan, Ravi, and K. K. Nanda. "A unique approach to designing resilient bi-functional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres." Journal of Materials Chemistry A 5, no. 21 (2017): 10544–53. http://dx.doi.org/10.1039/c7ta02293j.

Повний текст джерела
Анотація:
Embedded ultrafine bimetallic (PdPt) nanoparticles in hetero-atom doped carbonaceous nanospheres as an excellent nano-electrocatalyst for electro-oxidation/-reduction of alcohols/oxygen in alkaline media.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Nandan, R., and K. K. Nanda. "Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst." Nanoscale 9, no. 34 (2017): 12628–36. http://dx.doi.org/10.1039/c7nr04733a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Mukherjee, Biswanath. "First principles investigation on cobalt–tetracyanoquinodimethane monolayer for efficient Bi-functional single atom electrocatalyst." Journal of Electroanalytical Chemistry 897 (September 2021): 115602. http://dx.doi.org/10.1016/j.jelechem.2021.115602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Rodney, John D., S. Deepapriya, M. Cyril Robinson, C. Justin Raj, Suresh Perumal, Byung Chul Kim, and S. Jerome Das. "Lanthanum doped copper oxide nanoparticles enabled proficient bi-functional electrocatalyst for overall water splitting." International Journal of Hydrogen Energy 45, no. 46 (September 2020): 24684–96. http://dx.doi.org/10.1016/j.ijhydene.2020.06.240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wang, Ying, Mengfei Qiao, and Xamxikamar Mamat. "An advantage combined strategy for preparing bi-functional electrocatalyst in rechargeable zinc-air batteries." Chemical Engineering Journal 402 (December 2020): 126214. http://dx.doi.org/10.1016/j.cej.2020.126214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Bhuvanendran, Narayanamoorthy, Sabarinathan Ravichandran, Kai Peng, Santhana Sivabalan Jayaseelan, Qian Xu, and Huaneng Su. "Highly durable carbon supported FeN nanocrystals feature as efficient bi‐functional oxygen electrocatalyst." International Journal of Energy Research 44, no. 11 (June 16, 2020): 8413–26. http://dx.doi.org/10.1002/er.5524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Lv, Hualun, Xudong Zhang, Jialin Cai, Xin Xie, Yunxiao Fan, Leyan Liu, Jie Ding, Qiang Cai, and Yushan Liu. "Construction of RuSe2/MoOx hybrid and used as bi-functional electrocatalyst for overall water splitting." Materials Chemistry and Physics 277 (February 2022): 125461. http://dx.doi.org/10.1016/j.matchemphys.2021.125461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Jhajharia, Suman Kumari, and Kaliaperumal Selvaraj. "Molecularly engineered graphene oxide anchored metal organic assembly: An active site economic bi-functional electrocatalyst." FlatChem 29 (September 2021): 100269. http://dx.doi.org/10.1016/j.flatc.2021.100269.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zhuang, Shuxin, Kelong Huang, Chenghuan Huang, Hongxia Huang, Suqin Liu, and Min Fan. "Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi-functional air electrodes in alkaline medium." Journal of Power Sources 196, no. 8 (April 2011): 4019–25. http://dx.doi.org/10.1016/j.jpowsour.2010.11.056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Joy, Jaison, Sivamathini Rajappa, Vijayamohanan K. Pillai, and Subbiah Alwarappan. "Co3Fe7/nitrogen-doped graphene nanoribbons as bi-functional electrocatalyst for oxygen reduction and oxygen evolution." Nanotechnology 29, no. 41 (August 6, 2018): 415402. http://dx.doi.org/10.1088/1361-6528/aad35e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Mujtaba, Ayesha, Naveed Kausar Janjua, Tariq Yasin, and Sana Sabahat. "Assessing the electrochemical performance of hierarchical nanostructured CuO@TiO2 as an efficient bi-functional electrocatalyst." Journal of the Iranian Chemical Society 17, no. 3 (November 2, 2019): 649–62. http://dx.doi.org/10.1007/s13738-019-01797-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Jayaseelan, Santhana Sivabalan, Narayanamoorthy Bhuvanendran, Qian Xu, and Huaneng Su. "Co3O4 nanoparticles decorated Polypyrrole/carbon nanocomposite as efficient bi-functional electrocatalyst for electrochemical water splitting." International Journal of Hydrogen Energy 45, no. 7 (February 2020): 4587–95. http://dx.doi.org/10.1016/j.ijhydene.2019.12.085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Bian, Weiyong, Zhenrong Yang, Peter Strasser, and Ruizhi Yang. "A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution." Journal of Power Sources 250 (March 2014): 196–203. http://dx.doi.org/10.1016/j.jpowsour.2013.11.024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Liu, Ying, Fei Yang, Wei Qin, and Guowei Yang. "Co2P@NiCo2O4 bi-functional electrocatalyst with low overpotential for water splitting in wide range pH electrolytes." Journal of Colloid and Interface Science 534 (January 2019): 55–63. http://dx.doi.org/10.1016/j.jcis.2018.09.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ensafi, Ali A., Mehdi Jafari-Asl, Afshin Nabiyan, and B. Rezaei. "Ni3S2/ball-milled silicon flour as a bi-functional electrocatalyst for hydrogen and oxygen evolution reactions." Energy 116 (December 2016): 392–401. http://dx.doi.org/10.1016/j.energy.2016.09.128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zahoor, Awan. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, № 34 (12 грудня 2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2023.34.4.

Повний текст джерела
Анотація:
Among all type of batteries, Lithium Air Batteries (LAB) are considered to be the most effective due to their highest energy density of around 11900 Wh/kg but there are some major issues are being faced by LAB such as large overpotential, poor cycle life, low current density, and decreased energy efficiency. The solution to these issues is primarily dependent on the proper selection of an electrocatalyst. A new approach for using a bi-functional electrocatalyst produced excellent results. Here, Co3O4/α-MnO2 composite has been considered as a bifunctional catalyst because cobalt oxide performed well in the Oxygen Evolution Reaction (OER) process while manganese oxide performed well in the Oxygen Reduction Reaction (ORR) process. A simple two-step hydrothermal process is used in this work to synthesize Co3O4/α-MnO2. This work focuses on the behavior of the composite electrocatalyst when varying percentages of Cobalt oxide (5%, 10%, 15%, and 20%) are deposited on the alpha-Manganese Oxide nanorods. The primary characteristics of each sample with different percentages of Cobalt Oxide are examined, and the performance of each sample is compared to one another. Several testing techniques like Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) are performed on the samples. The combination of cobalt oxide and manganese oxide showed a synergistic effect and work as a bifunctional electrocatalyst. As the percentage of Co3O4 deposited on the α-MnO2 nanorod increased, it behaves more like an OER electrocatalyst leading to a decrease in charging potential. This work will help in finding an optimum amount of Co3O4 that should be deposited on α-MnO2 nanorods to get an efficient (ORR/OER) bifunctional electrocatalyst.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Zahoor, Awan, Ghadia Ahmed, Muhammad Amir, Faaz Butt Butt та as Naqvi. "Effect of varying percentages of Co3O4 Nanoparticles on the Behavior of (ORR/OER) Bifunctional Co3O4/α-MnO2 Electrocatalyst". TECCIENCIA 18, № 34 (2 лютого 2023): 43–52. http://dx.doi.org/10.18180/tecciencia.2022.34.4.

Повний текст джерела
Анотація:
Among all type of batteries, Lithium Air Batteries (LAB) are considered to be the most effective due to their highest energy density of around 11900 Wh/kg but there are some major issues are being faced by LAB such as large overpotential, poor cycle life, low current density, and decreased energy efficiency. The solution to these issues is primarily dependent on the proper selection of an electrocatalyst. A new approach for using a bi-functional electrocatalyst produced excellent results. Here, Co3O4/α-MnO2 composite has been considered as a bifunctional catalyst because cobalt oxide performed well in the Oxygen Evolution Reaction (OER) process while manganese oxide performed well in the Oxygen Reduction Reaction (ORR) process. A simple two-step hydrothermal process is used in this work to synthesize Co3O4/α-MnO2. This work focuses on the behavior of the composite electrocatalyst when varying percentages of Cobalt oxide (5%, 10%, 15%, and 20%) are deposited on the alpha-Manganese Oxide nanorods. The primary characteristics of each sample with different percentages of Cobalt Oxide are examined, and the performance of each sample is compared to one another. Several testing techniques like Cyclic Voltammetry (CV), Linear Sweep Voltammetry (LSV), X-Ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) are performed on the samples. The combination of cobalt oxide and manganese oxide showed a synergistic effect and work as a bifunctional electrocatalyst. As the percentage of Co3O4 deposited on the α-MnO2 nanorod increased, it behaves more like an OER electrocatalyst leading to a decrease in charging potential. This work will help in finding an optimum amount of Co3O4 that should be deposited on α-MnO2 nanorods to get an efficient (ORR/OER) bifunctional electrocatalyst.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sarmad, Qassam, Uneeb Masood Khan, Mutawara Mahmood Baig, Muhammad Hassan, Faaz Ahmed Butt, Asif Hussain Khoja, Rabia Liaquat, Zuhair S. Khan, Mustafa Anwar та Muhammed Ali S.A. "Praseodymium-doped Sr2TiFeO6-δ double perovskite as a bi-functional electrocatalyst for hydrogen production through water splitting". Journal of Environmental Chemical Engineering 10, № 3 (червень 2022): 107609. http://dx.doi.org/10.1016/j.jece.2022.107609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Tian, Weiliang, Cheng Wang, Ruida Chen, Zhao Cai, Daojin Zhou, Yongchao Hao, Yingna Chang, et al. "Aligned N-doped carbon nanotube bundles with interconnected hierarchical structure as an efficient bi-functional oxygen electrocatalyst." RSC Advances 8, no. 46 (2018): 26004–10. http://dx.doi.org/10.1039/c8ra03994a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Jung, Ho-Young, Sehkyu Park, Prabhu Ganesan, and Branko N. Popov. "Electrochemical Studies of Unsupported PtIr Electrocatalyst as Bi-Functional Oxygen Electrode in Unitized Regenerative Fuel Cells (URFCs)." ECS Transactions 16, no. 2 (December 18, 2019): 1117–21. http://dx.doi.org/10.1149/1.2981953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Meng, Lingshen, Liping Li, Jianghao Wang, Sixian Fu, Yuelan Zhang, Jing Li, Chenglin Xue, Yanhua Wei, and Guangshe Li. "Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction." Electrochimica Acta 350 (August 2020): 136382. http://dx.doi.org/10.1016/j.electacta.2020.136382.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chen, Lulu, Wenxiu Yang, Xiangjian Liu, Ling Long, Dandan Li, and Jianbo Jia. "Cobalt sulfide/N,S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst." Nanotechnology 30, no. 7 (December 18, 2018): 075402. http://dx.doi.org/10.1088/1361-6528/aaf457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kaipannan, Subramani, P. Anandha Ganesh, Karnan Manickavasakam, Santhoshkumar Sundaramoorthy, Kaviarasan Govindarajan, Sundar Mayavan, and Sathish Marappan. "Waste engine oil derived porous carbon/ZnS Nanocomposite as Bi-functional electrocatalyst for supercapacitor and oxygen reduction." Journal of Energy Storage 32 (December 2020): 101774. http://dx.doi.org/10.1016/j.est.2020.101774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Li, Guang-Lan, Guang-Chun Cheng, Bei-Bei Yang, Cai-Di Liu, Li-Fang Yuan, Wen-Wen Chen, Xiao-Cun Xu, and Ce Hao. "One-step construction of porous mixed spinel-type MnCoxO4/NCNT as an efficient bi-functional oxygen electrocatalyst." International Journal of Hydrogen Energy 43, no. 42 (October 2018): 19451–59. http://dx.doi.org/10.1016/j.ijhydene.2018.08.175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Rezaee, Sharifeh, and Saeed Shahrokhian. "3D ternary NixCo2−xP/C nanoflower/nanourchin arrays grown on HCNs: a highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction." Nanoscale 12, no. 30 (2020): 16123–35. http://dx.doi.org/10.1039/d0nr04616g.

Повний текст джерела
Анотація:
Over the last few years, substantial efforts have been made to develop earth-abundant bi-functional catalysts for urea oxidation and energy-saving electrolytic hydrogen production due to their low cost and the potential to replace traditional noble-metal-based catalysts.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Tian, Juntai, Wen Wu, Zhenghua Tang, Yuan Wu, Robert Burns, Brandon Tichnell, Zhen Liu, and Shaowei Chen. "Oxygen Reduction Reaction and Hydrogen Evolution Reaction Catalyzed by Pd–Ru Nanoparticles Encapsulated in Porous Carbon Nanosheets." Catalysts 8, no. 8 (August 11, 2018): 329. http://dx.doi.org/10.3390/catal8080329.

Повний текст джерела
Анотація:
Developing bi-functional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for enhancing the energy transfer efficiency of metal–air batteries and fuel cells, as well as producing hydrogen with a high purity. Herein, a series of Pd–Ru alloyed nanoparticles encapsulated in porous carbon nanosheets (CNs) were synthesized and employed as a bifunctional electrocatalyst for both ORR and HER. The TEM measurements showed that Pd–Ru nanoparticles, with a size of approximately 1–5 nm, were uniformly dispersed on the carbon nanosheets. The crystal and electronic structures of the PdxRu100−x/CNs series were revealed by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The as-prepared samples exhibited effective ORR activity in alkaline media and excellent HER activity in both alkaline and acid solutions. The Pd50Ru50/CNs sample displayed the best activity and stability among the series, which is comparable and superior to that of commercial 10% Pd/C. For ORR, the Pd50Ru50/CNs catalyst exhibited an onset potential of 0.903 V vs. RHE (Reversible Hydrogen Electrode) and 11.4% decrease of the current density after 30,000 s of continuous operation in stability test. For HER, the Pd50Ru50/CNs catalyst displayed an overpotential of 37.3 mV and 45.1 mV at 10 mA cm−2 in 0.1 M KOH and 0.5 M H2SO4, respectively. The strategy for encapsulating bimetallic alloys within porous carbon materials is promising for fabricating sustainable energy toward electrocatalysts with multiple electrocatalytic activities for energy related applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Liu, Xingmei, Yuwei Wang, Liquan Fan, Weichao Zhang, Weiyan Cao, Xianxin Han, Xijun Liu та Hongge Jia. "Sm0.5Sr0.5Co1−xNixO3−δ—A Novel Bifunctional Electrocatalyst for Oxygen Reduction/Evolution Reactions". Molecules 27, № 4 (14 лютого 2022): 1263. http://dx.doi.org/10.3390/molecules27041263.

Повний текст джерела
Анотація:
The development of non-precious metal catalysts with excellent bifunctional activities is significant for air–metal batteries. ABO3-type perovskite oxides can improve their catalytic activity and electronic conductivity by doping transition metal elements at B sites. Here, we develop a novel Sm0.5Sr0.5Co1−xNixO3−δ (SSCN) nanofiber-structured electrocatalyst. In 0.1 M KOH electrolyte solution, Sm0.5Sr0.5Co0.8Ni0.2O3−δ (SSCN82) with the optimal Co: Ni molar ratio exhibits good electrocatalytic activity for OER/ORR, affording a low onset potential of 1.39 V, a slight Tafel slope of 123.8 mV dec−1, and a current density of 6.01 mA cm−2 at 1.8 V, and the ORR reaction process was four-electron reaction pathway. Combining the morphological characteristic of SSCN nanofibers with the synergistic effect of cobalt and nickel with a suitable molar ratio is beneficial to improving the catalytic activity of SSCN perovskite oxides. SSCN82 exhibits good bi-functional catalytic performance and electrochemical double-layer capacitance.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Li, Pengsong, Xinxuan Duan, Yun Kuang, and Xiaoming Sun. "Iridium in Tungsten Trioxide Matrix as an Efficient Bi‐Functional Electrocatalyst for Overall Water Splitting in Acidic Media." Small 17, no. 45 (October 5, 2021): 2102078. http://dx.doi.org/10.1002/smll.202102078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Wang, Shumin, Yong Qin, Yang Liu, Fuqiang Chu, Yong Kong, and Yongxin Tao. "Co,N,S-Codoped Three-Dimensional Graphene as Efficient Bi-Functional Electrocatalyst for Oxygen Reduction/Hydrogen Evolution Reaction." Journal of The Electrochemical Society 164, no. 12 (2017): F1110—F1114. http://dx.doi.org/10.1149/2.0671712jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Park, Hey Woong, Dong Un Lee, Yulong Liu, Jason Wu, Linda F. Nazar, and Zhongwei Chen. "Bi-Functional N-Doped CNT/Graphene Composite as Highly Active and Durable Electrocatalyst for Metal Air Battery Applications." Journal of The Electrochemical Society 160, no. 11 (2013): A2244—A2250. http://dx.doi.org/10.1149/2.097311jes.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Li, Jin-Cheng, Peng-Xiang Hou, Shi-Yong Zhao, Chang Liu, Dai-Ming Tang, Min Cheng, Feng Zhang, and Hui-Ming Cheng. "A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions." Energy & Environmental Science 9, no. 10 (2016): 3079–84. http://dx.doi.org/10.1039/c6ee02169g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Hosseinian, Akram, Rahim Hosseinzadeh-Khanmiri, Ebrahim Ghorbani-Kalhor, Jafar Abolhasani, Mirzaagha Babazadeh, and Esmail Vessally. "Yolk-Shell Fe3O4-Polyaniline Decorated Pd-Ni Nanoparticles with Enhanced Performance for Direct Formic Acid Fuel Cell." Nano 12, no. 02 (February 2017): 1750016. http://dx.doi.org/10.1142/s1793292017500163.

Повний текст джерела
Анотація:
The yolk-shell Fe3O4-polyaniline for decoration of Pd-Ni nanoparticles (yolk-shell Fe3O4-PANI/Pd-Ni) were synthesized and used as a new electrocatalyst for oxidation of formic acid. The yolk-shell Fe3O4-PANI/Pd-Ni catalyst provided superior catalyst performance for formic acid oxidation in H2SO4 aqueous solution. These yolk-shell Fe3O4-PANI/Pd-Ni catalysts were found to be more resistant to deactivation in the oxidation of formic acid than yolk-shell Fe3O4-PANI/Pd and Pd/C and to consistently show better long-term performances. The enhanced catalytic performance may arise from the unique structure and surface properties of the yolk-shell Fe3O4-PANI and bi-functional effect, which process extraordinary promotional effect on Pd catalyst.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії